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Verification of High-Order Mixed FEM Solution of
Transient Magnetic Diffusion Problems

R. Rieben and D. White

Abstract—
We develop and present high order mixed finite element dis-

cretizations of the time dependent electromagnetic diffusion equa-
tions for solving eddy current problems on 3D unstructured grids.
The discretizations are based on high order H(grad), H(curl) and
H(div) conforming finite element spaces combined with an implicit
and unconditionally stable generalized Crank-Nicholson time dif-
ferencing method. We develop three separate electromagnetic dif-
fusion formulations, namely the ~E (electric field), ~H (magnetic
field) and the ~A-φ (potential) formulations. For each formula-
tion, we also provide a consistent procedure for computing the
secondary variables~J (current flux density) and ~B (magnetic flux
density), as these fields are required for the computation of electro-
magnetic force and heating terms. We verify the error convergence
properties of each formulation via a series of numerical experi-
ments on canonical problems with known analytic solutions. The
key result is that the different formulations are equally accurate,
even for the secondary variables~J and ~B, and hence the choice of
which formulation to use depends mostly upon relevance of the
Natural and Essential boundary conditions to the problem of in-
terest. In addition, we highlight issues with numerical verification
of finite element methods which can lead to false conclusions on
the accuracy of the methods.

Index Terms—
Computational electromagnetics, Maxwell’s equations, vector

finite elements, high order methods,H(Curl) and H(Div) - con-
forming methods, discrete differential forms, transient eddy cur-
rents, electromagnetic diffusion

I. I NTRODUCTION

In this paper we present high order mixed finite element for-
mulations for solving the time dependent electromagnetic diffu-
sion equations. Various formulations for these equations exist
and have been extensively reviewed and studied in the litera-
ture. These include formulations which solve for the electric
field (the~E field formulation) [1], [2], [3], the magnetic field
(the ~H field formulation) [4], [5] or for the potential field (the
~A-φ potential formulation) [6], [7], [8], [9]. Each formulation
has its advantages and disadvantages for problems in compu-
tational electromagnetics. However, we show that when using
H(Curl) andH(Div) conforming finite element methods there
is no difference inaccuracyfor these three formulations, even
for secondary quantities such as~B and~J. This is in contrast to
the often believed premise that there will be a loss in accuracy
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when computing~B from~∇×~A or computing~J from~∇×~H. The
difference between the three formulations, which use primary
field variables~E,~H, and~A, respectively, is in the boundary con-
ditions and the source terms, and is therefore simply a matter of
which formulation is most convenient for a given electromag-
netics problem.

The most difficult electromagnetic diffusion problems en-
countered in practice are those that involve multiple conduc-
tors separated by a non-conducting region, the so-called mul-
tiply connected eddy current problem. While the currents are
zero in the non-conducting region clearly the fields are not,and
some method must be used to account for these fields. One ap-
proach is to simply mesh the non-conducting region and use a
small value of conductivity in this region. While seemingly a
crude approach, it works well in practice for many problems,
for example using a conductivity at least 103 times smaller than
the metal results in fields correct to within the discretization er-
ror [7], [10]. The difficulty is the solve time due to the large
number of unknowns and matrix ill-conditioning. More so-
phisticated approaches include solving a magnetostatic prob-
lem in the non-conducing region and coupling the the two so-
lutions (the coupled approach), or employing an integral equa-
tion to correctly model the global boundary condition (the hy-
brid FEM/BEM approach). While we do provide a computa-
tional example where we employ a conductivity contrast of 107,
which can be considered an approximation to air or vacuum, in
this paper we do not advocate any particular approach for deal-
ing with non-conducting regions.

Here we review high order mixed finite element spatial dis-
cretizations of each of the previously mentioned formulations.
In the context of Galerkin approximations, the choice of the
finite element space plays a crucial role in the stability and
convergence of the discretization. For instance, in numerical
approximations of the magnetic and electric field intensities,
H(Curl) conforming finite element spaces (or edge elements)
are preferred over traditional nodal vector spaces since they
eliminate spurious modes in eigenvalue computations and they
prevent fictitious charge build-up in time-dependent computa-
tions. The lowest orderH(Curl) conforming basis functions
were developed by Whitney [11] before the advent of finite el-
ement programs. Arbitrary order versions were introduced by
Néd́elec [12], [13] as a generalization of the mixed finite ele-
ment spaces introduced by P.A. Raviart and J.M. Thomas [14]
for H(Div) conforming methods. Application of theseH(Curl)
andH(Div) basis functions toward electromagnetics is becom-
ing quite popular and applications can be found in several recent
textbooks [15], [5], [16]

A numerical implementation of arbitrary orderH(Curl) and
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H(Div) basis functions can be found in the finite element soft-
ware library FEMSTER [17]. This specific implementation has
been rigorously verified in the context of high order finite el-
ement solutions to transient wave equations and it has been
shown that such a formulation can drastically reduce the effects
of numerical dispersion, [18], [19]. Higher-order basis func-
tions can be combined with high order energy conserving time
integration schemes for further gains in accuracy [20], [19].

In this paper we apply a rigorous verification process of high
order mixed FEM solutions of the electromagnetic diffusion
equations. We define the verification process in a manner simi-
lar to [21] where five essential points of numerical verification
are presented. These include:

• Comparing code results to a related problem with an exact
answer

• Establishing that the convergence rate of the truncation er-
ror with changing grid spacing is consistent with expecta-
tions

• Comparing calculated with expected results for a problem
specially manufactured to test the code

• Monitoring conserved quantities and parameters, preser-
vation of symmetry properties, and other easily predictable
outcomes

• Benchmarking – that is, comparing results with those from
existing codes that can calculate similar problems

It is important to distinguishverification from validation.
Verification is concerned with numerical methods and the soft-
ware implementation of these methods. In the context of finite
element methods verification answers the question “Is the given
Initial Boundary Value Problem (the PDE + boundary condi-
tions + material models) being solved correctly?” Validation,
on the other hand, is concerned with the validity of the given
Initial Boundary Value Problem for a specific problem or set
of problems. Validation answers the question “To what extent
does this simulation agree with physical reality?” For example,
one may question the validity of the diffusion approximation
(neglecting displacement current) in the first place [22], or one
may question validity of assuming~H = 0 on a particular bound-
ary. We will not discuss validation here.

Our verification examples are carefully constructed to il-
lustrate some issues with numerical verification of finite ele-
ment methods. We show cases where computational results
are super-convergent (better than expected) and sub-convergent
(worse than expected), highlighting the fact that the true perfor-
mance of a method cannot be ascertained by a single computa-
tional experiment.

II. ELECTROMAGNETIC DIFFUSION EQUATIONS

When working with multiple finite element spaces, it be-
comes convenient to use the notation of differential forms as a
way of categorizing the various field quantities from Maxwell’s
equations and the subsequent finite element spaces used to dis-
cretize them. In addition, the calculus of differential forms
provides the necessary transformation rules which allow com-
plicated basis functions to be derived on a reference element
and then mapped to global mesh elements. Table I lists vari-
ous physical quantities in electromagnetics and their associated
differential form.

