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Abstract

Scientific computation is used for the simulation of increasingly complex phenomena,

and generates data sets of ever increasing size, often on the order of terabytes. All of

this data creates difficulties. Several problems that have been identified are (1) the

inability to effectively handle the massive amounts of data created, (2) the inability

to get the data off the computer and into storage fast enough, and (3) the inability

of a remote user to easily obtain a rendered image of the data resulting from a

simulation run. This dissertation presents several techniques that were developed

to address these issues. The first is a prototype bin coder based on variable–to–

variable length codes. The codes utilized are created through a process of parse

tree leaf merging, rather than the common practice of leaf extension. This coder

is very fast and its compression efficiency is comparable to other state–of–the–art

coders. The second contribution is the Piecewise–Linear Haar (PLHaar) transform,

a reversible n–bit to n–bit wavelet–like transform. PLHaar is simple to implement,

ideal for environments where transform coefficients must be kept the same size as

the original data, and is the only n–bit to n–bit transform suitable for both lossy

and lossless coding.
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Abstract

Scientific computation is used for the simulation of increasingly complex phenomena, and

generates data sets of ever increasing size, often on the order of terabytes. All of this

data creates difficulties. Several problems that have been identified are (1) the inability to

effectively handle the massive amounts of data created, (2) the inability to get the data off

the computer and into storage fast enough, and (3) the inability of a remote user to easily

obtain a rendered image of the data resulting from a simulation run. This dissertation

presents several techniques that were developed to address these issues. The first is a

prototype bin coder based on variable–to–variable length codes. The codes utilized are

created through a process of parse tree leaf merging, rather than the common practice

of leaf extension. This coder is very fast and its compression efficiency is comparable

to other state–of–the–art coders. The second contribution is the Piecewise–Linear Haar

(PLHaar) transform, a reversible n–bit to n–bit wavelet–like transform. PLHaar is simple

to implement, ideal for environments where transform coefficients must be kept the same

size as the original data, and is the only n–bit to n–bit transform suitable for both lossy

and lossless coding.
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Chapter 1

Overview

1.1 Lots of Computers, Lots of Data

The past decade has seen an explosion in the number of computers and other digital de-

vices, and the number of people who use them. Computers, digital music players, digital

cameras, digital home theaters, and the like are becoming more prevalent and (most im-

portantly) cheaper. This, coupled with the phenomenal growth of the Internet, means

that there is an increasing number of digital files being created, stored, and transmit-

ted. Graphics cards, used for quickly rendering high–quality images of three–dimensional

scenes, are now tremendously powerful, exceeding traditional processors at floating–point

operations per second. On the academic front, as computer parts become more powerful

and fall in cost, supercomputing is coming within the reach of more and more organiza-

tions. Many supercomputers are clusters of commodity, off–the–shelf components. Some

notable examples are Virginia Tech’s System X supercomputer [3], ranked 7th most pow-

erful computer in the world as of January 2005. The original supercomputer, a cluster

of Apple PowerMac G5s (dual), went from conception to completion in 90 days. The

FlashMob Supercomputing project [2] at the University of San Francisco, which attempts

to create a powerful supercomputer from an assortment of computers, is another notable

example.

The upshot of all this is with more, powerful computers there is more and more
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data being created that must be stored. As of November 2004, Lawrence Livermore Na-

tional Laboratory, where I am a research fellow, has two of the top 5 supercomputers

[47]. These are BlueGene/L (#1) and Thunder (#5). Simulation runs on Laboratory

supercomputers dump terabytes of data. To make effective use of system resources (pro-

cessing time, memory, disk, cache, network bandwidth), data must be compressed. The

data compression process itself should also be implemented to minimize the amount of

resources used. This work addresses data transformation and compression/coding with a

length constraint. That is, during the transformation or coding process the data values

are not allowed to be greater than a certain number of bits in length. This constraint is

placed with the intent of limiting the amount of resources required. This is crucial, as

in scientific computation any data compression techniques used must be have a minimal

impact on the performance of the currently running computation.

1.2 Motivations

This work is motivated by two specific, related problems. The first is that disk storage

simply cannot keep up with the amount of data dumped during a simulation run. It is not

uncommon for simulations to dump terabytes of raw data. I am aware of simulations that

have dumped 3, 25, 40, and 98 terabytes. To make more efficient use of storage the data is

compressed before being written to disk, but the amount of data is just too much. During

the aforementioned 98 terabyte run (on Thunder) the disk was constantly full. This caused

other processes to be stopped or delayed while disk space was cleared. Naturally, this is

not something we want to occur in a high–performance computing environment.

Data compression can alleviate the problem, but currently the back–end com-

pressor in common use is ZLIB [15]. This gives decent compression rates but is not fast

enough. In general, current data compression methods do not meet our current needs.

We needed to develop a method that (1) is as fast as possible, (2) has a compression rate

comparable to the state–of–the–art coders, and (3) takes up as little resources as possible.

The second problem, related to the matter of there being just too much data,

is that when the simulation run is finished and the data stored the scientists typically
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want pictures derived from the data created by the run. These pictures can be obtained

by standard computer graphics and scientific visualization techniques, such as isosurface

extraction and volume rendering. With terabytes of data on external storage, it is im-

possible for a scientist to use his or her workstation to perform the rendering, as all the

required data is unable to fit on the workstation. Instead, the rendering job is given to a

visualization cluster, where each node has a high–end consumer PC graphics card. The

job is divided up among the nodes, and the results from each node—found in the nodes’

video cards—are composited together into a final image.

