‘ ! ! . UCRL-JRNL-212411

LAWRENCE
LIVERMORE
NATIONAL

wsonrony | VETIfiCation of high-order mixed FEM
solution of transient Magnetic diffusion
problems

R. Rieben, D. A. White

May 19, 2005

IEEE Transaction on Magnetics




Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.



Verification of High-Order Mixed FEM Solution of
Transient Magnetic Diffusion Problems

R. Rieben and D. White

Abstract—

We develop and present high order mixed finite element dis-
cretizations of the time dependent electromagnetic diffusion equa
tions for solving eddy current problems on 3D unstructured grids.
The discretizations are based on high order H(grad), H(curl) and
H(div) conforming finite element spaces combined with an implicit
and unconditionally stable generalized Crank-Nicholson time dif-
ferencing method. We develop three separate electromagnetic dif
fusion formulations, namely the E (electric field), H (magnetic
field) and the A-@ (potential) formulations. For each formula-
tion, we also provide a consistent procedure for computing the
secondary variablesJ (current flux density) and B (magnetic flux
density), as these fields are required for the computation of elexi-
magnetic force and heating terms. We verify the error convergece
properties of each formulation via a series of numerical experi-
ments on canonical problems with known analytic solutions. The
key result is that the different formulations are equally accurate,
even for the secondary variablesl and B, and hence the choice of
which formulation to use depends mostly upon relevance of the
Natural and Essential boundary conditions to the problem of in-
terest. In addition, we highlight issues with numerical verification

when computingg from O x A or computingd from O x H. The
difference between the three formulations, which use pgma
field variablesE,H, andA, respectively, is in the boundary con-
ditions and the source terms, and is therefore simply a nattte
which formulation is most convenient for a given electromag
netics problem.

The most difficult electromagnetic diffusion problems en-
countered in practice are those that involve multiple candu
tors separated by a non-conducting region, the so-calldd mu
tiply connected eddy current problem. While the currents are
zero in the non-conducting region clearly the fields are aod,
some method must be used to account for these fields. One ap-
proach is to simply mesh the non-conducting region and use a
small value of conductivity in this region. While seemingly a
crude approach, it works well in practice for many problems,
for example using a conductivity at leastines smaller than
the metal results in fields correct to within the discretaer-
ror [7], [10]. The difficulty is the solve time due to the large

of finite element methods which can lead to false conclusions onnumber of unknowns and matrix ill-conditioning. More so-

the accuracy of the methods.

Index Terms—

Computational electromagnetics, Maxwell’'s equations, vector
finite elements, high order methods,H(Curl) and H(Div) - con-
forming methods, discrete differential forms, transient eddy cu-
rents, electromagnetic diffusion

I. INTRODUCTION

phisticated approaches include solving a magnetostatio-pr
lem in the non-conducing region and coupling the the two so-
lutions (the coupled approach), or employing an integrabeq
tion to correctly model the global boundary condition (tlye h
brid FEM/BEM approach). While we do provide a computa-
tional example where we employ a conductivity contrast df 10
which can be considered an approximation to air or vacuum, in
this paper we do not advocate any particular approach fdr dea
ing with non-conducting regions.

In this paper we present high order mixed finite element for- Here we review high order mixed finite element spatial dis-

mulations for solving the time dependent electromagnéftig-d
sion equations. Various formulations for these equatioist e

cretizations of each of the previously mentioned formolagi
In the context of Galerkin approximations, the choice of the

and have been extensively reviewed and studied in the-litefgite element space plays a crucial role in the stability and
ture. These include formulations which solve for the elec“convergence of the discretization. For instance. in nuraéri

field (theE field formulation) [1], [2], [3], the magnetic field
(}heﬁ field formulation) [4], [5]
A-@ potential formulation) [6], [7], [8], [9]. Each formulatio

or for the potential field (the

approximations of the magnetic and electric field inteasiti
(Curl) conforming finite element spaces (or edge elements)
are preferred over traditional nodal vector spaces sineg th

has its advantages and disadvantages for problems in com@ininate spurious modes in eigenvalue computations asd th
tational electromagnetics. However, we show that whengusiByeyent fictitious charge build-up in time-dependent cotapu
H(Curl) andH(Div) conforming finite element methods thergjons. The lowest ordeH (Curl) conforming basis functions

is no difference iraccuracyfor tbese tbree formulations, evenyqre developed by Whitney [11] before the advent of finite el-

for secondary quantities such BandJ. This is in contrast to

ement programs. Arbitrary order versions were introduced b

the often believed premise that there will be a loss in amyuranggglec [12], [13] as a generalization of the mixed finite ele-
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ment spaces introduced by P.A. Raviart and J.M. Thomas [14]
for H(Div) conforming methods. Application of thes&Curl)
andH (Div) basis functions toward electromagnetics is becom-
ing quite popular and applications can be found in sevecaire
textbooks [15], [5], [16]

A numerical implementation of arbitrary ordei{Curl) and



H(Div) basis functions can be found in the finite element soft-physical Quantity Units Diff. Form
ware library FEMSTER [17]. This specific implementation has

been rigorously verified in the context of high order finite el Scalar Potentialp Volts/m’ O-form
ement solutions to transient wave equations and it has beeviector PotentialA Webbergm® 1-form
shown that such a formulation can drastically reduce theetff  Electric Field IntensityE Volts/m* 1-form
of numerical dispersion, [18], [19]. Higher-order basisidt  \agnetic Field IntensityH Ampg/m? 1-form
tions can be combined with high order energy conserving time=|actric Flux DensityD Coulombgm? 2_form

integration schemes for further gains in accuracy [20]].[19

In this paper we apply a rigorous verification process of highMagnet'C Flux Densitys Webbergm?” 2-form

order mixed FEM solutions of the electromagnetic diffusion Electric Charge Densitp  Coulombgm® 3-form
equations. We define the verification process in a mannef simi TABLE |
lar to [21] where five essential points of numerical verifiGat g ecrromAGNETIC QUANTITIES AND THEIR ASSOCIATED DIFFERENTAL
are presented. These include: FORMS
« Comparing code results to a related problem with an exact
answer