Physical Quantity Units Diff. Form

Scalar Potential,φ Volts/m0 0-form
Vector Potential,~A Webbers/m1 1-form
Electric Field Intensity,~E Volts/m1 1-form
Magnetic Field Intensity,~H Amps/m1 1-form
Electric Flux Density,~D Coulombs/m2 2-form
Magnetic Flux Density,~B Webbers/m2 2-form
Electric Charge Density,ρ Coulombs/m3 3-form

TABLE I
ELECTROMAGNETIC QUANTITIES AND THEIR ASSOCIATED DIFFERENTIAL

FORMS

In electromagnetics we have the electric and magnetic fields
~E, ~H, the electric and magnetic flux densities~D, ~B, and the
constitutive relations

~D = ε~E
~B = µ~H

Here we write Maxwell’s Equations in terms of~E and~B,

ε
∂~E
∂t

= ~∇× 1
µ
~B−σ~E− ~Js (1)

∂~B
∂t

= −~∇×~E (2)

~∇ · ε~E = 0 (3)

~∇ ·~B = 0 (4)

with appropriate boundary conditions and initial conditions un-
derstood. Note that~Js is an independent current source term,
which may or may not exist for every problem. In all of our
subsequent formulations, the material propertiesε,µ,σ are free
to be symmetric positive definite tensor functions of space,but
we impose the restriction that they are independent of time.

Now consider solving Maxwell’s Equations within a good
conductor. A good conductor is defined by the condition

ε
∂~E
∂t

≪ σ~E. (5)

Note that (5) depends not only on the material propertiesσ
andε, but also on the time rate of change of~E. When (5) is
satisfied, Maxwell’s equations can be simplified by neglecting
theε ∂~E

∂t term altogether, this is the so-called low-frequency ap-
proximation, diffusion approximation or eddy-current approx-
imation. The diffusion approximation is not valid for most
RF, microwave, or optics problems, but is reasonable for low-
frequency EM waves in plasmas or in the earth [23], [24] [25],
[26], as well as for quasi-magnetostatic problems such as elec-
tric motors, transformers, induction heating, and electromag-
netic rail-guns. A detailed, mathematical analysis which justi-
fies the approximation is given in [22].
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A. The~E Field Formulation

Combining the Ampere-Faraday laws of (1) and (2) and ap-
plying the low-frequency approximation of (5) yields a diffu-
sion equation for the electric field. Given the electric field, the
magnetic flux and eddy current densities can be computed as
well. Consider a 3 dimensional domainΩ with surface bound-
ary Γ, the electric field diffusion formulation is then given by

σ
∂~E
∂t

= −~∇× 1
µ
~∇×~E− ∂~Js

∂t
(6)

∂~B
∂t

= −~∇×~E (7)

~J = σ~E (8)

For this paper, we consider two different types of boundary
conditions, namely the essential (or inhomogeneous Dirichlet)
boundary condition

n̂×~E = ~Etan on Γ (9)

and the natural (or homogeneous Neumann) boundary condi-
tion

n̂× 1
µ
~∇×~E = 0 on Γ (10)

There are divergence constraints on both the primary and sec-
ondary fields, namely

~∇ ·σ~E = 0 (11)
~∇ ·~B = 0 (12)

B. The~H Field Formulation

The magnetic field diffusion equation can be derived by again
combining (1) and (2) and applying the low-frequency approx-
imation, this time eliminating~E instead of~B,

µ
∂~H
∂t

= −~∇× 1
σ
~∇× ~H +

1
σ
~∇× ~Js (13)

~B = µ~H (14)

~J = ~∇× ~H − ~Js (15)

The essential (inhomogeneous Dirichlet) boundary condition is
given by

n̂× ~H = ~Htan on Γ (16)

while the natural (homogeneous Neumann) boundary condition
is given by

n̂× 1
σ
~∇× ~H = 0 on Γ (17)

There are divergence constraints on both the primary and sec-
ondary fields, namely

~∇ ·µ~H = 0 (18)
~∇ · ~J = 0 (19)

C. The~A-φ Potential Formulation

The divergence condition (4) implies that~B = ~∇×~A where
~A is a magnetic vector potential. This in turn implies that the
electric field is given by~E = −~∇Φ− ∂

∂t
~A, whereΦ is an elec-

tric scalar potential. Using these two potentials, along with the
gauge condition~∇ ·σ~A = 0, the potential diffusion equations in
a 3 dimensional domainΩ are

~∇ ·σ~∇φ = 0 (20)

σ
∂~A
∂t

= −~∇× 1
µ
~∇×~A−σ~∇φ+ ~Js (21)

~E = −~∇φ− ∂
∂t

~A (22)

~B = ~∇×~A (23)
~J = σ~E (24)

Note that this formulation has an additional elliptic PDE (20)to
solve for the scalar potential. The essential (inhomogeneous
Dirichlet) boundary conditions are given by

φ = φsur f on Γ (25)

n̂×A = Atan on Γ (26)

while the natural (homogeneous Neumann) boundary condi-
tions are given by

n̂·~∇φ = 0 on Γ (27)

n̂× 1
µ
~∇×A = 0 on Γ (28)

Again, there are divergence constraints on both the primaryand
secondary fields, namely

~∇ ·σ~A = 0 (29)
~∇ ·~B = 0 (30)

It is interesting to note that in the potential diffusion equation
we explicitly see the Helmholtz decomposition of the electric
field

~E = ~Eirr +~Esol

where~Eirr = −~∇φ and~Esol = − ∂A
∂t . The total current is

~J = σ~E = σ

(

−~∇φ− ∂~A
∂t

)

where the first term is irrotational and is determined solelyby
the boundary conditions onφ, and the second term is solenoidal
and satisfies the diffusion equation.

The~E field, ~H field, and~A-φ field formulations are remark-
ably similar. Each formulation involves a divergence constraint
on the primary field of the form~∇ ·α~X, where~X is the primary
field variable andα is a material property. Fortunately this di-
vergence constraint will be satisfied, automatically, by the fi-
nite element method. Each formulation involves computation
of secondary fields from a curl equation~Y = ~∇×~X where~X is
the primary variable and~Y is the secondary variable. The~A-φ
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formulation involves an additional Laplacian forφ and hence
will be more computationally expensive to solve. But this par-
ticular formulation is well suited for problems driven by anap-
plied voltage source, as the voltage appears explicitly in the
equations.