The problem then becomes one of how to effectively get the final, rendered image

from the remote video card to the user’s desktop. The obvious way of doing this is to

readback the image into system memory and then use the node’s network connection to

send the image to the user for display. The problem with this is that if we think of the

remote rendering process as a pipeline, it is easy to see that a readback and network trans-

mission stalls the pipeline. Instead of using the node’s network interface and performing

a costly readback, another method that would leave the video card immediately available

is preferable. The most efficient way to do this is to send the image over the card’s DVI

port [23]. This has several advantages. One is that this is what the DVI port on the card

is designed for, and so there is direct access to the frame buffer via the port. The second is

that the DVI port has the pixel rate sufficient for displaying high resolution images at an

interactive framerate. A 3–channel DVI port can deliver approximately 150 Megapixels

per second, while a 6–channel port can deliver about 350 Megapixels per second [23].

We would like to remove the image from the video card via the DVI channel,

and have another machine transmit the image to the remote user. To make more efficient

use of the network connection we compress the image, and this necessitates transforming

the image before compression. Since video GPUs are much more powerful than CPUs it

makes sense to perform the transform on the GPU. But the problem is that transforms

have dynamic range expansion: if the incoming data is n–bit, the transform coefficients

are (n + 1)–bit. A DVI channel is 8–bit, and a typical rendered image is 24–bit (three

8–bit color bands). If each band becomes 9–bit because of the transform, the transmission
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process slows—we have to fit a 9–bit peg into an 8–bit hole.

The key to realizing this whole system is the transform, which must be n–bit to

n–bit.

1.3 Data Compression

Data compression is the process of taking an input and finding a unique alternative rep-

resentation for that input, such that (1) the alternative representation is smaller than

the original input and (2) the original data (or a sufficiently close approximation) can be

reconstructed from the alternative representation.

Given some input data (image, sound, text) the input may first be transformed.

This is done because the transform decorrelates the data, and therefore the transformed

data usually compresses better than the original, untransformed data. Once the data is

transformed, an estimate is taken of the probabilities of each symbol (number, letter, word)

in the data, and from these estimates a code (an alternative representation) is created.

Then the data is read piece–by–piece, and for each datum the corresponding alternative

representation (a codeword) is output.

Transform

Data

Estimate

Probabilities

Generate

Code

Get

Codeword

Read

Data

Write

Codeword

Figure 1.1: Static data compression process.

In the slightly more complex case, a coder may update its probability estimates

after encoding each datum, and regenerate the code. This allows the coder to track

changing probabilities, and adapt to the varying characteristics of the data.
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Figure 1.2: Adaptive data compression process.

1.4 Contributions

This work develops methods that reduce the number of resources required in the data com-

pression process, with the aim of applying these methods in a high–performance computing

environment. The intent is to deliver data compression methods that are competitive with

state–of–the–art coders in terms of both execution speed and compression rate.

1.4.1 Length–limited Variable–to–Variable Length Codes

The first major contribution of this work is a practical method for generating and applying

variable–to–variable length codes in high–performance data compression. Using variable–

to–variable length codes we are able to create a coder that uses lookup tables for speed,

and limit the size of the index into these tables (thereby limiting the size of the lookup

table itself) without sacrificing compression efficiency. A coder of this sort is fast and has

a compression rate competitive with current state–of–the–art coders.

1.4.2 n–bit to n–bit Transforms

The second major contribution of this work is the development of two n–bit to n–bit

data transforms: the Table–Lookup Haar (TLHaar) and Piecewise–Linear Haar (PLHaar)

transforms. PLHaar, in particular, is to our knowledge the only n–bit to n–bit transform

suitable for lossy and lossless coding.
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Coding
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Chapter 2

Information Theory

2.1 Messages, Information, and Prediction

A symbol is a basic unit of representation. Some examples of symbols are bits (1 and 0)

and letters (e.g. a, b, c, ...). A word or string is any symbol or concatenation of symbols

(e.g. 101010, “fred”, “zzyzx”). A message or source is comprised of one or more strings

(“I am a rock”). A message not explicitly comprised of strings may be parsed into strings

as required, e.g. the binary message 10011000110100110 might be parsed into 1001 10001

101 00110.

Every message contains information. Note that in this sense “information” does

not indicate the meaning that the message is intended to convey to its recipient. Rather,

it indicates the parts of the message that are non–redundant. When we are aware of

a redundancy, the redundant parts of a message can be removed without changing the

message’s meaning. This is because redundancy is predictable. We can identify parts

that are predictable, and therefore redundant. These redundant parts can be removed,

thus shrinking the size of the message. Later, another person can reconstruct the original

message by adding in the redundant bits that were removed. For example, in modern

English the letter u almost always follows a q, when q appears at the beginning of a word.

The sentence “‘Qick Qeens Qietly Qacked!’ qoth Qentin” can be reconstructed without

difficulty.



8

2.2 Entropy of a Memoryless Source

Here we examine a memoryless source. A memoryless source can be thought of as a source

in which there is a definite probability distribution, but no definite pattern. Such a source

might be created by generating a random but weighted bitstream, where there is a set

probability of a 1 appearing. Entropy [45] is a measure of the amount of information in a

message, or a measure of how much of the message is non–redundant. Information cannot

compress, so for data compression purposes a higher entropy value means the message will

compress less.

Given that there are N possible symbols in a source, the entropy of the message

is computed as:

H = −
N

∑

i=1

pi log pi (2.1)

where pi is the probability of symbol i appearing in the message, and the logarithm can be

to any base. In data compression applications the log is typically base–2, giving H in units

of bits per symbol (unless noted otherwise all logarithms here are base–2). Normalized

entropy is simply a scaling of H so that it fall in the range [0,1].