« Establishing that the convergence rate of the truncation er . ) o
ror with changing grid spacing is consistent with expecta: Irlelectromagnetms we have the electric an magnetic fields
tions E, H, the electric and magnetic flux densitiBs B, and the
. Comparing calculated with expected results for a problef@nstitutive relations
specially manufactured to test the code
« Monitoring conserved quantities and parameters, preser-
vation of symmetry properties, and other easily predietabl
outcomes
« Benchmarking
existing codes that can calculate similar problems OE
It is important to distinguishverification from validation SE
Verification is concerned with numerical methods and thé sof
ware implementation of these methods. In the context offinit
element methods verification answers the question “Is tengi
Initial Boundary Value Problem (the PDE + boundary condi-
tions + material models) being solved correctly?” Validati
on the other hand, is concerned with the validity of the given
Initial Boundary Value Problem for a specific problem or set
of problems. Validation answers the question “To what exten 0.-B=0 (4)
does this simulation agree with physical reality?” For eglm
one may question the validity of the diffusion approximatio
(neglecting displacement current) in the first place [22re
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with appropriate boundary conditions and initial condigain-

derstood. Note thals is an independent current source term,

may question validity of assumiridj= 0 on a particular bound- which may or may n_ot exist for every p“’b'em- In all of our
subsequent formulations, the material propertigso are free

ary. We will not discuss validation here. . " . .
Our verification examples are carefully constructed to ifp be symmetric positive definite tensor functions of space,

lustrate some issues with numerical verification of finite-el V& MPOS€ the restriction that they are independent of time.

ment methods. We show cases where computational res%g%lgmt%?nzdi;;ocl\éwguggf}’geégi:eqdust'?ﬁz (\:’\g::j'ir;i:ngc’()d
are super-convergent (better than expected) and sub+gamie A9 y

(worse than expected), highlighting the fact that the treréqr- OE .
mance of a method cannot be ascertained by a single computa- SE < oE. (5)
tional experiment.
Note that (5) depends not only on the material propenties
[l. ELECTROMAGNETIC DIFFUSION EQUATIONS ande, but also on the time rate of change®f When (5) is

When working with multiple finite element spaces, it besatisfied, Maxwell's equations can be simplified by negierti
comes convenient to use the notation of differential forsma a thee%—'tE term altogether, this is the so-called low-frequency ap-
way of categorizing the various field quantities from Maxigel proximation, diffusion approximation or eddy-current epp
equations and the subsequent finite element spaces used toighiation. The diffusion approximation is not valid for most
cretize them. In addition, the calculus of differentialrfar RF, microwave, or optics problems, but is reasonable for low
provides the necessary transformation rules which allom-co frequency EM waves in plasmas or in the earth [23], [24] [25],
plicated basis functions to be derived on a reference elem26], as well as for quasi-magnetostatic problems suchexs el
and then mapped to global mesh elements. Table | lists varie motors, transformers, induction heating, and eleoag-
ous physical quantities in electromagnetics and theircatd netic rail-guns. A detailed, mathematical analysis whicsti
differential form. fies the approximation is given in [22].



A. TheE Field Formulation C. TheA-g Potential Formulation

Combining the Ampere-Faraday laws of (1) and (2) and ap- The divergence condition (4) implies tht= 0 x A where
plying the low-frequency approximation of (5) yields a dif A is a magnetic vector potentjal. This in turn implies that the
sion equation for the electric field. Given the electric fighe electric field is given byE = —[d — %ﬂ, where® is an elec-
magnetic flux and eddy current densities can be computedtas scalar potential. Using these two potentials, alontdnhe
well. Consider a 3 dimensional domahwith surface bound- gauge conditiort] - oA = 0, the potential diffusion equations in
ary [, the electric field diffusion formulation is then given by a 3 dimensional domai® are

3 L o1- . ok O-ollp = 0 20
oa—E = -0 1 OxE— 9% (6) ip (20)
at IJ. 6t aA = 1—* - pd =
_ 00— = —-0Ox-0O0xA-olp+Js (22)
0B N ot sl
o —0OxE (") P
. | E = —Op—=A (22)
J = oE (8) ot
B = OxA (23)
For this paper, we consider two different types of boundary J - of (24)
conditions, namely the essential (or inhomogeneous Déairh
boundary condition Note that this formulation has an additional elliptic PDEX®
L. solve for the scalar potential. The essential (inhomogaseo
AXE=FEan on T (9) Dirichlet) boundary conditions are given by
and the natural (or homogeneous Neumann) boundary condi- @ = @uifonl (25)
tion AxA = Agnonl (26)

1- -
Ax-OxE=0o0onT (10 ) ]
M while the natural (homogeneous Neumann) boundary condi-
There are divergence constraints on both the primary and signs are given by

ondary fields, namely o

>

Oonl (27)

(]

x A

0.0E = 0 (11) fix OonTl (28)
B = 0 (12) H
Again, there are divergence constraints on both the prirziady

. secondary fields, namely
B. TheH Field Formulation

The magnetic field diffusion equation can be derived by again 0- 04 =0 (29)
combining (1) and (2) and applying the low-frequency approx 0-B = 0 (30)
imation, this time eliminating instead ofB, o . . S .

It is interesting to note that in the potential diffusion atjan

9H 2 1- . 1 . we explicitly see the Helmholtz decomposition of the electr
Pp— = —-Ox=OxH+=0OxJs (13) field
ot o o L _
B = pH (14) E = Eir +Esol
7 = OxH-I (15) whereE;, = —[pandEqy = —98. The total current is
T_he essential (inhomogeneous Dirichlet) boundary conlis J—cE=g —ﬁ(p— (ﬁ
given by ot
Ax H =Huanon T (16)

where the first term is irrotational and is determined solsly
while the natural (homogeneous Neumann) boundary conditithe boundary conditions ap and the second term is solenoidal
is given by and satisfies the diffusion equation.
TheE field, H field, andA-¢ field formulations are remark-
(7) ably similar. Each formulation involves a divergence coaist
There are divergence constraints on both the primary and Sﬁgéh\?a?g&?ﬁ:ﬁSogt&eaigrrg ' O:f)(' W?erle;X |ts th? ?rlmgryd__
ondary fields, namely . . Property. ortunately tis di
vergence constraint will be satisfied, automatically, by fid
- nite element method. Each formulation involves computatio
o o of secondary fields from a curl equatitin= [l x X whereX is
0.J =20 (19) the primary variable andl is the secondary variable. Thap

1- -
Aix —OxH=0onTl
o

H = 0 (18)



formulation involves an additional Laplacian fgrand hence well defined curl. These basis functions are a finite subspfce
will be more computationally expensive to solve. But this-paH (Div) . The basis functions have units wf2. For example
ticular formulation is well suited for problems driven by ap-  the electric current density has unitsAr peregn?, therefore
plied voltage source, as the voltage appears explicithhen tthe degrees-of-freedom have unitsAofiperes It is a simple

equations. matter to integrate 2-forms over surfaces of a mesh, butrine
tegrals are not well defined. These basis functions arelydeal
[1l. SPATIAL FINITE ELEMENT DISCRETIZATION suited for the electric flux densify, the magnetic flux density