III. SPATIAL FINITE ELEMENT DISCRETIZATION

FEMSTER is a class library of higher-order discrete differen-
tial forms that is used within theEMSolveCEM code [27], [17],
[28]. It provides discrete numerical implementations of the con-
cepts from differential forms (tangent vectors, wedge product,
exterior derivative, hodge-star operator, etc. . . ). In standard fi-
nite element language, FEMSTER contains all the data struc-
tures and operations required to compute local finite element
matrices: elements (tetrahedrons, hexahedrons, prisms),basis
functions (or shape functions), quadrature rules, linear forms,
and bilinear forms. FEMSTER provides the gradient, curl, and
divergence operators, as well as the, div-grad, curl-curl,and
grad-div operators. Note that arbitrary partial derivative opera-
tors are not included, as these do not fit nicely into the frame-
work of differential forms, and fortunately are not needed for
computational electromagnetics. The basis function classhi-
erarchy contains four forms of basis functions, simply called
0-forms, 1-forms, 2-forms, and 3-forms. Derived from each of
these classes are sub-class for the element types tetrahedron,
hexahedron, and prism, and derived from each of these types
is a further specialization for the degrees-of-freedom, i.e. in-
terpolatory, spectral, hierarchical, etc. The critical step in us-
ing FEMSTER is to decide what form should be used for each
physical quantity. The essential properties of the forms are now
summarized.

0-forms are continuous scalar basis functions that have a
well-defined gradient. These basis functions are a finite sub-
space ofH(Grad) and are suitable for discretization of the elec-
tric potentialφ, temperatureT, etc. The basis functions are di-
mensionless, hence the degrees-of-freedom have the same units
as the field being approximated. If the field is temperature, the
degrees-of-freedom have units of temperature. The gradient of
a 0-form basis function can be represented, exactly, as a combi-
nation of 1-form basis functions, i.e.dW0 ⊂ ~W1.

1-forms are vector basis functions with continuous tangential
components across elements, but discontinuous normal compo-
nents. They have a well defined curl, but do not have a well
defined divergence. These basis functions are a finite subspace
of H(Curl) . The basis functions have units ofm−1. For exam-
ple the electric field has units ofVolts/m and the degrees-of-
freedom will therefore have units ofVolts. It is a simple matter
to integrate 1-forms along the edges of a mesh, but surface in-
tegrals are not well defined. These basis functions are ideally
suited for the electric field~E, the magnetic field~H, the magnetic
vector potential~A, etc. The curl of a 1-form basis function can
be represented, exactly, as a combination of 2-form basis func-
tions, i.e. d~W1 ⊂ ~W2. The null space of the curl operator on
1-forms is, exactly, the space of gradients of 0-forms,d~W1 = 0
implies~W1 = dW0, for simply-connected regions.

2-forms are vector basis functions with continuous normal
components across elements, but discontinuous tangentialcom-
ponents. They have a well defined divergence, but do not have a

well defined curl. These basis functions are a finite subspaceof
H(Div) . The basis functions have units ofm−2. For example
the electric current density has units ofAmperes/m2, therefore
the degrees-of-freedom have units ofAmperes. It is a simple
matter to integrate 2-forms over surfaces of a mesh, but linein-
tegrals are not well defined. These basis functions are ideally
suited for the electric flux density~D, the magnetic flux density
~B, current flux density~J, etc. The divergence of a 2-form ba-
sis function can be represented, exactly, as a combination of
3-form basis functions. The null space of the divergence oper-
ator on 2-forms is, exactly, the space of curls of 1-forms.

3-forms are discontinuous scalar basis functions. They can’t
be differentiated. They can be integrated over a volume, butnot
over a surface or a line. These basis functions are a finite sub-
space ofL2. The basis functions have units ofm−3. For exam-
ple, charge density has units ofCoulombs/m3 and the degrees-
of-freedom will therefore have units ofCoulombs. These basis
functions are ideally suited for the electric charge density ρ, the
energy densityε, etc.

A. Variational Formulation

The assumption is that we have a conforming unstructured
finite element mesh composed of either tetrahedrons, hexahe-
drons, or prisms. We begin with the electric field formulation,
the other formulations will follow similarly. TheEMSolvephi-
losophy is that the electric field~E is a 1-form and hence is ap-
proximated using 1-form basis functions,

~E (x,y,z, t) ≈
n

∑
i=1

ei (t)~W1
i (x,y,z) , (31)

with ei the ith degree-of-freedom and~W1
i is theith 1-form ba-

sis function. InEMSolvethe 1-form basis functions have units
of m−1, hence the degrees-of-freedom have units ofVolts. We
multiply the electric diffusion equation by a test function~W1

j ,
integrate over the domainΩ, and then utilize Greens First Vec-
tor Theorem. Ignoring the source terms and boundary condi-
tions for clarity, we have

σ
∂~E
∂t

= −~∇× 1
µ
~∇×~E

∫

Ω
σ

∂~E
∂t

· ~W1
j dΩ = −

∫

Ω
~∇× 1

µ
~∇×~E · ~W1

j dΩ

∫

Ω
σ

∂~E
∂t

· ~W1
j dΩ = −

∫

Ω

1
µ
~∇×~E ·~∇× ~W1

j dΩ

Inserting the basis function expansion (31) for the electric field,
and interchanging summation and integration, gives

n

∑
i=1

∫

Ω
σ~W1

i · ~W1
j dΩ

∂ei

∂t
= −

n

∑
i=1

∫

Ω
~∇× ~W1

i ·~∇× ~W1
j dΩ ei

M
∂
∂t

e = −Se

whereM andSare the “mass” and “stiffness” matrices, respec-
tively, ande is the vector of degrees-of-freedom.
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The magnetic flux density update requires computing the curl
of the electric field. TheEMSolvephilosophy is that the mag-
netic flux density~B is a 2-form and hence is approximated using
2-form basis functions,

~B(x,y,z, t) ≈
n

∑
i=1

bi (t)~W2
i (x,y,z) , (32)

with bi the ith degree-of-freedom and~W2
i is theith 2-form ba-

sis function. A key property of discrete differential formsbasis
functions is that the inclusion relationdW1 ⊂W2 is satisfied at
the discrete level, for every basis function~W1

j there exist co-

efficientski j such that∑r
k=1kk j~W2

k = ~∇× ~W1
j . Using this fact

Amperes’ Law becomes

∂~B
∂t

= −~∇×~E

n

∑
i=1

~W2
i

∂
∂t

bi = −
m

∑
j=1

~∇× ~W1
j ej

n

∑
i=1

~W2
i

∂
∂t

bi = −
m

∑
j=1

[

r

∑
k=1

kk j~W
2
k

]

ej

n

∑
i=1

~W2
i

∂
∂t

bi = −
n

∑
i=1

~W2
i

m

∑
j=1

ki j ej

∂
∂t

b = −Ke

whereK is a rectangularn×m matrix, with r non-zero entries
per column, that maps 1-form degrees-of-freedom to 2-form
degrees-of-freedom, and is the matrix version of the relation
dW1 ⊂ W2. For lowest order basis functions,K is the mesh
edge-face incidence matrix, for higher-order basis functions the
matrixK must be computed.

The divergence constraint on the electric field will be satis-
fied in the weak sense. The divergence equation is multiplied
by a 0-form test functionW0, the result is integrated over the
domainΩ, and integration-by-parts moves the derivative to the
test function,

~∇ ·σ~E = 0
∫

Ω
~∇ ·σ~EW0

j = 0
∫

Ω
σ~E ·~∇W0

j = 0

Inserting the basis function expansion (31) for the electric field,
and interchanging summation and integration, gives

n

∑
i=1

[

∫

Ω
σ~W1

i ·~∇W0
j

]

ei = 0

DTe = 0

whereDT is a rectangular matrix representing the divergence
of a 1-form field. For lowest order basis functions, this matrix
maps edges to nodes, and the constraint is equivalent to stating
that the sum of the fields entering a node is zero.