H̄ =
−∑N

i=1 pi log pi

−∑N
i=1 1/N log (1/N)

(2.2)

In its simplest form, encoding a binary source bit by bit, the equation for entropy

becomes

H = −(p log p + q log q) (2.3)

where p is the probability of a 0 occurring in the bitstream and q is the probability of

a 1. From equations 2.1 and 2.3 we see that the entropy has its highest value when all

the probabilities are equal. In this case the source is incompressible. Similarly, when the

probability of one symbol is 1.00 (and the others have probability zero) the entropy is

zero, indicating that the source has an information content of nothing, and implying that

the source can theoretically be compressed to nothing. The entropy curve for the binary

case is given in figure 2.1.

As an example of how entropy is used in data compression, a normalized entropy



9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
n

tr
o

p
y

Binary Entropy Curve

Figure 2.1: Binary entropy curve.

of H̄ = 0.42 indicates that on average for every symbol in the memoryless source, 42

percent of that symbol is used for conveying actual information, and 58 percent is wasted

on redundancy. The original message can theoretically be compressed to 42 percent of its

original size. Data compression is the process of finding an alternative representation of a

given message, such that the alternative representation has a size that is (ideally) as close

to the entropy as possible. How close we attempt to come to the entropy is a decision based

on compression requirements (why try for a compressed size of 42% of the original when

66% is sufficient?) and speed/complexity considerations—often the best compressors are

also the slowest.

The entropy equation my also be used to determine how much a source will

compress, given a specific method for creating an alternative representation of the source.

Equation 2.4 is the basic entropy equation, but with the addition of some accents.
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H̃ = −
N

∑

i=1

p̂i log ṗi (2.4)

p̂ is the actual probability distribution of the symbols in the source, and ṗ is the probability

distribution used to create the alternative representation. In this case H̃ answers the

question “If the source has an actual probability distribution p̂ but we assume it has a

distribution of ṗ, how big will our compressed source be?”

Although an entropy of zero indicates perfect compression, it is of course impos-

sible to compress a source to nothing and still recover it. Practically speaking, there is

some overhead incurred in the compression process and as such no source can be com-

pressed to exactly the size indicated by its entropy, although some compression methods

come extremely close.

It is also worth emphasizing here that entropy does not measure the absolute limit

to which a source may be compressed. Rather, it measures the limit to which a source may

be compressed given the method used to identify and remove redundant data. Equation 2.1

indicates that each symbol has a probability p. How these probabilities are determined

affects the entropy and therefore the size to which the message may be compressed. A

common mistake is to compute the entropy using one method, but compress the source

using a different method. This can make it seem as if the data compression system is

performing much better than it actually is.

As an example, take the binary message 101010101010101010. The entropy of

this message, according to the equation for entropy of a memoryless source (2.3), is 1,

because there are an equal number of 1s and 0s present. Thus we would say that this binary

message is incompressible. But this message is not memoryless! There is a predictable

order to the bits in the message. If instead we look at the conditional probability of a

bit (e.g. answer the question “what is the probability of the next bit being a 1 given

that the current bit is a zero?”), the entropy drops to 0, which indicates that the message

(theoretically!) compresses to nothing. If we use the memoryless source assumption to

compute the entropy and then used a data compressor that used conditional probabilities

to compress we would incorrectly believe that the data compression system had compressed
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the source to a size far smaller than was possible.

A truly random message is one in which no redundancy can be found, and it is

therefore incompressible. This naturally happens when the message is memoryless and all

symbols have equal probabilities. Also note that the entropy is accepted as the absolute

limit to which a given message may be compressed. There are many people and companies1

that claimed to have “broken the entropy barrier”—compressed a message to a size smaller

than that indicated by the message’s entropy. None of these claims has withstood scientific

scrutiny, assuming the claimants allowed such scrutiny in the first place.

2.3 Conditional Entropy

Equation 2.3 is sometimes called the zero–order entropy. In this situation to determine

the probability distribution of the source the source is scanned and a tally is kept for

each symbol encountered. As illustrated previously, given a message we should not just

use equation 2.3 to compute the entropy. In many cases we need to use the conditional

entropy to more efficiently identify and remove redundancy. In this situation, each symbol

has a context in which it appears. Taking our example from above, when we have a message

1010101010101010..., we saw that the zero–order entropy is 1, meaning that the source

will not compress. To see if we can do better, we create two contexts: context 1 is all bits

that follow a 1 bit, and context 0 is all bits that follow a 0 bit. Using one bit of context

gives us the first–order entropy. If we group bits according to their context, we get the

following two strings:

1: 00000000000

0: 11111111111

According to equation 2.3 the entropy of each of these strings is zero, and so each (the-

oretically) compresses to almost nothing, which means that the original message, using

these contexts, can be compressed to almost nothing.

1A listing of some of these claims can be found at http://datacompression.info/IncredibleClaims.shtml
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If we have the following string: 110011001100110011001100 the zero–order en-

tropy is again 1. Using the 1 and 0 contexts used previously, we get the following strings:

1: 101010101010

0: 010101010101

The zero–order entropy of these each of these strings is 1, so it looks like in

this case the first–order context hasn’t solved anything. However, if instead we base the

entropy computations on the prior two bits (giving the second–order context), we obtain

the following four strings:

11: 000000

10: 000000

00: 111111

01: 111111

And the entropy of each of these strings is again zero. The product of each of these

contexts is a memoryless source.

From the data compression system’s point of view, a message can be viewed as

several different memoryless sources, interleaved together. Compressing using context and

conditional entropy is the process of taking a message and decomposing it into several

memoryless sources, and compressing each memoryless source separately from the others.

In the third example note that when we used the prior two bits as a context we

got four strings, each of entropy zero. In reality, each context has some required overhead.