FEMSTER s a class library of higher-order discrete differe B, current flux density, etc. The divergence of a 2-form ba-
tial forms that is used within thEMSolveCEM code [27], [17], SIS funct|or_1 can b_e represented, exactly, as a combinatfion o
[28]. It provides discrete numerical implementations @f¢on- 3-form basis functlons. The null space of the divergence-ope
cepts from differential forms (tangent vectors, wedge pood &tor on 2-forms is, exactly, the space of curls of 1-forms.
exterior derivative, hodge-star operator, etc...). Imdgad fi- 3-forms are discontinuous scalar basis functions. Theit can
nite element language, FEMSTER contains all the data strike differentiated. They can be integrated over a volumenbut
tures and operations required to compute local finite eléemélyer a surface or a line. These basis functions are a finite sub
matrices: elements (tetrahedrons, hexahedrons, prigras)s SPace oL2. The basis functions have unitsf 3. For exam-
functions (or shape functions), quadrature rules, lineam§, Ple, charge density has units@bulombgm?® and the degrees-
and bilinear forms. FEMSTER provides the gradient, curt| arPf-freedom will therefore have units Gfoulombs These basis
divergence operators, as well as the, div-grad, curl-antj functions are ideally suited for the electric charge dersithe
grad-div operators. Note that arbitrary partial derivatbpera- €nergy densitg, etc.
tors are not included, as these do not fit nicely into the frame
work of d_ifferential forms, an(_j fortunately are not _needqd fA. Variational Formulation
computational electromagnetics. The basis function diiss
erarchy contains four forms of basis functions, simplyasll The assumption is that we have a conforming unstructured
0-forms, 1-forms, 2-forms, and 3-forms. Derived from eath dinite element mesh composed of either tetrahedrons, hexahe
these classes are sub-class for the element types tetoahedi#rons, or prisms. We begin with the electric field formulatio
hexahedron, and prism, and derived from each of these ty@e other formulations will follow similarly. Th&MSolvephi-
is a further specialization for the degrees-of-freedom, in- losophy is that the electric fielfl is a 1-form and hence is ap-
terpolatory, spectral, hierarchical, etc. The criticapsin us- Pproximated using 1-form basis functions,
ing FEMSTER is to decide what form should be used for each N
phy3|cal_quant|ty. The essential properties of the fornasam E(xy,zt) ~ Z\a (t)vvl (XY,2), (31)
summarized. &

O-forms are continuous scalar basis functions that have a

well-defined gradient. These basis functions are a finite sujth g theith degree-of-freedom an[yli is theith 1-form ba-
space oH (Grad) and are suitable for discretization of the elecsjs function. InEMSolvethe 1-form basis functions have units
tric potentialg, temperaturd’, etc. The basis functions are di-of m~1, hence the degrees-of-freedom have unit¥ats We
mensionless, hence the degrees-of-freedom have the sasie wiultiply the electric diffusion equation by a test functid},
as the field being approximated. If the field is temperatdme, tintegrate over the domai2, and then utilize Greens First Vec-

degrees-of-freedom have units of temperature. The gredfentor Theorem. Ignoring the source terms and boundary condi-
a 0-form basis function can be represented, exactly, as &ieonjons for clarity, we have

nation of 1-form basis functions, i.dW° c W1,

1-forms are vector basis functions with continuous tangént JE O
. . o— = —-[0Ox-0OxE

components across elements, but discontinuous normal@omp ot M
nents. They have a well defined curl, but do not have a well o9E 1
defined divergence. These basis functions are a finite soéspa / o— .\7\/11 aQ = _/ Ox =0xE .\T\/jldQ
of H(Curl) . The basis functions have unitsmf . For exam- o ot Q M
ple the electric field has units &olts/m and the degrees-of- 0E ., B 1- - = -
freedom will therefore have units ®folts It is a simple matter s WihdQ = 7/9 ﬁD x E-DxWidQ

to integrate 1-forms along the edges of a mesh, but surface in

tegrals are not well defined. These basis functions arelydednserting the basis function expansion (31) for the eledigid,
suited for the electric fiel, the magnetic fiel#H, the magnetic and interchanging summation and integration, gives
vector potential, etc. The curl of a 1-form basis function can

be represented, exactly, as a combination of 2-form basis fu L / oW . WL do a_a —_ 4 / OxWE-Ox W dQ g
tions, i.e. dW! c W2. The null space of the curl operator oni; o ') ot i; Q ! !
1-forms is, exactly, the space of gradients of O-ford&?! = 0 d

impliesW?! = dW?, for simply-connected regions. Mse = —Se

2-forms are vector basis functions with continuous normal
components across elements, but discontinuous tangeotial whereM andS are the “mass” and “stiffness” matrices, respec-
ponents. They have a well defined divergence, but do not havévely, andeis the vector of degrees-of-freedom.



The magnetic flux density update requires computing the curere non-zero, it would be considered a 3-form, hence the di-
of the electric field. The&EMSolvephilosophy is that the mag- vergence operator is a matrix that maps 2-form fields to Bfor
netic flux densityB is a 2-form and hence is approximated usinfjelds. A key property of discrete differential forms basiad-

2-form basis functions, tions is that the inclusion relatiotiW? c W3 is satisfied at the
n discrete level, for every basis functioki? there exist coeffi-
B(xy,zt) ~ Zibi (W2 (x,Y,2), (32) cientsgy; such thatyk_; qqW2 = 0-W2. Using this relation
i= gives
with b; theith degree-of-freedom ar\fsi{2 is theith 2-form ba- 0.B = 0
sis function. A key property of discrete differential fortnasis Do s AL
functions is that the inclusion relatiatw! c W? is satisfied at _ZD Wb = 71VV,- =0
the discrete level, for every basis functi\l?l}1 there exist co- = =
efficientsk;j such thaty}_, kqW2 = 0 x W, Using this fact C [i Qki\/\f’] b — gwfp, —0
Amperes’ Law becomes i=1 [K=1 =1
a_’ m 3 n m 3
B - o W, O W30: =0
E — _[OxE JZ]_ k i;q“ 1 4 j Pj
n m —
szgbi = -y OxWe Qb 0
i= =1 whereQ is a rectangulan x m matrix, withr non-zero entries
n P mTJr per column, representing the divergence of a 2-form merix,
leiza_bi = — [z kk,-WkZ] e is a discrete version of the relatidiwv? c W3. For lowest order
i= t J=1 k=1 basis functionsQ is the mesh face-cell incidence matrix, and
n 2 0 b — Lo the divergence constraint is equivalent to stating thasthme of
Z tot T 4T kijej the fluxes entering a cell is zero.
= == For theH field andA field formulations the primary field is
ﬂb = —Ke also a 1-form, and this results in similar mass and stiffmeas
ot trices, the only difference being the material propertissd.