The divergence constraint on the magnetic flux density will
be satisfied in the strong sense. If the magnetic charge density

were non-zero, it would be considered a 3-form, hence the di-
vergence operator is a matrix that maps 2-form fields to 3-form
fields. A key property of discrete differential forms basis func-
tions is that the inclusion relationdW2 ⊂W3 is satisfied at the
discrete level, for every basis function~W2

i there exist coeffi-
cientsqki such that∑r

k=1qkiW3
k = ~∇ · ~W2

i . Using this relation
gives

~∇ ·~B = 0
n

∑
i=1

~∇ · ~W2
i bi =

m

∑
j=1

W3
j ρ j = 0

n

∑
i=1

[

r

∑
k=1

qkiW
3
k

]

bi =
m

∑
j=1

W3
j ρ j = 0

m

∑
j=1

W3
k

n

∑
i=1

q ji bi =
m

∑
j=1

W3
j ρ j = 0

Qb = 0

whereQ is a rectangularn×m matrix, with r non-zero entries
per column, representing the divergence of a 2-form matrix,and
is a discrete version of the relationdW2 ⊂W3. For lowest order
basis functions,Q is the mesh face-cell incidence matrix, and
the divergence constraint is equivalent to stating that thesum of
the fluxes entering a cell is zero.

For the~H field and~A field formulations the primary field is
also a 1-form, and this results in similar mass and stiffnessma-
trices, the only difference being the material properties used.
For each formulation, the secondary fields~B and~J are approxi-
mated using 2-form basis function expansions. In addition,it is
necessary to define matrices for constitutive equations such as
~J = σ~E and~B = µ~H, which also map 1-forms to 2-forms. All
of these matrices are defined below.

B. Local Finite Element Operation

FEMSTER computes the following “mass”, “stiffness”, and
“derivative” matrices, where the superscript 0,1,2,3 denotes the
degree of the form,

M0(α)i j =
∫

Ω
αW0

i W0
j dΩ (33)

M1(α)i j =
∫

Ω
αW1

i ·W1
j dΩ (34)

M2(α)i j =
∫

Ω
αW2

i ·W2
j dΩ (35)

M3(α)i j =
∫

Ω
αW3

i W3
j dΩ (36)

S0(α)i j =
∫

Ω
α~∇W0

i ·~∇W0
j dΩ (37)

S1(α)i j =
∫

Ω
α~∇×W1

i ·~∇×W1
j dΩ (38)

S2(α)i j =
∫

Ω
α~∇ ·W2

i
~∇ ·W2

j dΩ (39)

D01(α)i j =
∫

Ω
α~∇W0

i ·W1
j dΩ (40)

D12(α)i j =

∫

Ω
α~∇×W1

i ·W2
j dΩ (41)

D23(α)i j =
∫

Ω
α~∇ ·W2

i W3
j dΩ (42)
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The “mass” matricesM and the “stiffness” matricesS are
square and mapl -forms to l -forms, the “derivative” matrices
D are rectangular and mapl -forms to(l + 1)-forms. It can be
shown that

D01 = M1K01 (43)

S0 =
(

K01)T
M1K01 (44)

D12 = M2K12 (45)

S1 =
(

K12)T
M2K12 (46)

D23 = M3K23 (47)

S2 =
(

K23)T
M3K23 (48)

whereK l(l+1) is a “topological derivative” matrix. This matrix
is the discretization of the exterior derivative operatord from
differential geometry,dWl =W(l+1). This matrix depends upon
the mesh connectivity, but is independent of the nodal coordi-
nates. It does not involve an integral over the element, and it
does not involve any material properties. While seemingly ab-
stract, it is enormously valuable in practice. The FEMSTER
library computes the topological derivative matricesK01, K12,
andK23. Given anl -form quantityX with basis function ex-
pansion

X =
n

∑
i=1

xiW
l
i , (49)

and an(l +1)-form quantityY with basis function expansion

Y =
n

∑
i=1

yiW
(l+1)
i , (50)

the exterior derivative (gradient, curl, divergence forl = 0, l =
1, andl = 2, respectively) is given by

y = K l(l+1)x. (51)

It can be shown that
K12K01 = 0 (52)

K23K12 = 0 (53)

which are the discrete versions ofd(dWl ) = 0. In terms of
standard vector calculus, these matrix relations correspond to
the identities~∇×~∇ f = 0 and~∇ ·~∇×~F = 0, respectively. These
identities are satisfied in the discrete sense, exactly (to machine
precision), for any mesh and any order basis function.

FEMSTER contains some additional miscellaneous func-
tionality. In some circumstances it is necessary to convertan
l -form to a(3− l)−form, i.e. a Hodge-star operation. A clas-
sic example is converting a ”cell-center” quantity to a ”nodal”
quantity. In our finite element setting the Galerkin procedure
prescribes rectangular matrices of the form

Hp(3−l)
i j =

∫

Ω
Wl

i ∧W(3−l)
j dΩ (54)

which produces optimal (in the least-square error sense) Hodge-
star operators for arbitrary order basis functions. FEMSTER

also computes a variety of ”load vectors” that are used as source
terms in finite element discretizations,

f0
j =

∫

Ω
f W0

j dΩ (55)

f1
j =

∫

Ω
f ·W1

j dΩ (56)

f2
j =

∫

Ω
f ·W2

j dΩ (57)

f3
j =

∫

Ω
f ·W3

j dΩ (58)

g0
j =

∫

Γ
g W0

j dΓ (59)

g1
j =

∫

Γ
g·W1

j dΓ (60)

g2
j =

∫

Γ
g·W2

j dΓ (61)

C. Semi-Discrete~E Field Formulation

Given the above defined matrices, the semi-discrete electric
field formulation is given by the equations

M1(σ)
∂e
∂t

= −S1(µ−1) e− f1 (62)

∂b
∂t

= −K12 e (63)

M2(σ−1) j = H12 e (64)

The divergence constraints are given by

(

D01(σ)
)T

e = 0 (65)

K23b = 0 (66)

and from the identities (52) and (53) these constraints are im-
plicitly satisfied for all time, assuming the initial conditions and
the source terms are divergence free. Hence in practice the di-
vergence matrices are not constructed.

D. Semi-Discrete~H Field Formulation

Given the above defined matrices, the semi-discrete magnetic
field formulation is given by the equations

M1(µ)
∂h
∂t

= −S1(σ−1) h+(D12(σ−1))T f2 (67)

M2(µ−1) b = H12 h (68)

j = K12 h− f2 (69)

The divergence constraints are given by

(

D01(µ)
)T

h = 0 (70)

K23j = 0 (71)

and from the identities (52) and (53) these constraints are im-
plicitly satisfied for all time, assuming the initial conditions and
the source terms are divergence free.
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E. Semi-Discrete~A-φ Potential Formulation

Given the above defined matrices, the semi-discrete magnetic
vector potential formulation is given by the equations

S0(σ) v = g0 (72)

M1(σ)
∂a
∂t

= −S1(µ−1) a−D01(σ) v+ f1 (73)

e = −K01 v− ∂a
∂t

(74)

b = K12 a (75)

M2(σ−1) j = H12 e (76)

The divergence constraints are given by

(

D01(σ)
)T

a = 0 (77)
(

D01(σ)
)T

e = 0 (78)

K23b = 0 (79)

and from the identities (52) and (53) these constraints are im-
plicitly satisfied for all time, assuming the initial conditions and
the source terms are divergence free.