The more context we use the more overhead we incur, and at some point the amount of

overhead will be disproportionately large, compared to the compression savings.
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Chapter 3

Data Compression

3.1 Introductory Background

Recall from chapter 2 that the basic principle behind data compression is to find an

alternative representation of a message such that the alternative representation is (1)

smaller than the original message, and ideally (2) the alternative representation’s size is

as close as possible to the size specified by the message’s entropy, H. The way this is

done is to select an alternative representation of each symbol, based on it’s probability

of appearing. More common symbols receive shorter alternative representations, and less

common symbols receive longer representations. How these alternative representations are

created is what differentiates the various data compression methods.

As an introductory example, take the two–bit blocks 00, 01, 10, and 11. Any

message of n blocks in length created using these four blocks will require 2n bits to

represent. Now, suppose we know that for a given (memoryless) message of 256 blocks,

the block 00 appears 200 times, the block 01 appears 45 times, the block 10 appears 10

times, and the block 11 appears once. With this information in hand, we compute the

probabilities of each block as 00: 0.781, 01: 0.176, 10: 0.039, and 11: 0.004. Using the

zero–order entropy equation, we compute the entropy H = 0.934 bits per symbol. The

normalized entropy is H̄ = 0.467, meaning we expect the original message to compress to

about 46.7% of its original size.
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We create a new set of blocks of nonuniform length, and create a lookup table

from the old set of blocks to the new one. This mapping from the original blocks to the

new ones is a code, and one of the new symbols is called a codeword. If we choose the

following mapping:

00 → 0

01 → 10

10 → 110

11 → 111

what happens? The original message took 256 * 2 = 512 bits to represent. If we use

the above lookup table to replace each original block with a new one, this same message,

represented using the new blocks, requires (200 * 1) + (45 * 2) + (10 * 3) + (1 * 3) =

317 bits, which is 61.9% of the original size.

3.1.1 Coding Inefficiency

Since we know the ideal compressed size of the message, and have an actual compressed

size, it is helpful to have a way to quantify how efficient or inefficient the code we have is,

i.e. when we use the code how close do we come to the entropy?

Given a code and a source message, the coding rate R of a coder K using that

code on the message is a measure of how many bits it outputs compared to how many bits

were input. RK is computed empirically as

RK =
num bits out

num bits in
. (3.1)

We can compute the theoretical rate as the ratio of the weighted sums of the

codewords and the input word lengths:

RK =

∑N
i=1 |ci|pi

∑N
i=1 |si|pi

(3.2)

where pi is the probability of input si, |si| is the length of si in bits, and |ci| is the length

of the codeword assigned to replace si. From this we define the coding inefficiency I of a



15

coder K as

IK =
RK − H̄

H̄
× 100. (3.3)

Inefficiency measures the percentage of bits a coder outputs in excess of that

indicated by the entropy. Theoretical inefficiency refers to I computed with a theoretical

R (according to equation 3.2), while empirical inefficiency refers to I computed with an

empirical R (according to equation 3.1). In our example earlier, the empirical coding rate

is 317/512 = 0.619. Since the normalized entropy was calculated as 0.467, our code has

an inefficiency of (0.619 - 0.467)/0.467 * 100 = 32.54%.

If a code has a coding rate of R we can compute H at a variety of different input

probabilities, and from this determine how efficient we would expect the code to be at

compressing bitstreams with various probabilities. Figure 3.1 shows a sample inefficiency

curve for a code designed to be most efficient at q = 0.42. If we wanted to keep coding

inefficiency below 1% we see that we could use this code for 0.37 ≤ q ≤ 0.46. Outside of

this range we would need a different code, so a coder would need more than one code at

its disposal. Figure 3.2 shows the inefficiency curves for three codes. A coder would select

one of these three codes to encode a bit based on the current estimation of the probability

of a 1 appearing in the bitstream. The minimum of the three curves, shown in figure 3.3,

defines the best possible coder inefficiency.

3.1.2 Lossy Coding

Lossy coding is the process of encoding a source and throwing away the most redundant

or least–significant data. This is usually done when the original data does not need to

be preserved intact—only enough data is required for someone to get the meaning of the

message, not the complete message. The well–known JPEG specification [28] and image

format is an example of lossy coding. Coding where no loss happens is called (predictably

enough) lossless coding. The PNG graphics format is an example of this [37].
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Figure 3.1: Sample inefficiency curve for a code that is most efficient at q = 0.42.

Figure 3.2: Inefficiency curves for three codes.



17

Figure 3.3: Inefficiency curve for a coder using the three codes from figure 3.2.

Figure 3.4: An example of lossy coding with JPEG. The image on the left has been coded
with little loss, the image on the right with extensive loss.
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3.2 Some Data Compression Techniques

The goal of data compression is to find an alternative, shorter representation of a mes-

sage. How this alternative representation is constructed is what differentiates the different

compression techniques. Here we review a few methods that are relevant to this work’s

contributions. We assume in all cases that we are encoding a binary source, and assume

without loss of generality that the more probable bit is a 0. The probability of a 0 ap-

pearing in the bitstream is denoted by p, the probability of a 1 by q, and p > q. We also

assume that the binary source is memoryless, that is, it has no underlying structure.

3.2.1 Run–Length Encoding

One of the simplest data compression techniques is Run–Length Encoding (RLE). Given

a source, a run is any repeated sequence of a single symbol. So for example the binary

sequence 100001001 contains one run of 4 zeros, and one run of 2 zeros. An RLE coder

scans a source and encodes the runs that it finds by replacing the run with a symbol–count

pair, indicating the symbol comprising the run, and how many symbols were in the run.

To simplify our explanation somewhat, since we assume a binary source and

p > q we count only runs of zeros. A 1 marks the end of a run.

The standard RLE method starts by first selecting a value m, indicating the

expected run length. Then a counter C of width h = ⌈log2 m⌉ bits is created and initialized

to zero. As a run is processed, C is incremented. When C == m, a 1 is output, C is

reset, and counting continues. When the end of the run (a 1 in our case) is detected, a

0 bit is output, followed by the value of the counter. Thus every counter output requires

h + 1 bits.