whereK is a rectangulan x m matrix, withr non-zero entries For €ach formulation, the secondary fiekiandJ are approxi-
per column, that maps 1-form degrees-of-freedom to 2_forfpated using 2—form baS|s.funct|on expansions. In aFidlttoa,
degrees-of-freedom, and is the matrix version of the Kafati N€cessary to deflge ma_ltrlces for constitutive equationls asc
dW! c W2, For lowest order basis functionk, is the mesh J = OE andB = pH, which also map 1-forms to 2-forms. All
edge-face incidence matrix, for higher-order basis fumsithe Of these matrices are defined below.
matrix K must be computed. L )

The divergence constraint on the electric field will be sati&: Local Finite Element Operation
fied in the weak sense. The divergence equation is multipliedFEMSTER computes the following “mass”, “stiffness”, and
by a 0-form test functioW?, the result is integrated over the“derivative” matrices, where the superscript 0,1,2,3 desithe
domainQ, and integration-by-parts moves the derivative to théegree of the form,
test function,

MO(a); = / WO WP dO 33)
0.0E = Q
[Dowe M@y = [ aw!-wdo (34
Q
[ oE-twe = o MA@ = [ WP do (35)
Q
3 _ 3\\/3
Inserting the basis function expansion (31) for the eledieid, M*(a)ij = /QO‘WI W dQ (36)
and interchanging summation and integration, gives SR o
ang J J S(ay; = /ava,O.vajO o 37)
n JQ
L. 20 _ . .
iZVQ"V‘" 'DWJ}Q =0 sla); = /O(DXV\I,l-DxVledQ (38)
< Ja
T — - —
D'e = 0 Sa); = /Qcm-vv,zm-vvj2 dQ (39)
whereDT is a rectangular matrix representing the divergence o1 -
of a 1-form field. For lowest order basis functions, this rixatr D™ (a)ij = /QO‘DWI "W dQ (40)
maps edges to nodes, and the constraint is equivalent iogstat 12 5 1 2
that the sum of the fields entering a node is zero. D*(0)ij = /QO‘D X W W dQ (41)

The divergence constraint on the magnetic flux density will 23 oo
be satisfied in the strong sense. If the magnetic chargetgensi D™ (0)ij = /QO‘D WEW dQ (42)



The “mass” matricesM and the “stiffness” matrice$ are also computes a variety of "load vectors” that are used axsou
square and mapforms tol-forms, the “derivative” matrices terms in finite element discretizations,
D are rectangular and mdgorms to (I + 1)-forms. It can be

shown that 0 = /fwj0 do (55)
Q
DOl — MIKO (43) o= /'f.vvjldcz (56)
SO _ (KOl)TMlKol (44) o Qf ,
D12 — M2K12 (45) i = /Q VV] dQ (57)
T
st = (K2)TmK22 (46) # o= / £-W2 dO (58)
Q
D® = M3*K®# (47) 0
SZ _ (K23)T M3K23 (48) gJ = /;g VVJO dr (59)
1 1
- Wi dr 60
whereK'(+1) is a “topological derivative” matrix. This matrix 9 /rg ! (60)

is the discretization of the exterior derivative operaldrom 2 2
differential geometrydW =W{+b_ This matrix depends upon r

the mesh connectivity, but is independent of the nodal deord

nates. It does not involve an integral over the element, aind | . —_— .
does not involve any material properties. While seemingly ag' Semi-Discreté& Field Formulation

stract, it is enormously valuable in practice. The FEMSTER Given the above defined matrices, the semi-discrete eectri
library computes the topological derivative matri¢€¥!, K12, field formulation is given by the equations

andK?23. Given anl-form quantityX with basis function ex-

pansion ) Mi(o) g—te = -Stpte-f (62)
X=SxW, (49)

2 D= KW (63)
and an(l 4+ 1)-form quantityY with basis function expansion Mz(o'_l)j = H2e (64)

n ) . .

Y — Z\ini(HDv (50) The divergence constraints are given by
i=

(D% (0))Te = 0 (65)

the exterior derivative (gradient, curl, divergencelfef 0,1 =

23, _
1, andl = 2, respectively) is given by K" =0 (66)

and from the identities (52) and (53) these constraintsrare i

_ k4D
y=K X (1) plicitly satisfied for all time, assuming the initial conidins and
It can be shown that the source terms are divergence free. Hence in practiceithe d
120,01 vergence matrices are not constructed.
KK =0 (52)
231 12 .o o .
KeK*=0 (53) D. Semi-Discretéi Field Formulation

which are the discrete versions dfdW') = 0. In terms of  Given the above defined matrices, the semi-discrete magneti
standard vector calculus, these matrix relations cormedpo field formulation is given by the equations
the identities] x Of =0 andl- 0 x F = 0, respectively. These

identities are satisfied in the discrete sense, exactly gichine ML () on _ —SYo Y h+(D¥R(0 )T (67)
precision), for any mesh and any order basis function. ot

FEMSTER contains some additional miscellaneous func-  M?(w )b = H¥2h (68)
tionality. In some circumstances it is necessary to cormert i = KPh-f? (69)

I-form to a(3—1)—form, i.e. a Hodge-star operation. A clas-
sic example is converting a "cell-center” quantity to a "atid The divergence constraints are given by
quantity. In our finite element setting the Galerkin proaedu
prescribes rectangular matrices of the form (D01(u))T h = 0 (70)
KZ¥ =0 71
HPE — / w AW do (54) ) (71)
Q . " . .

and from the identities (52) and (53) these constraintsrare i
which produces optimal (in the least-square error sensdyelo plicitly satisfied for all time, assuming the initial conidihs and
star operators for arbitrary order basis functions. FEMBTEhe source terms are divergence free.



E. Semi-Discreté-@ Potential Formulation B. Fully-DiscreteH Field Formulation
Given the above defined matrices, the semi-discrete magnetiThe time integration for the magnetic diffusion equation is

vector potential formulation is given by the equations quite similar,
Lo)v = ¢ (72) MW + aatSHo™Y) hpet (84)
Ml(c)g—a = _sl(uYa-D%o)vift  (73) = (MY - (1-a)AtSH (o) hn
t + M(DZ(o )T,
- < ga 74 2/ —1 12
e = KUv—o (74) M ) bnr = H™hnia (85)
b — K2a (75) jni1 = KPha—fag (86)
M2(c Y j = HZ?e (76)

The divergence constraints are given by C. Fully-DiscreteA-¢ Potential Formulation