IV. T IME INTEGRATION

The time integration scheme will be a generalized Crank-
Nicholson method. This can be derived by averaging a first-
order forward difference at timen with a first-order backward
difference at timen+ 1. The averaging is performed with a
weighting parameterα, where 0≤ α ≤ 1, such that

α =







0 Explicit, 1st Order Accurate Forward Euler
1/2 Implicit, 2nd Order Accurate Crank Nicholson
1 Implicit, 1st Order Accurate Backward Euler

The method is unconditionally stable forα≥ 1/2. Forα < 1/2,
the stability condition is

∆t < χ
(

M1(σ)−1S1(µ)
)

, (80)

whereχ(Z) denotes the spectral radius of the matrixZ. This
can be computed quite efficiently by the power method (see
for example [29]) . Or, it can be estimated using the rule that
∆t < κh2 whereκ = 1

σµ is the magnetic diffusivity andh is the
minimal mesh spacing.

A. Fully-Discrete~E Field Formulation

For the electric field diffusion equation we have

(M1(σ) + α∆tS1(µ−1)) en+1 (81)

= (M1(σ)− (1−α)∆tS1(µ−1)) en

− ∆tf1
n+α

bn+1 = bn−
∆t
2

K12(en+1 +en) (82)

M2(σ−1)jn+1 = H12en+1 (83)

Note that the source function is evaluated at the intermediate
time stepn+α.

B. Fully-Discrete~H Field Formulation

The time integration for the magnetic diffusion equation is
quite similar,

(M1(µ) + α∆tS1(σ−1)) hn+1 (84)

= (M1(µ)− (1−α)∆tS1(σ−1)) hn

+ ∆t(D12(σ−1))T f2
n+α

M2(µ−1) bn+1 = H12 hn+1 (85)

jn+1 = K12 hn+1− f2
n+α (86)

C. Fully-Discrete~A-φ Potential Formulation

The time integration for the potential diffusion equation is
also quite similar,

S0vn+α = f0
n+α (87)

(M1(σ) + α∆tS1(µ−1)) an+1 (88)

= (M1(σ)− (1−α)∆tS1(µ−1)) an

− ∆tD01vn+α + f1
n+α

en+α = −K01vn+α −1/∆t (an+1−an) (89)

bn+1 = K12an+1 (90)

M2(σ−1)jn+α = H12en+α (91)

For this case, note that the discrete eddy current flux density j
is known at intermediate time steps to maintain second order
accuracy in time.

V. NUMERICAL EXPERIMENTS AND COMPUTATIONAL

RESULTS

We now present a series of numerical experiments for the
purposes of verifying the fully discrete equations of Section IV
according to the criterion listed in Section I and [21]. Hav-
ing analytic solutions to the continuum diffusion equations of
Section II permits a normed error analysis, allowing us to ver-
ify the orders of accuracy for the proposed spatial and tempo-
ral discretization schemes. Analytic solutions to 3D PDE’sare
usually only available for problems with a high degree of spatial
symmetry or for problems on certain canonical geometries such
as cubes, cylinders and spheres. As such, we introduce three
canonical problems in the calculation of transient eddy currents.
For each canonical problem, we perform a convergence study
in which we compute normed error quantities on a sequence
of recursively refined meshes (h-refinement) and varying de-
grees of approximation for the finite element basis functions
(p-refinement). In addition, we investigate the effect of element
geometry on the error convergence properties of the methods
by utilizing both standard orthogonal (Cartesian) meshes and
more distorted varieties which have non-orthogonal elements
with possibly non-coplanar quadrilateral faces. We also use a
method of manufactured solutions specifically designed to ver-
ify the convergence properties of each of the methods.

Suppose~u is a time dependent vector field which is an an-
alytic solution to one of the continuum electromagnetic diffu-
sion equations of Section II. We compute the error in the finite
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element solution~uh of the corresponding discrete equation of
Section IV at time stepn using theL2 norm, defined as

‖~u−~uh‖2 ≡
√

∑
k

[

∫

Ωk

(~u−~uh) · (~u−~uh) dΩk

]

(92)

Numerous analyses of the Galerkin finite element procedure us-
ing H(Curl) basis functions forcurl-curl equations indicate a
theoretical convergence of

‖~u−~uh‖H(curl) ∝ O(hp), (93)

wherep is the degree of the polynomial basis function and

‖~u−~uh‖H(curl) = ‖~u−~uh‖2 +
∥

∥

∥
(~∇×~u)− (~∇×~uh)

∥

∥

∥

2
. (94)

This is of course for problems with suitable regularity, we are
not concerned here with problems in which the exact solution
possess singularities. In the following examples, we use the L2
norm as this quantity is analogous to the root-mean-square er-
ror commonly applied in multifarious engineering disciplines.
Since theH(Curl) basis functions are incomplete, convergence
in theL2 norm may beO(hp) or O(hp+1) depending upon the
specific problem, and misleading convergence results have been
reported due to this phenomena. The examples below exem-
plify this. It must be noted that in this paper we refer to the
lowest orderH(Curl) andH(Div) basis functions asp= 1, even
though these basis functions are incomplete.

In each of the following examples, a linear system involving
finite element mass and stiffness matrices must be solved at ev-
ery time step (by virtue of the implicit time integration method
used). For each of the following examples, the linear systems
are solved to a residual error tolerance of 10−10 using a diago-
nally scaled pre-conditioned conjugate gradient (PCG) iterative
solver.

A. The “Wine Cellar” Problem – Cubic Geometry

This particular problem illustrates super-convergence ofthe
numerical solution. Consider a simple 1D analytic solutionto
the scalar diffusion equation. This particular problem is some-
times referred to as the “wine cellar” problem as it can be used
to determine the best depth of a cellar buried below ground level
to minimize the variation in temperature due to the periodic
changes in heat at ground level due to thermal radiation from
the sun. The 1D diffusion equation is of the form

d
dt

u(x, t) = κ
d2

dx2 u(x, t),

where the termκ is the thermal diffusivity. Suppose we impose
the boundary conditionsu(0, t) = cos(ωt) andu(L, t) = 0 for
some fixed distanceL and angular frequencyω, then a solution
to this is given by

u(x, t) =
sin(β x)
sin(β L)

exp(−iωt), (95)

whereβ =
√

iω
κ (herei denotes

√
−1). We can adapt this sim-

ple 1D problem to a three dimensional vector field problem by

considering a cubic domain of width, length and height equal
to L. Consider an electric field vector of the form

~E = u(z, t) x̂, (96)

i.e. the electric field is oriented with respect to the positive x-
axis of the cubic domain and diffuses in thez-direction. The
electric field of (96) is a solution to (6) withκ = 1√

µσ , ~Js = 0
(i.e. no external current source), and subject to the Dirichlet
boundary conditions: ˆn×~E = u(0, t) at thez= 0 face and ˆn×
~E = 0 at thez= L,x = 0 andx = L faces. The remaining two
faces of the cubic domain satisfy the natural boundary condition
of (10).