The fixed–length counter is a weakness in the RLE method. A counter h bits

wide can represent a total of 2h possible run lengths. If the expected run length m is not

a power of 2, then there are a total of 2h −m unused counter values. This is wasteful, and

reduces RLE’s efficiency.
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m = 14

Run length RLE code Golomb Code

0 0 0000 0 000
1 0 0001 0 001
2 0 0010 0 0100
3 0 0011 0 0101
4 0 0100 0 0110
5 0 0101 0 0111
6 0 0110 0 1000
7 0 0111 0 1001
8 0 1000 0 1010
9 0 1001 0 1011
10 0 1010 0 1100
11 0 1011 0 1101
12 0 1100 0 1110
13 0 1101 0 1111

Total 70 bits 68 bits

Table 3.1: A comparison of RLE and Golomb codes for m = 14. The Golomb code uses
less bits.

3.2.2 Golomb Coding

An improvement to the standard RLE method is Golomb coding [19]. Golomb coding

seeks to improve the efficiency of the standard RLE method by using a variable–length

counter. Given p, the expected run length is computed as m = − log 2/ log p. Golomb’s

observation was that if we select the smallest positive integer k such that 2k ≥ 2m, then

the first 2k−1 − m counter values can be represented in k − 1 bits, while the remaining

must be represented in k bits. This is an improvement over standard RLE, which must

represent all counter values in k = h + 1 bits. One of the examples in [19] is for m = 14.

Table 3.1 reproduces part of that example, comparing the Golomb code with a standard

RLE code. We see that in this case the Golomb code uses 2 bits less than the standard

RLE code. This may not seem like much, but for a bitstream with millions of bits the

savings will be significant. In general, given m, the Golomb savings over standard RLE is

2k−1 − m bits.

Figure 3.5 gives the inefficiency curve for Golomb codes. From this we see that

the codes (as could be expected) are most efficient when there are long runs (at lower



20

0 0.1 0.2 0.3 0.4 0.5
q

0

1

2

3

4

5

C
o
d
in

g
 I

n
ef

fi
ci

en
cy

 (
%

)

Golomb Coding Inefficiency

Figure 3.5: Inefficiency curve for Golomb codes. Note the great inefficiency at about
q = 0.38.

values of q). The codes are not as efficient for q ≥ 0.18. In particular, there is a large

inefficiency at about q = 0.38.

The problem with any RLE method is that it is not efficient unless lots of long

runs are expected in the source. Even with a variable–length counter there is overhead

incurred, and that overhead is significant if the runs are not sufficiently long.

3.2.3 Huffman Codes

The Huffman algorithm [27] is not a coding method as such, but a way of generating

a code given a set of input symbols and a probability distribution. After the code is

generated each symbol in the input is replaced with the appropriate codeword, resulting

in compression.

The process is illustrated in figure 3.6. Given a set of symbols and a probability

distribution, the two least probable symbols are chosen and made leaves of a tree, with the

least probable symbol on the left. The tree is returned to the set. Then, of the symbols

and trees in the set, the two least probable are chosen and formed into a tree, with the

least probable on the left. The tree is returned to the set. The process repeats until only



21

A

0.25

R

0.15

B

0.13

X

0.02

E

0.45

E

0.45

A

0.25

R

0.15

X B

0.15

X B

R

E

A

1.00 E − 0

A − 10

R − 111

B − 1101

X − 1100

E

0.45

A

0.25

X B

R

0.30 E

0.45

A

X B

B

0.55

Figure 3.6: An illustration of the Huffman code generation process. A left branch is a 0,
a right branch is 1.

one tree remains. The tree is traversed, the path from the root to each leaf giving the

code for that symbol.

There are several important characteristics of the Huffman algorithm. The first

is that the Huffman algorithm cannot produce a code that has fractional bit widths (the

Arithmetic codes, to be discussed below, can). This means that when using a Huffman

code it is not possible to have a compression rate smaller than 1 bit per symbol. If the

inputs are all W bits wide the maximum possible compression rate is 1/W . The second

is that in a Huffman code no codeword is a proper prefix of any other codeword. This

allows for unambiguous decoding. The third is that for codes of this type (code tree, no

fractional bit widths) the Huffman codes are optimal. The fourth is that if there are N

inputs the longest possible code length is N − 1, although this is unlikely to occur.
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3.2.4 Parse Tree Methods

Parse tree methods are methods that take a source and parse it into symbols and words.

There are different types of parse–tree methods, but their underlying mechanics are the

same: a source is parsed into words, and these words are then encoded. One of the

major benefits of parse tree methods is that an extremely fast coder using them is easily

implemented using table lookups.

Note that from a certain standpoint the run–length codes may be considered

parse–tree methods. We separate run–length codes from parse tree methods because the

mechanics used to create the codes are significantly different from each other.

Block–to–variable Length Codes

The Block–to–variable length (BV) codes parse a source in fixed, uniform–length strings

or blocks. Given p and q, a probability for each block is computed and codes are generated,

assigning the shortest code words to the most probable blocks and the longest code words

to the least probable blocks. How these codes are created is a matter of personal preference

and requirements, but the typical methods are the Huffman algorithm [27] and canonical

codes [39].

000 − 0

001 − 100

010 − 101

011 − 11100

100 − 110

101 − 11101

110 − 11110

111 − 11111

010 011 100 101 110 111001000

Figure 3.7: A BV code parse tree and code table. B = 3, and codes are generated using
the Huffman algorithm.