The time integration for the potential diffusion equati@n i

(D (0))'a = 0 (77) also quite similar,
01 T, _
(D (U))zge =0 (78) N = 87)
K™ =0 (79) (MY(0) + antS () an (88)
— 1 1/,~1
and from the identities (52) and (53) these constraintsrare i = (M3(0) = (1-c)AS (1)) an
plicitly satisfied for all time, assuming the initial coridins and — MDD g+
the source terms are divergence free. fhiq = _K01Vn+0(_1/At(an+1—an) (89)
IV. TIME INTEGRATIO s = Ko (20)
. TIME INTEGRATION 1
M0 Djna = H%enq (91)

The time integration scheme will be a generalized Crank-
Nicholson method. This can be derived by averaging a firstor this case, note that the discrete eddy current flux depsit
order forward difference at time with a first-order backward is known at intermediate time steps to maintain second order
difference at timen+ 1. The averaging is performed with aaccuracy in time.
weighting parametent, where 0< a < 1, such that

0 Explicit, 1st Order Accurate Forward Euler V. NUMERICAL EXPERIMENTS AND COMPUTATIONAL
a=< 1/2 Implicit, 2nd Order Accurate Crank Nicholson RESULTS
1 Implicit, 1st Order Accurate Backward Euler

We now present a series of numerical experiments for the

The method is unconditionally stable for> 1/2. Fora < 1/2, Purposes of verifying the fully discrete equations of StV

the stability condition is gccordlng.to the_crlterlon listed in Sectpn I.and [21]._ Hav-
ing analytic solutions to the continuum diffusion equatiaf

At <X (M 1(0)‘181(u)) \ (80) Section Il permits a normed error analysis, allowing us te ve

ify the orders of accuracy for the proposed spatial and tempo

wherex (Z) denotes the spectral radius of the mafix This ral discretization schemes. Analytic solutions to 3D PDétis

can be computed quite efficiently by the power method (sesually only available for problems with a high degree otigpa

for example [29]) . Or, it can be estimated using the rule thaymmetry or for problems on certain canonical geometrieh su

At < kh? wherek = % is the magnetic diffusivity antl is the as cubes, cylinders and spheres. As such, we introduce three

minimal mesh spacing. canonical problems in the calculation of transient eddyents.
For each canonical problem, we perform a convergence study
A. Fully-DiscreteE Field Formulation in which we compute normed error quantities on a sequence

of recursively refined meshes-(efinement) and varying de-
grees of approximation for the finite element basis funaion
M 1(0) + aAtSl(p_—l)) i1 (81) (p-refinement). In addition, we investigate the effect of etam
1 1,1 geometry on the error convergence properties of the methods
= (M%(0) ~ (1-a)AtS (L)) en by utilizing both standard orthogonal (Cartesian) meshes a
Atf%w more distorted varieties which have non-orthogonal elémen
At with possibly non-coplanar quadrilateral faces. We alsais
btz = bn— EKlz(e”“ +én) (82)  method of manufactured solutions specifically designedete v
M2(0 Yjns1 = HYena (83) ify the convergence properties of each of the methods.
Supposédl is a time dependent vector field which is an an-
Note that the source function is evaluated at the internbedialytic solution to one of the continuum electromagnetidudif
time stepn+-a. sion equations of Section Il. We compute the error in thedinit

For the electric field diffusion equation we have



element solutiort, of the corresponding discrete equation ofonsidering a cubic domain of width, length and height equal

Section IV at time step using theL2 norm, defined as to L. Consider an electric field vector of the form
E=u(zt) X (96)
-, =[5 | [ 0-t-0-mda] @2 .
O i.e. the electric field is oriented with respect to the pusik-

oo axis of the cubic domain and diffuses in thelirection. The
Numerous analyses of the Galerkin finite element procedssre Wiectric field of (96) is a solution to (6) with = -, o= 0
=1, J=

ing H(Curl) basis functions focurl-curl equations indicate a

theoretical convergence of (i.e. no external current source), and subject to the Ogich

boundary conditionsn % E = u(0,t) at thez= 0 face anchx
16— [ 1 curry O O(hP), (93) E =0 atthez=L,x= 0 andx = L faces. The remaining two
faces of the cubic domain satisfy the natural boundary ¢mmdi
wherep is the degree of the polynomial basis function and of (10).
We now perform a normed error analysis of the computed so-
[[U—Tnllcurty = [IT—Tnll,+ H(i x O) — (0 x Uh)H . (94) Iution. We performed a total of 12 computational experirsent
2 a sequence of 3 orthogonal Cartesian meshes, a sequence of 3
This is of course for problems with suitable regularity, we a skewed non-orthogonal meshes, and bota 1 andp = 2 ba-
not concerned here with problems in which the exact solutisis functions for each mesh. A value @f= 0.5 was used for
possess singularities. In the following examples, we us&2h the time stepping for™® order accuracy. For every level of re-
norm as this quantity is analogous to the root-mean-square finement (inh or p), the time stepht was refined as well, so
ror commonly applied in multifarious engineering disaigls. that time integration error would not dominate. An examgle o
Since theH (Curl) basis functions are incomplete, convergendée E andB fields, computed using the field formulation, is
in the L2 norm may beO(hP) or O(hP+1) depending upon the shown in Figure 1, and the computédfield is compared to
specific problem, and misleading convergence results hese bthe exact solution in Figure 2. An example of the computed
reported due to this phenomena. The examples below exegrror distribution, for both the Cartesian and the skewedime
plify this. It must be noted that in this paper we refer to this shown in Figure 3. Clearly, for the skewed mesh, the esor i
lowest ordeH (Curl) andH (Div) basis functions ag= 1, even concentrated in the vicinity of the most distorted elemeits
though these basis functions are incomplete. Table 1l we list the computational statistics for the expesnts
In each of the following examples, a linear system involvingncluding the total number of Degrees of Freedom (DoF) for
finite element mass and stiffness matrices must be solvad ateach experiment. Note that the average number of PCG itera-
ery time step (by virtue of the implicit time integration rhetl  tions required to achieve the same error tolerance incsdase
used). For each of the following examples, the linear systeithe case of the skewed mesh as expected.
are solved to a residual error tolerance of ¥0using a diago-  The convergence for the 12 computations is shown in Fig-
nally scaled pre-conditioned conjugate gradient (PC@aiikee  ure 4. Note that for the Cartesian mesh k#eerror converges

solver. at a rate ofO(hP*1), whereas for the skewed mesh th2 er-
ror converges at a rate @(hP). The Cartesian case exhibits
A. The “Wine Cellar’ Problem — Cubic Geometry super-convergence. This is not a general result - it is dtieeto

fact that for this specific problem the electric fidid= E,X is

numerical solution. Consider a simple 1D analytic solution aligned Wlth the_mesh edges, aBglis mdepenqlent Of. The .

the scalar diffusion equation. This particular problemame- example in Section V-D shows that the generic convergence is
q ' P P O(hP) even for orthogonal Cartesian meshes. The computed