We now perform a normed error analysis of the computed so-
lution. We performed a total of 12 computational experiments:
a sequence of 3 orthogonal Cartesian meshes, a sequence of 3
skewed non-orthogonal meshes, and bothp = 1 andp = 2 ba-
sis functions for each mesh. A value ofα = 0.5 was used for
the time stepping for 2nd order accuracy. For every level of re-
finement (inh or p), the time step∆t was refined as well, so
that time integration error would not dominate. An example of
the~E and~B fields, computed using the~E field formulation, is
shown in Figure 1, and the computed~E field is compared to
the exact solution in Figure 2. An example of the computed
error distribution, for both the Cartesian and the skewed mesh,
is shown in Figure 3. Clearly, for the skewed mesh, the error is
concentrated in the vicinity of the most distorted elements. In
Table II we list the computational statistics for the experiments
including the total number of Degrees of Freedom (DoF) for
each experiment. Note that the average number of PCG itera-
tions required to achieve the same error tolerance increases for
the case of the skewed mesh as expected.

The convergence for the 12 computations is shown in Fig-
ure 4. Note that for the Cartesian mesh theL2 error converges
at a rate ofO(hp+1), whereas for the skewed mesh theL2 er-
ror converges at a rate ofO(hp). The Cartesian case exhibits
super-convergence. This is not a general result - it is due tothe
fact that for this specific problem the electric field~E = Exx̂ is
aligned with the mesh edges, andEx is independent ofx. The
example in Section V-D shows that the generic convergence is
O(hp) even for orthogonal Cartesian meshes. The computed
convergence for the skewed meshes agrees with the theoretical
expectation. It should be noted that the~H field formulation and
the~A field formulation give identical rates of convergence for
this problem.

B. The “Conducting Pipe” Problem – Cylindrical Geometry

Consider a conducting pipe of conductivityσ with inner ra-
dius Ri , outer radiusRo and total lengthL oriented along the
ẑ-axis. Suppose there is a time harmonic current sourcef (ωt)
on theẑ-axis, generating a magnetic field intensity of the form
~H = f (ωt)

2πr θ̂. Analytic solutions for the time dependent mag-
netic field intensity~H and transient eddy current density~J in-
side of the conducting pipe exist and can be expressed in terms
of modified Bessel functions of the first kind,In(z), and the
second kind,Kn(z). The exact magnetic field intensity is of the
form

~H(r, t) = (c0I1(αr)+c1K1(αr))exp(iωt)θ̂, (97)
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Fig. 1. Electric and magnetic fields in the wine cellar problemat a snapshot in
time computed using the fully discrete~E field formulation on theh2 Cartesian
mesh.

Fig. 2. Comparison of computed ˆx-component of electric field to exact analytic
value at a snapshot in time on theh2 Cartesian mesh.

No. Elems. No. DoF PCG Iterations
(Cart / Skew)

h1-p1 1,000 3,630 10 / 30
h2-p1 8,000 26,460 16 / 35
h3-p1 64,000 201,720 16 / 39

h1-p2 1,000 26,460 18 / 45
h2-p2 8,000 201,720 18 / 51
h3-p2 64,000 1,574,640 19 / 55

TABLE II
RESULTS FORhp-REFINED FINITE ELEMENT SOLUTIONS TO THE WINE

CELLAR PROBLEM USING THE FULLY DISCRETE~E FIELD FORMULATION.

Fig. 3. Cartesian (left) and skewed (right) wine cellar meshes with pseudo-
color plot of error distribution.

while the exact eddy currents are of the form

~J(r, t) = α(c0I0(αr)−c1K0(αr))exp(iωt)ẑ, (98)

where the coefficients are given by

α =
i +1

√

2/(ωσµ)
,

c0 =
RiK1(αRi)−RoK1(αRo)

2πRiRo (I1(αRo)K1(αRi)− I1(αRi)K1(αRo))
,

c1 =
−Ri I1(αRi)+RoI1(αRo)

2πRiRo (I1(αRo)K1(αRi)− I1(αRi)K1(αRo))
,

We now use (97) and (98) to perform a normed error anal-
ysis for the fully discrete magnetic field diffusion equations of
(84) and (86) using a sequence of refined cylindrical meshes
(h-refinement) and varying degrees of approximation for the fi-
nite element basis functions (p-refinement). To fully define the
problem, we apply a time dependent Dirichlet boundary con-
dition n̂× ~H = ~H(Ri , t) to the inner cylindrical surface defined
by r = Ri , andn̂× ~H = ~H(Ro, t) to the outer cylindrical surface
defined byr = Ro. The top and bottom faces of the cylinder
(defined by the surfacesz = 0 andz = L) satisfy the natural
boundary condition of (17). We performed 36 experiments: a
sequence of 3 orthogonal cylindrical meshes, a sequence of 3
skewed cylindrical meshes, andp = 1,2,3 basis functions for
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Fig. 4. Convergence of wine cellar solution using the fully discrete~E field
formulation.

each mesh. A snapshot of the computed fields is shown in Fig-
ure 5, and comparisons of the computed fields and currents to
the exact fields and currents are shown in Figure 6 and Figure
7 respectively, again at one snapshot in time. The computed
L2 error distribution is shown for the 6 different meshes, again
at one snapshot in time Figure 8. In Table III we list the com-
putational statistics for the experiments. Again, note that the
average number of PCG iterations required to achieve the same
error tolerance increases for the case of the skewed mesh as
expected.

The rates of convergence for the conducting pipe problem,
for the magnetic field and for the the eddy current density, are
shown in Figure 9 and Figure 10, respectively. Examining Fig-
ure 9 we see the rate of convergence for the orthogonal mesh
is O(h2) for p = 1, O(h2) for p = 2, andO(h4) for p = 3. We
see super-convergence for odd degree basis functions. The rea-
son for super convergence is again due to the fact that the mesh
edges are aligned with the~H field. No super-convergence is
seen for the skewed mesh. The super-convergence for odd de-
gree basis functions is because the Bessel functionsI1(z) and
K1(z) have Taylor series expansions that involve only odd pow-
ers ofz, increasing the degree of the basis function fromp = 2
to p = 3 annihilates another term in the Taylor series expan-
sion. Examining the rates of convergence for the eddy current
density shows no super-convergence, this is due to the fact that
the Taylor series expansion for the eddy current involvesLog(z)
terms.