23

Variable–to–block Codes

Variable–to–block (VB) codes, as their name implies, parse a source in words whose length

may vary one from another and output codes that are all of uniform length. The standard

example of a method for generating a VB code is the Tunstall algrithm (see [10, 11, 17]).

The main advantage to the Tunstall codes is that since the output code length

is uniform there is no special algorithm required to assign the codewords. All 2B codes

are unique and therefore uniquely decodable, so any method desired can be used. One

possibility is to assign sequential codes to the symbols in nonincreasing probability order.

This ensures that when decoding the tables or parts of the decoding tree most likely to be

accessed are grouped together and kept in cache memory. The main disadvantage to the

Tunstall method is that the coding rate may not be the best obtainable. If the longest

input string from the parse tree is W bits, the best possible compression rate is B/W . It

may be that if the code lengths were allowed to vary, thus giving the most probable string

a shorter codeword, a better compression rate would be possible.

Variable–to–variable Length Codes

Variable–to–variable length (VV) codes parse a source in variable–length words and output

codes that may vary one from another in length. The typical way of describing VV codes

is a Tunstall–Huffman pairing: the Tunstall algorithm is used to create the parse tree, and

the Huffman algorithm is used to create the codes. This may be overly restrictive, as it

limits the number of leaves on the parse tree to powers of 2. A slightly modified method

can be used where the extension process terminates when the desired number of leaves (or

some other criteria) is reached.

The main advantage to VV codes is that they may obtain a better compression

rate than other parse tree coding methods. Their disadvantage is that the only way to

find an optimal VV code is through an exhaustive search. VV codes will be discussed in

greater depth later.
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0 1

00000 − 000

00001 − 001

00010 − 010

00011 − 011

001   − 100

010   − 101

011   − 110

1     − 111

Figure 3.8: The creation of a VB parse tree, by extending and splitting the most probable
leaf.

00000 − 0

00001 − 10

00010 − 1100

00011 − 11110

001   − 11100

010   − 11101

011   − 1101

1     − 11111

Figure 3.9: A VV parse tree (created using the Tunstall algorithm) and its code table.
Codes are generated using the Huffman algorithm.
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3.2.5 Arithmetic Codes

Arithmetic Codes [61] are the codes that come closest to the theoretical entropy of a

source. As its name implies, an arithmetic code represents a source as a real–valued

number computed out to many bits of precision. As each symbol of the source is encoded,

more precision is added to the number. The number created for each source is unique,

and so from each number it is possible to decode the source.

The binary arithmetic coding process is conceptually simple. The arithmetic

coder begins with a full probability range, and divides it into two subranges sized according

to p and q. A subrange is selected based on the actual bit encoded, then that subrange is

divided into two subranges, and the process repeats. The main advantage to the arithmetic

codes is they are able to represent fractional bit widths. Their main disadvantage is their

speed: they are very slow.

There are approximation methods for arithmetic coding. These methods, while

not pure arithmetic codes and therefore not as efficient, have a very good coding rate and a

much improved execution speed. Some examples of these types of coders are the Q–coder

[36] and its variants, and the ELS [57, 58] and Augmented ELS [59] coders. Ono et al [35]

describe MELCODE, which is a method of using a run–length type code to approximate

an arithmetic code. Bottou et al [9] describe the Z–Coder, which is another run–length

approximation of an arithmetic code. Due to patent concerns the original implementation

of the Z–Coder has been modified, and this version, called the Zp–Coder, is currently

used.

Most arithmetic code approximation techniques couple a probability estimation

state table to the coder. The current state gives the current probability estimation (this

is usually in some form that the coder can use to compute the code quickly) and the state

transitions based on whether the current bit is a 1 or a 0.
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Chapter 4

A High–performance Encoder

Using Variable–to–variable Length

Codes

4.1 Introduction

Our first contribution is a prototype coder for high–performance computing [40]. This was

created to address one of the motivations referred to in Section 1.2: when a supercomputer

is running a simulation massive amounts of data are generated, and the current methods

for handling the data (including compression) are not fast enough. The data cannot be

dumped from the machines fast enough, and the resulting data can overload storage if not

compressed. Current compression libraries are too slow. The question I needed to address

was, can we create a coder that is significantly faster than current coders, but also gives

a competitive compression rate?

The first issue was which basic coding method to use. The current coder in use

is the ZLIB library [15], which is rather slow. Typically, there is a speed–compression

tradeoff. Slower methods tend to achieve better compression rates (a good compression

rate requires techniques that are more computation–intensive), and faster methods worse

rates. Pure arithmetic coders obtain the best compression rates, but they are too slow.
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Run–Length codes, especially the Golomb code, are fast and efficient only when the bit

probabilities are such that a significant run length is expected.

In terms of speed, a method using direct lookup tables that contain the codewords

would be hard to beat, as there is significantly less computational overhead. I decided to

explore table–lookup methods, and the process of designing a coder became one of getting

the best compression performance using tables.

4.2 Encoding Using Table–lookups

4.2.1 A Simple, Fast Process

The codes best suited for table–lookup methods are the parse tree–based codes (BV, VB,

VV). Given a code, the coding process is simple, as illustrated for encoding in figure 4.1.

Given an input and a window size of W bits, we (1) examine the next W bits on the input,

using them as an index into a lookup table. The table entry gives values for l–the number

of bits actually used from the input, c–the length of the codeword, and the codeword itself.

We then (2) shift l bits off of the input, (3) shift the output by c bits, and (4) place the

codeword on the output. The process is simple, and the coding loop is very tight. As long

as the lookup table is not excessively large and does not take up too much cache space the

coding process will be fast. The table size is a function of the size of the index W—there

must be 2W entries in the lookup table. For a fast, direct–lookup scheme W must be as

long as the longest string on the parse tree (when encoding) and as long as the longest

codeword when decoding.