:gn deester(rar];ﬁ;r:?h?:;sttr:jee Vtvr']n; gegle?{arpgﬁgf dmbglso\'ltvca:gfrglfz%onvergence for the skewed meshes agrees with the thedretic
P 9 expectation. It should be noted that tidield formulation and

to minimize the variation in temperature due to the penOdtﬁeA' field formulation give identical rates of convergence for

This particular problem illustrates super-convergencthef

changes in heat at ground level due to thermal radiation fr

the sun. The 1D diffusion equation is of the form s problem.
d d2 B. The “Conducting Pipe” Problem — Cylindrical Geometry
arue) =Kgguix), Consider a conducting pipe of conductivitywith inner ra-

where the ternk is the thermal diffusivity. Suppose we imposéjlus R, outer radiusR, and total lengtiL oriented along the

the boundary conditions(0,t) = cosfet) andu(L.t) = O for Z-axis. Suppose there is a time harmonic current sofifce)

some fixed distancke and angular frequenay, then a solution on th%-xz)ms, generating a magnetic field intensity of the form

to this is given by H= >+ 8. Analytic solutions for the time dependent mag-

netic field intensityH and transient eddy current densikyn-
_ sin(Bx) side of the conducting pipe exist and can be expressed irsterm
~ sin(BL) of modified Bessel functions of the first kinth(z), and the
_ second kindKy(z). The exact magnetic field intensity is of the
wherep = @ (herei denotesy/—1). We can adapt this sim- form
ple 1D problem to a three dimensional vector field problem by H(r,t) = (col1(ar) + c1Ky(ar)) exp(icx )8, 97)

u(x,t) exp(—iwt), (95)
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Fig. 1. Electric and magnetic fields in the wine cellar probktra snapshot in
time computed using the fully discrefefield formulation on théh2 Cartesian

mesh.
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Fig. 2. Comparison of computegcomponent of electric field to exact analytic
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value at a snapshot in time on th2 Cartesian mesh.

No. Elems. No. DoF

PCG lterations

(Cart / Skew)
hl-p1l 1,000 3,630 10/30
h2-p1 8,000 26,460 16/35
h3-pl 64,000 201,720 16/39
h1-p2 1,000 26,460 18/45
h2-p2 8,000 201,720 18/51
h3-p2 64,000 1,574,640 19/55

RESULTS FORhpP-REFINED FINITE ELEMENT SOLUTIONS TO THE WINE
CELLAR PROBLEM USING THE FULLY DISCRETEE FIELD FORMULATION.

TABLE Il

1

Fig. 3. Cartesianl¢ft) and skewedr{ght) wine cellar meshes with pseudo-
color plot of error distribution.

while the exact eddy currents are of the form
J(r,t) = a(colo(ar) — ciKo(ar)) explict )2, (98)

where the coefficients are given by

i+1
0 = — -
V2/(wop)’
. RKA(GR) — RoKi(0Ry)
2R R, (I1(aRo)K1(aRy) — 11 (aR)K1(aRy))’
. “RI13(aR) + Roh(aRy)
2R R, (11(0Ro)K1(aR;) — 11(aR K1 (aRs))’

We now use (97) and (98) to perform a normed error anal-
ysis for the fully discrete magnetic field diffusion equascof
(84) and (86) using a sequence of refined cylindrical meshes
(h-refinement) and varying degrees of approximation for the fi-
nite element basis functiong-fefinement). To fully define the
problem, we apply a time dependent Dirichlet boundary con-
dition A x H = H(R;,t) to the inner cylindrical surface defined
byr =R, andrix H = H(R,,t) to the outer cylindrical surface
defined byr = R,. The top and bottom faces of the cylinder
(defined by the surfaces= 0 andz = L) satisfy the natural
boundary condition of (17). We performed 36 experiments: a
sequence of 3 orthogonal cylindrical meshes, a sequence of 3
skewed cylindrical meshes, amd= 1, 2,3 basis functions for
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Fig. 4. Convergence of wine cellar solution using the fuligcdeteE field
formulation.

each mesh. A SnapShOt of the computed f".alds Is shown in F ). 5. Magnetic and eddy current fields in conducting pipebfem at a
ure 3, and_comparlsons of the CompUteq flel_dS and Currer_]t% pshot in time computed using the fully discréitdield formulation on the
the exact fields and currents are shown in Figure 6 and Figtiesorthogonal mesh.

7 respectively, again at one snapshot in time. The computed

L2 error distribution is shown for the 6 different meshes,maga 45 : : : : :
at one snapshot in time Figure 8. In Table Il we list the com- _ B Eomg’med
putational statistics for the experiments. Again, note the wl N - =xee ]
average number of PCG iterations required to achieve the sam \\\
error tolerance increases for the case of the skewed mesh ¢ 35 \
expected. _ \"

The rates of convergence for the conducting pipe problem‘&E‘ 30 N\ 1
for the magnetic field and for the the eddy current density, ar o \
shown in Figure 9 and Figure 10, respectively. Examining Fig & 25 \ 1
ure 9 we see the rate of convergence for the orthogonal mes \
is O(h?) for p= 1, O(I?) for p = 2, andO(h*) for p= 3. We 20 \o
see super-convergence for odd degree basis functionse@he r N
son for super convergence is again due to the fact that thle mes 15 \-k.\_ _ ]
edges are aligned with thd field. No super-convergence is e
seen for the skewed mesh. The super-convergence for odd d 83 0.4 05 06 07 08 0.9 1
gree basis functions is because the Bessel functigas and Radial Distance (m)

K1(2) have Taylor series expansions that involve only odd pov'\:/_- 6 ) . ed tude of fic field it
- : - - ig. 6. omparison of computed magnitude of magnetic field i

ers ofz, mcrefas_lng the degree of th_e basis function f_rpm 2 exact analytic value at a snapshot in time onhBerthogonal mesh.

to p = 3 annihilates another term in the Taylor series expan-

sion. Examining the rates of convergence for the eddy ctirren

density shows no super-convergence, this is due to thetfatt ty sym of Bessel functions and requires the solution of a tran-
the Taylor series expansion for the eddy current invob®%z)  scendental equation to obtain the series coefficients cfuhe
terms. as described in [23]

C. Transients in a Conducting Sphere — Spherical Geometry

In this example, rather than driving the problem with a time- A = —
harmonic boundary condition, we have an initial magnetid fie ¥sBst 2sin(6) eXp(—IZ,S—J) ® r>a
that decays away with time. We also use an unstructured mesh
to demonstrate that this does not degrade the performarice ofThe expansion coefficients are computed as
finite element method. Consider a conducting sphere of sadiu