C. Transients in a Conducting Sphere – Spherical Geometry

In this example, rather than driving the problem with a time-
harmonic boundary condition, we have an initial magnetic field
that decays away with time. We also use an unstructured mesh
to demonstrate that this does not degrade the performance ofthe
finite element method. Consider a conducting sphere of radius
a, conductivityσ and permeabilityµ placed in an external alter-
nating magnetic field with amplitudeB and angular frequency
ω. At time t = 0, the magnetic field is switched off and we
observe what happens to the vector potential in the sphere asa
function of time. The exact analytic solution to this problem is

Fig. 5. Magnetic and eddy current fields in conducting pipe problem at a
snapshot in time computed using the fully discrete~H field formulation on the
h2 orthogonal mesh.

Fig. 6. Comparison of computed magnitude of magnetic field intensity to
exact analytic value at a snapshot in time on theh2 orthogonal mesh.

a sum of Bessel functions and requires the solution of a tran-
scendental equation to obtain the series coefficients of thesum
as described in [23]

~A =







∑sA sr−
1
2 J3

2
(ksr)sin(θ)exp(− k2

st
σµ ) φ̂ r ≤ a

∑sB sr−2sin(θ)exp(− k2
st

σµ ) φ̂ r > a
(99)

The expansion coefficients are computed as

A s =
3 µ

µ0
Ba

3
2

(

k2
sa2( µ

µ0
+2)( µ

µ0
−1)

)

J3
2
(ksa)

B s = A sa
3
2 J3

2
(ksa)
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Fig. 7. Comparison of computed ˆz-component of eddy current to exact analytic
value at a snapshot in time on theh2 orthogonal mesh.

No. Elems. No. DoF PCG Iterations
(Orth / Skew)

h1-p1 375 1,440 6 / 12
h2-p1 3,000 10,230 10 / 21
h3-p1 24,000 76,860 16 / 29

h1-p2 375 10,230 16 / 51
h2-p2 3,000 76,860 18 / 55
h3-p2 24,000 595,320 18 / 60

h1-p3 375 33,120 23 / 58
h2-p3 3,000 253,890 22 / 58
h3-p3 24,000 1,686,828 21 / 59

TABLE III
RESULTS FORhp-REFINED FINITE ELEMENT SOLUTIONS TO THE

CONDUCTING PIPE PROBLEM USING THE FULLY DISCRETE~H FIELD

FORMULATION.

The coefficientsks must be computed by solving the transcen-
dental equation

µ0a
d
dr

[J3
2(ksr)

]|r=a +(µ+
1
2

µ0)J3
2
(ksa) = 0

In this example, we use the~A-φ potential formulation and the
exact solution to performL2 normed error analysis. We dis-
cretize the problem in space for two spherical meshes, a rela-
tively coarse mesh with characteristic element volume 8∆h and
a fine mesh with element volume∆h. The vector potential for-
mulation is integrated in time via (88) for a total physical time
of 20s. For the coarse mesh, a time step of∆t = 0.01s is used
for total of 2000 time steps while for the fine mesh a time step of
∆t = 0.005s for a total of 4000 time steps. The exact solution
of (99) is used as both an initial condition and a time depen-
dent boundary condition in the FEM calculation. In Figure 11
we plot the computed vector potential inside the sphere after
100 time steps and compare this to the analytic result in Figure
12. In Figure 13 we plot theL2 error as a function of time for

Fig. 8. Orthogonal (left) and skewed (right) conducting pipe meshes with
pseudo-color plot of error distribution.

the two spherical meshes. The error decreases with time, since
the fields are decreasing in magnitude due to electromagnetic
diffusion. While not shown here, the convergence for this par-
ticular problem was experimentally confirmed to beO(hp), no
super-convergence was observed, as expected due to the use of
an unstructured mesh.

D. Method of Manufactured Solution

In the previous computational experiments we begin with a
geometry, we impose boundary conditions and initial condi-
tions, and we proceed to compute the exact analytical solution
to the problem. The method of manufactured solutions is a dif-
ferent approach. Here we begin with a functional form of the
solution field which can be based on polynomials, trigonomet-
ric functions, etc. This solution field is then plugged into the
PDE to determine the source terms and the boundary condi-
tions. The goal is then to compare the computed finite element
solution to the manufactured solution. In this example our goal
is to demonstrate that each of the three fully-discrete fieldfor-
mulations of Section IV will yield the same convergence prop-
erties, even for the secondary quantities, the magnetic fluxden-
sity ~B and the induced eddy current field~J.

Consider the following scalar and vector potentials

φ = z (100)

~A = cos(ωt +
π
4
)exp(x+y)(x̂− ŷ) (101)
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Fig. 9. Convergence of conducting pipe magnetic field solution using the fully
discrete~H field formulation.

Fig. 10. Convergence of conducting pipe eddy current solution using the fully
discrete~H field formulation.

Note thatφ satisfies the Poisson equation of (20) and that~A sat-
isfies the gauge condition~∇ ·σ~A = 0. In addition, we have cho-
sen the vector potential~A such that its ˆx andŷ components are
infinitely differentiable inx andy, and the Taylor series expan-
sion contains all powers ofx andy. We therefore expectO(hp)
convergence. Given these two analytic fields, we can generate
corresponding analytic values for the remaining primary field
variables

~E = ωsin(ωt +
π
4
)exp(x+y)(x̂− ŷ)− ẑ (102)

~H = −2
µ

exp(x+y)cos(ωt +
π
4
)ẑ (103)

We are interested in the convergence properties of the sec-
ondary variables, and for the values chosen in (100) and (101),
they are given by

~B = −2exp(x+y)cos(ωt +
π
4
)ẑ (104)

~J = σωsin(ωt +
π
4
)exp(x+y)(x̂− ŷ)−σẑ (105)

Fig. 11. Vector potential in the conducting sphere problem at a snapshot in
time computed using the fully discrete~A-φ potential formulation.

Fig. 12. Comparison of computed magnitude of vector potential to exact
analytic value at a snapshot in time on the fine spherical mesh.

Fig. 13. ComputedL2 error vs. time for two spherical meshes.
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Finally, the corresponding independent current source term that
will drive the problem is given by

~Js = exp(x+y)

(

2
µ

cos(ωt +
π
4
)+σωsin(ωt +

π
4
)

)

(ŷ− x̂)+σẑ

Note that a phase shift ofπ4 has been added to the time depen-
dence of each term to ensure that each of the primary fields~A,~E
and~H will have a non-zero value at timet = 0.

The problem domainΩ is a simple unit cube of conductiv-
ity σ = 107 S m−1 and permeabilityµ= 4π 10−7 Wb A−1 m−1.
Fixing the skin depth of the cube to be 0.5 yields an angular
frequencyω = 0.63662Hz. We run each of the following test
problems for a total physical time of 0.02s. We use the ana-
lytic value of the primary field variables as the time dependent
Dirichlet boundary condition, as well as for the initial condition
for each of the fully discrete formulations of Section IV.