4.2.2 Limiting Table Size

If a codeword (read input string here also—the reasoning is the same in either case) is

excessively long the lookup table will have too many entries and be excessively large. For

example, assume that each table entry is 32 bits wide. A longest code length of 16 bits

yields a decoding table that is 256 kilobytes in size. This table will easily fit in cache

memory. If the longest code length is instead 20 bits long, the table grows to 4 megabytes



28

c 101010l

101010 100010010100111...

Place Code on Output

100010010100111...

W bits

00010101001110101001001...

Shift Output c bits

00010101001110101001001...

Shift Input l bits

Read bitsW

0101001110101001001...

Figure 4.1: Encoding via table–lookup.
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in size. Both of these code lengths are possible with a reasonable input set size, depending

on the probabilities of the symbols, but a difference of only 4 bits in code length results

in a 1600% increase in table size.

Remember that in the worse case if there are N possible inputs the longest

possible code length is N − 1 bits. While this longest code length is obtained only in very

extreme cases, it is a reminder that table size can be a nasty issue if care is not taken to

keep the code lengths short.

Block Shortening

The simplest technique for shortening code (or input string) lengths is to iteratively shorten

the block size and regenerate the codewords (when using BV codes) or the parse tree (when

using VB codes), terminating when the longest code or string is less than or equal to some

threshold C. This technique is simple, but as the block length is shortened the overhead

of the code increases rapidly (recall for example that a BV code can never have an overall

compression rate better than the best input/output pair).

Package–Merge Algorithm

A more intelligent approach is to use the Package–Merge Algorithm [32] or similar algo-

rithms. We do not review these methods here, but they basically use a greedy approach

where the longest code length is shortened and the code tree is readjusted to accommo-

date the change. This process repeats until all code lengths are within some specified

limit. This process naturally reduces the overall compression efficiency of the code, but

since the longest code lengths (corresponding to the least–likely inputs) are modified first

the decrease in compression efficiency is kept as small as possible. In practice the PM

algorithm does extremely well, and if the algorithm isn’t given a difficult set of require-

ments (such as an input code with very skewed probabilities and a very small longest

code length) it is often able to create a length–limited code with only a small decrease in

compression rate. Figure 4.2 shows the coding inefficiency for block–shortened Tunstall,

block–shortened BV Huffman, and BV Huffman codes with code lengths limited via the
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Package–Merge algorithm. Inputs were limited to 15 bits maximum, outputs were limited

to 13 bits, and the most optimal codes were chosen from within this search space. As

expected, length–limiting via the PM algorithm is the best method of the three.

Use a VV Code

The third alternative is to use a VV code. Code lengths are dictated by the number of

input strings and the probabilities associated with them. Being able to create a parse

tree with variable–length strings gives us the ability to potentially create a parse tree that

will result in a code with the desired code lengths, while providing a good compression

rate. Figure 4.3 shows the most optimal variable–to-variable length codes created using

the merging process (to be discussed in section 4.3.2), with the same limits as the codes

in figure 4.2. The improvement is dramatic.

4.3 Generating a Length–limited VV Code

4.3.1 Extension

To date it seems that most (to my knowledge, all) of the published work in creating VV

codes involves the extension process, one method of which was described in Section 3.2.4.

To review, the most basic way of creating a VV code uses the Tunstall extension approach

to create the parse tree, extending the leaf corresponding to the most probable string, and

uses the Huffman algorithm to generate the code words. This is overly restrictive, as it

requires that the number of leaves on the parse tree be a power of 2. A variant of this

method allows the number of leaves to not be a power of 2, the extension process termi-

nating based on some other criteria. Intuitively, the Tunstall–based extension approach

is a good one: by creating longer strings of more–likely bits (and giving them shorter

codewords) and shorter strings of less–likely bits (and giving them longer codewords), the

coding rate is more likely to be closer to optimal. However, a Tunstall–like extension

approach does not guarantee optimality, nor does it guarantee the best possible coding

rate compared to extending leaves in a different manner.
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Figure 4.2: Coding inefficiency of length–limited codes.
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Figure 4.3: Coding inefficiency of some VV codes.
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Much work in VV code research has gone into examining the current parse tree

and then deciding which leaf on the parse tree is to be extended (see [16, 18, 48, 49] for

example). The research met with limited success, and indicates that even when starting

from an optimal parse tree, it is not always possible to obtain another optimal parse tree

by extension.

In short, creating optimal VV codes is a notoriously difficult process, and all

research indicates that an exhaustive search remains the only method to find an optimal

VV code [16, 48, 49]. Peter Stubley, whose doctoral dissertation examined VV codes,

believes that the problem of finding an optimal VV code is NP–Complete [50], although

he has no formal proof.

The bright side to all of this is that while it is difficult to find an optimal code,

finding a code that works well enough is a much simpler process.

4.3.2 Source String Merging

Our original work in VV codes derived solely from our need to create length–limited codes.

We had BV codes which we intended to use in our coder, but which were not suitable due

to the excessively long code lengths, and we needed a way to shorten the codes. We

observed that by reducing the number of things to be encoded (in this case, leaves on

the parse tree) we could potentially reduce the lengths of the codewords. As the coding

rate is dominated by the more–likely leaves of the parse tree, it made sense to eliminate,

or modify, the least–likely leaves, as this would have the least detrimental effect on the

coding rate.

We chose to create VV codes through a greedy process of contraction, or merging.

In this approach, a block length B is selected, and a full parse tree with 2B leaves is created,

where all strings are of length B. Code lengths are generated for each string, using the

Huffman or another equivalent algorithm. We then follow a greedy approach: while the

longest code length L is greater than some limit C, the least–likely leaf on the parse tree

is merged with its sibling into their parent node, which becomes a leaf. Code lengths are

re–generated, and the process repeats until L ≤ C. In essence the merging process takes
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a BV code and transforms it into a VV code. The process is illustrated in figure 4.4, and

an actual parse tree generated by this method is in figure 4.5.