1 . Kty o
S sAsl 2J%(ksr)sm(9)exp( o) @ r<a (99)

a, conductivityo and permeabilityt placed in an external alter- 31 RBad
nating magnetic field with amplitud® and angular frequency a5 = Ho
w. Attimet = 0, the magnetic field is switched off and we (kgaz(% +2)(% - 1)) 33 (ksd)

observe what happens to the vector potential in the spheaae as 3
function of time. The exact analytic solution to this problées Bs = AsA? Jg (ksa)



60

—a

Cijmputed I
- Exact

40F

20

< o
E
<
-8 20

_40

-60

-
g . . . . .
83 0.4 0.5 06 07 0.8 0.9
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value at a snapshot in time on th2 orthogonal mesh.
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No. Elems. No. DoF PCG lterations
(Orth / Skew)
hl-pl 375 1,440 6/12 ;%,I
h2-p1 3,000 10,230 10/21 n
h3-p1 24,000 76,860 16/29 0
‘W‘O'o‘ \
h1l-p2 375 10,230 16 /51 ‘:‘:\‘;:‘:\";‘.S
h2-p2 3,000 76,860 18/55 N
h3-p2 24,000 595,320 18/60
h1l-p3 375 33,120 23/58 Fig. 8. Orthogonalléft) and skewedr{ght) conducting pipe meshes with
h2-p3 3.000 253 890 22/58 pseudo-color plot of error distribution.
h3-p3 24,000 1,686,828 21/59
TABLE Il the two spherical meshes. The error decreases with timeg sin

the fields are decreasing in magnitude due to electromagneti
diffusion. While not shown here, the convergence for this par
ticular problem was experimentally confirmed to®¢hP), no
super-convergence was observed, as expected due to the use o
an unstructured mesh.

RESULTS FORhP-REFINED FINITE ELEMENT SOLUTIONS TO THE
CONDUCTING PIPE PROBLEM USING THE FULLY DISCRETE FIELD
FORMULATION.

The coefficientks must be computed by solving the transcer?. Method of Manufactured Solution

dental equation In the previous computational experiments we begin with a
geometry, we impose boundary conditions and initial condi-
tions, and we proceed to compute the exact analytical soluti

to the problem. The method of manufactured solutions is-a dif

In this example, we use tHe@ potential formulation and the ferent approach. Here we begin with a functional form of the
exact solution to perforn.2 normed error analysis. We dis-Solution field which can be based on polynomials, trigonemet

cretize the problem in space for two spherical meshes, a réiig functions, etc. This solution field is then plugged inbe t

tively coarse mesh with characteristic element voluse 8nd P'DE {0 determine the source terms and the boundary condi-
a fine mesh with element volundsh. The vector potential for- tions. The goal is then to compare the computed finite element

mulation is integrated in time via (88) for a total physidate solution to the manufactured solution. In this example malg
of 20s. For the coarse mesh, a time stepf= 0.01sis used 'St demonstrate that each of the three fully-discrete fieid

for total of 2000 time steps while for the fine mesh a time sfep gulations of Section IV will yield the same convergence prop

At = 0.005 for a total of 4000 time steps. The exact solutioff"li€S; even for the secondary quantities, the magnetiaigox

of (99) is used as both an initial condition and a time depefity B and the induced eddy current field

dent boundary condition in the FEM calculation. In Figure 11 Consider the following scalar and vector potentials

d 1
IJOaa [J%(ksr)Hr:a-l- (U+ Epo)\]g (ksa) -0

we plot the computed vector potential inside the sphere afte 0 = z (100)
100 time steps and compare this to the analytic result inrEigu - T o
12. In Figure 13 we plot the2 error as a function of time for A = cogut+ Z)exp(x+ y)(X=Y) (101)
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Fig. 11. Vector potential in the conducting sphere problera anapshot in
15 ) time computed using the fully discrefeq potential formulation.
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Fig. 10. Convergence of conducting pipe eddy current smiutsing the fully

discretefi field formulation. 9 05 0 05 1
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Note thatp satisfies the EOisson equation of (20) and thaét- Fig. 12.  Comparison of computed magnitude of vector potentiaxact
isfies the gauge conditidn - GA=0. In addition, we have cho- analytic value at a snapshot in time on the fine spherical mesh.
sen the vector potentidl such that its< andy’ components are

infinitely differentiable inx andy, and the Taylor series expan- - ' '
sion contains all powers ofandy. We therefore expe@®(hP) . o Coarse (8Ah, 2A)
convergence. Given these two analytic fields, we can gemerat -15 *e\% —— Fine (ah, Af)
corresponding analytic values for the remaining primaridfie S
variables ~ -2 e, |
- _ Tt o . < S,
E = owsin(wt+-)expx+y)(XR—y)—2 (102) i Seog,
4 < 25 R SUGR 1
— 2 T . :a eﬁ'(;‘ar.@_&
H = ——exp(x+y)cojuwt+-)2 (103) o Seag
H 4 & 3t |
We are interested in the convergence properties of the sec
ondary variables, and for the values chosen in (100) and){101  -35f \w\ 1
they are given by M
= Tt . _40 é 10 1I5 20
B = —2expx+y)cogwt+ Z)Z (104) Time (s)
J = owsin(w[ + g) equ_|_ y) ()‘(_ y) —02 (105) Fig.13. Computed2 error vs. time for two spherical meshes.
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Finally, the corresponding independent current source teat -05

will drive the problem is given by e
—1F e
. 2 m . N . . . (el —
Js=exp(x+y) ﬁcos(thrZ)Jrowsm(thrZ) (y—X)+02 -1
;N 21 o+

Note that a phase shift df has been added to the time depen- nff bt -
dence of each term to ensure that each of the primary flells = = —
andH will have a non-zero value at tinte= 0. ;e -3

The problem domaif is a simple unit cube of conductiv- 2 " o p1. A slope=t
ity 0 =10’ S ! and permeabilityt = 410’ Wb At m, —32 + p1, E, slope=t
Fixing the skin depth of the cube to beS0yields an angular L T o E;E :llsgee:;
frequencyw = 0.6366Hz. We run each of the following test —— p2, E, slope=2
problems for a total physical time of@s. We use the ana- 48 ‘ , + P2, H slope=2
Iytic value of the primary field variables as the time depende -1 15 -4 13 12 1 A

Dirichlet boundary condition, as well as for the initial atition 100y, ()

for each of the fu"y discrete formmatlons of Section IV', _,_Fig. 14. Convergence of manufactured magnetic field solutsimg.the three
Toqcompute the error convergence in the computatioB of different formulations. Note that each method has the sameofaigor con-

and J using each of the fully discrete formulations, we bevergence.

gin with a base-line coarse model consisting gdd0 Carte-

sian hexahedral elements. We choose a discrete time ste 6 "