To compute the error convergence in the computation of~B
and ~J using each of the fully discrete formulations, we be-
gin with a base-line coarse model consisting of 1,000 Carte-
sian hexahedral elements. We choose a discrete time step
∆t = 10−4sand run each of the three diffusion formulations for
a total of 200 time steps using low orderp = 1 basis functions.
At the final time step, we extract the globalL2 error for the
computed magnetic flux density and eddy current density. We
repeat this computation for 2 additional levels ofh-Refinement
and 1 additional level ofp-Refinement for a total of 6 runs for
each formulation. For each level of refinement (h or p), the dis-
crete time step is cut in half and the total number of time steps
is doubled. This is done to ensure that the spatial discretization
will be the dominant source of error.

In Figure 14 we plot theL2 error of the magnetic flux den-
sity ||~B−~Bh||2 vs. the characteristic element sizeh on a log-log
scale. In Figure 15 we plot the theL2 error of the eddy cur-
rent density||~J− ~Jh||2. The slope of each line indicates the
rate at which the error is converging. Note that for the case of
low orderp= 1 basis functions, all three formulations yield es-
sentially the exact same error with a convergence rate ofO(h)
in agreement with the predictions of theory. For the case of
p = 2 basis functions, each formulation is converging at a rate
of O(h2), again in agreement with the predictions of theory.
The results for the eddy current densityJ are shown in Figure
15, with identical rates of convergence for each formulations.

While we refer to~B and~J as secondary quantities, they are
often the quantity of interest if one is concerned with comput-
ing electromagnetic forces and stresses. These computational
experiments show that the~E field formulation, the~H field for-
mulation, and the~A-φ potential formulation give equally accu-
rate results. There is no loss of accuracy in computing~B from
~B = ~∇×~A, or computing~J from ~J = ~∇× ~H. Hence the choice
of which formulation to use is really a matter of convenience, as
each formulation has different Essential and Natural boundary
conditions.

E. Electromagnetic Diffusion in Highly Heterogeneous Con-
ducting Regions

Up until this point, we have ignored problems which contain
regions of zero conductivity. Realistic eddy current problems

Fig. 14. Convergence of manufactured magnetic field solution using the three
different formulations. Note that each method has the same rateof error con-
vergence.

Fig. 15. Convergence of manufactured eddy current solution using the three
different formulations. Note that each method has the same rateof error con-
vergence.

involve configurations of conducting regions surrounded bya
non-conducting medium (typically air). Simply settingσ = 0
in the diffusion formulations is not permitted as this results in
an ill-defined problem. As mentioned in Section I, one way to
overcome this problem is to simply assign a very small con-
ductivity to the non-conducting regions to permit a numerical
solution. This raises questions of numerical accuracy and lin-
ear solver performance. In this section, we investigate thenu-
merical properties of electromagnetic diffusion in highlyhet-
erogeneous conducting regions. This particular numericalex-
periment is adapted from the first test problem in [3].

The problem region consists of a highly conductive (σ =
63.3 106 S m−1) “horse-shoe” with a region of air in between as
depicted in Figure 16. The problem is driven by applying a con-
stant tangential magnetic field value ( ˆn×~H) to the outer face of
the air region. In order to numerically solve the problem, a con-
ductivity of σ = 1 S m−1 is assigned to the air region. In [3], the
problem is discretized on a 2D mesh using a novel magnetic-
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Fig. 16. Computational domain consisting of a conducting region and an air-
like region of extremely low conductivity.

flux formulation and the resulting linear system is solved via a
direct method. Here we solve the exact same problem using a
3D slab mesh (i.e. one element thick) using both the~A-φ po-
tential formulation and the~H field formulation (the constant~H
field boundary value precludes the use of the~E field formula-
tion) and an iterative solver for the resulting linear system.

For the~A-φ potential formulation, the ˆn×~H boundary condi-
tion is implemented via the inhomogeneous Neumann (or Nat-
ural) boundary condition ˆn× 1

µ
~∇×~A while for the~H field for-

mulation it is implemented via the Essential boundary condi-
tion. The problem is discretized in time using a time-step of
∆t = 2.5 10−6s for a total of 20 steps, enough time for the fields
to reach steady state. A linear system is solved at every time
step using a simple diagonally scaled PCG method with a resid-
ual tolerance of 10−8. In both cases, the magnetic field effec-
tively diffuses “instantly” after the first time step into the entire
air-region due to the extremely low conductivity. Both formula-
tions yield identical diffusion times for the~B and~J fields inside
the conductor which are consistent with those reported in [3]
(see Figure 17 and Figure 18).

Fig. 17. Computed initial state (left) and final state (right) of ~B field magnitude
using the fully discrete~A-φ potential formulation.

While this approach is suitable for most applications, there
are numerical consequences of having such large variationsin

Fig. 18. Computed initial state (left) and final state (right) of ~J field using the
fully discrete~H field formulation.

conductivities. The first is convergence behavior of iterative
solvers. In Table IV we list the solver performance statistics
for 4 different experiments. Note that use of high order ba-
sis functions results in a drastic increase in the total number
of iterations required to achieve convergence. It is interesting
to note the difference in solver performance between the two
formulations. The~H field formulation results in a much better
conditioned system due to the location of the material proper-
ties with respect to the mass and stiffness matrices. The second
issue involves the time discretization. Because of the extremely
fast diffusion times in the low-conductivity air regions, use of
the second order accurate time integration option (α = 0.5) can
result in a “ringing” phenomenon as seen in Figure 19. This
can be averted by using the fully implicit option (α = 1.0) or
by taking smaller time steps. Note that the~H field formulation
does not exhibit the “ringing” phenomenon even when using
the second order accurate (α = 0.5) option for this particular
problem.

No. DoF Avg. PCG Iterations

A-p1 7,156 149
H-p1 7,156 51

A-p2 45,104 450
H-p2 45,104 145

TABLE IV
RESULTS FORp-REFINED FINITE ELEMENT SOLUTIONS TO THE

HETEROGENEOUS CONDUCTING REGION DIFFUSION TEST USING BOTH

THE FULLY DISCRETE~A-φ POTENTIAL AND ~H FIELD FORMULATIONS.

VI. CONCLUSIONS

In this paper we review three different formulations for the
time-dependent eddy current problem. These three formula-
tions employ either the~E field, the~H field, or the~A field as
the primary field variable. For each formulation, we also show
how secondary fields such as the magnetic flux density~B and
the eddy current density~J can be computed. For each for-
mulation the primary field variable is represented as a 1-form,
and the secondary field variables are represented as 2-forms.
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Fig. 19. Time history of the magnetic field using two different formulations
with two different time integration options.

Each formulation involves a vector diffusion equation for the
primary field variable, an additional curl equation, and an ad-
ditional Hodge-star operation. The results of numerous com-
putational experiments were presented, and anomalous super-
convergence results were illustrated and explained. The key
result is that these three formulations give equally accurate re-
sults, even for the secondary fields. If field~X is computed with
accuracyO(hp) in the L2 sense, then field~Y = ~∇×~X is also
computed with accuracyO(hp) in the L2 sense. In addition,
it is demonstrated that the use of the Hodge-star operator does
not degrade the accuracy either. Since each formulation utilizes
essentially the same discrete operators, it is quite simpleto im-
plement all three formulations in a single code, and to use the
formulation whose essential and/or natural boundary conditions
best match the given problem.
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