At = 10~*sand run each of the three diffusion formulations for e

a total of 200 time steps using low order= 1 basis functions. 55 ’//

At the final time step, we extract the gloha? error for the ol :

computed magnetic flux density and eddy current density. We __

repeat this computation for 2 additional levelsheRefinement = , ¢

and 1 additional level op-Refinement for a total of 6 runs for | 2
each formulation. For each level of refinemedmb( p), the dis- % at

crete time step is cut in half and the total number of timestep o

is doubled. This is done to ensure that the spatial disatétiz =~ = 35[ > pi. A, sope-t

will be the dominant source of error. — 511 R slopoc

In IiiguEe 14 we plot thé 2 error of the magnetic flux den- S e pﬁ'é' S:C‘Pejg
sity ||[B— Bp||2 vs. the characteristic element sizen a log-log ael e T
scale. In Figure 15 we plot the the error of the eddy cur- '
rent density||J — Ju||2. The slope of each line indicates the
rate at which the error is converging. Note that for the cdse o
low orderp = 1 basis functions, all three formulations yield esgjg 15, convergence of manufactured eddy current solutiimgthe three
sentially the exact same error with a convergence rat@(bj different formulations. Note that each method has the sameofateor con-
in agreement with the predictions of theory. For the case #i9ence-

p = 2 basis functions, each formulation is converging at a rate
of O(h?), again in agreement with the predictions of theor

The results for the eddy current densityare shown in Figure non-conducting medium (typically air). Simply settiog= 0

15, with identical rates of convergence for each formutatio in the diffusion formulations is not permitted as this résumh

While we refer toB andJ as secondary quantities, they are . ) . . .
. . ; . ) an ill-defined problem. As mentioned in Section I, one way to
often the quantity of interest if one is concerned with cothpu

) ) .overcome this problem is to simply assign a very small con-
ing electromagnetic forces and stresses. These commahtio P Py 9 y

) o . = tivity to the non-conducting regions t rmitan ri
experiments show that the field formulation, theH field for- duc vity 10 The non-co duc_ g regions 1o pe a ur_rmal ¢
. - . : ! solution. This raises questions of numerical accuracy amd |
mulation, and thé\-¢@ potential formulation give equally accu- : . . .
' ; ear solver performance. In this section, we investigatenthe
rate results. There is no loss of accuracy in compuirigom . . T
B_fi«A inad § T—ExH H he choi merical properties of electromagnetic diffusion in higlhigt-
= XA or computng romJ=L>H. ence t € choice erogeneous conducting regions. This particular numeeial
of which formulation to use is really a matter of convenierae

hf lation has diff {E tial and Natural baond periment is adapted from the first test problem in [3].
ggﬁditi(();gu ation has different £ssential and Natural band = g problem region consists of a highly conductive=

63.3 1% S m'1) “horse-shoe” with a region of air in between as
S depicted in Figure 16. The problem is driven by applying acon
E. Electromagnetic Diffusion in Highly Heterogeneous Constant tangential magnetic field valuex H) to the outer face of
ducting Regions the air region. In order to numerically solve the problemea-c

Up until this point, we have ignored problems which contaiductivity of o = 1 S n! is assigned to the air region. In [3], the
regions of zero conductivity. Realistic eddy current peshé problem is discretized on a 2D mesh using a novel magnetic-

16 15 14 43 12 11 -
log, (h)

Yhvolve configurations of conducting regions surroundedaby
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o =63.3e6

0.004m

Fig. 18. Computed initial statéeft) and final stater{ght) of J field using the
fully discreteH field formulation.

conductivities. The first is convergence behavior of ifgeat
Fig. 16. Computational domain consisting of a conductingaegind an air- Solvers. In Table IV we list the solver performance statssti
like region of extremely low conductivity. for 4 different experiments. Note that use of high order ba-
sis functions results in a drastic increase in the total remb
of iterations required to achieve convergence. It is irsting
to note the difference in solver performance between the two
fofmulations. TheA field formulation results in a much better
conditioned system due to the location of the material prope
ties with respect to the mass and stiffness matrices. Thandec
issue involves the time discretization. Because of theeexdty
fast diffusion times in the low-conductivity air regionsseuof

_ FortheA-potential formulation, the X H boundary condi- ¢ secong order accurate time integration optéor=(0.5) can
tion is implemented via the inhomogeneous Neumann (or Naf /i in a “ringing” phenomenon as seen in Figure 19. This

ural) boundary conditiom l';' x Awhile for theH field for- can be averted by using the fully implicit option & 1.0) or
mulation it is implemented via the Essential boundary cendy taking smaller time steps. Note that tHefield formulation
tion. The problem is discretized in time using a time-step @fpes not exhibit the “ringing” phenomenon even when using

At =2.510"°sfor a total of 20 steps, enough time for the fieldgne second order accurate £ 0.5) option for this particular
to reach steady state. A linear system is solved at every tl%mem_

step using a simple diagonally scaled PCG method with a-+esid

flux formulation and the resulting linear system is solveal i
direct method. Here we solve the exact same problem usin
3D slab mesh (i.e. one element thick) using both Ahe po-
tential formulation and thél field formulation (the constarti
field boundary value precludes the use of Ehéield formula-
tion) and an iterative solver for the resulting linear syste

ual tolerance of 10°. In both cases, the magnetic field effec- :

tively diffuses “instantly” after the first time step intodlentire No. DoF  Avg. PCG lterations

air-region due to the extremely low condgctivitx. Both fara- A-pl 7,156 149

tions yield identical diffusion times for thg andJ fields inside H-p1 7,156 51

the conductor which are consistent with those reported jin [3

(see Figure 17 and Figure 18). A-p2 | 45,104 450
H-p2 45,104 145

TABLE IV
RESULTS FORP-REFINED FINITE ELEMENT SOLUTIONS TO THE
HETEROGENEOUS CONDUCTING REGION DIFFUSION TEST USING BOTH
THE FULLY DISCRETEA-(D POTENTIAL AND H FIELD FORMULATIONS.

VI. CONCLUSIONS

In this paper we review three different formulations for the
time-dependent eddy current problem. These three formula-
tions employ either thé& field, the A field, or theA field as
Fig. 17. Computed initial statéeft) and final stater{ght) of B field magnitude the primary field variable. For each formulation, we alsovsho
using the fully discreté-g potential formulation. how secondary fields such as the magnetic flux deriand

the eddy current density can be computed. For each for-

While this approach is suitable for most applications, theraulation the primary field variable is represented as a ifor

are numerical consequences of having such large variationsand the secondary field variables are represented as 2-forms
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Fig. 19. Time history of the magnetic field using two differeotrhulations
with two different time integration options.

Each formulation involves a vector diffusion equation foe t
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