4.4 Properties of the Greedy Merging Process

The first thing to note about this process is that the greedy algorithm will always choose a

leaf with a sibling. The proof is simple. Assume that we have subtree taken from a parse

tree, structured as in figure 4.6. If we let s denote the path to the root of this subtree, and

w the weight of that path, we see that the leaves of the parse tree have strings s00, s01,

and s1. Weights are respectively wpp, wpq, and wq. Since wq > wpq and wpp > wpq, leaf

s1 can never be selected before s01. Any other tree configuration yields a similar proof.

Another property that is simple to prove is that the merging process will always

choose a leaf corresponding to a string ending in a 1. For any given leaf pair, the strings

corresponding to the leaves are identical, except in the last bit position. If the weight of

the path to the pair’s parent node is w, the weight of the path to the string ending in a

0 is wp, and the weight of the string ending in a 1 is wq. Since we assume WLOG that

p > q, wp > wq, and the selected leaf—the leaf of least weight—must be the 1–ending

leaf.

Recall that given a parse tree that recognizes N strings, the coding rate for the

resulting code a code is

R =

∑N
i=1 |ci|wi

∑N
i=1 |si|wi

(4.1)

where |si| is the length of string i, wi is the string’s weight, and |ci| is the length of the

codeword assigned to string i.

We demonstrated that at each merging step the string selected for merging will

end in a 1. We refer to this string as s1, its 0–ending sibling as s0, and the merged

string as s. Their respective weights are wq, wp, and w. At each merging step, given

s1, the denominator’s value changes in a predictable fashion. If x is the value of the

denominator—the weighted sum of the string lengths—before a merging step, and x′ the
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Figure 4.4: Source String Merging. The underlined numbers indicate the code lengths.

Figure 4.5: Parse tree created when q = 0.40, parse tree strings are limited to 10 bits max
and code lengths limited to 7 bits max.
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s
(w)

s00 s01

s1

(wpp)

(wq)

(wpq)

wq > wpq

wpp > wpq

Figure 4.6: Illustration of proof of why the greedy merging process always selects a leaf
that is part of a pair (i.e. has a sibling). A 0 corresponds to a left branch.

value after the merging step, the value of x′ is:

x′ = x − |s1|(wp + wq) + (|s1| − 1) × wq

q
. (4.2)

Since wq/q = w and (wp + wq) = w(p + q) = w, this equation becomes

x′ = x − |s1|w + |s1|w − w (4.3)

x′ = x − w (4.4)

In other words, at each merging step the value of the denominator decreases by the sum

of the weights of the leaf and its sibling, which is equivalent to the weight of their parent

node. From this we can prove that the greedy merging process causes the denominator of

the coding rate equation to decrease the least, compared to other choices for merging.

Compared to other merging options, the greedy approach results in

the smallest decrease in the parse tree’s total weighted path length. In other

words, the merging process selects leaves such that w (as used in equation 4.4)

is the smallest value possible.

The explanation is as follows: the greedy algorithm always selects the leaf with

the smallest weight. We demonstrated earlier that this would always be a leaf with a

sibling leaf, and that the selected leaf would always correspond to a string ending in a 1.

Let w1 be the weight of the path from the root to the parent of the leaf pair

containing the least–probable leaf, as illustrated in figure 4.7. The weight of the selected

leaf will be w1q. Let w2 be the weight of the path to the parent node of any other leaf
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w2q > w1q

w2 > w1

w1w2

Figure 4.7: Illustration of proof of why the greedy merging process always causes the
smallest decrease in the parse tree’s total weighted path length. In this example p = 0.8,
q = 0.2. A 0 corresponds to a left branch.

pair. The leaf with least weight in this pair will be w2q. Since w1q is the least–probable

leaf, we know that w2q > w1q. Dividing by q we have w2 > w1. The w resulting from

selecting the least–probable leaf and merging therefore must be the smallest1.

What does this property give us? Since the coding rate of a code is the ratio of the

weighted sums of its code lengths and parse tree path lengths, keeping the denominator

(the sum of the weighted parse tree path lengths) as large as possible is a reasonable

step to take to ensure that the coding rate is as small as possible. It turns out that the

reasoning behind the Tunstall–Huffman approach to VV codes is similar: the change in

the denominator of equation 4.1 can be described in a manner similar to equation 4.4:

x′ = x + w. It therefore makes sense to pick the leaf of greatest weight for extension, as

this will result in the sum of weighted parse tree paths being as large as possible.

However, this similarity between the merging and extension processes indicates

that the merging process may have the same problem as extension: a greedy merging

process may not produce the best coding rate. It turns out that this is indeed the case.

The proof is by counterexample. As illustrated in figure 4.8, if we select a block size of 3

and create a full parse tree, the greedy merging process will select the leaf corresponding

to string 111, with a weight of 0.064. The resulting code tree is given, and the sums of

the weighted string and code lengths are given.

1From this we see that another way of viewing the merging process is that it selects the internal node
of least weight and “prunes” its children, causing that node to become a leaf.
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Instead of using the greedy approach, if we select another leaf, say 011, with a

weight of 0.096, we get the parse tree shown in figure 4.9. The resulting code tree, with the

sums of the weighted string and code lengths are also given. The greedy method produces

a parse tree and a code with a coding rate of 0.98. The alternative, non–greedy method

produces a parse tree and a code with a coding rate of 0.9797. Although these coding

rates are extremely close, the non–greedy method has the better coding rate (no rounding

was performed in obtaining these numbers).

The best that one can do, then, is to use an intelligent method to define a limited

search space and from that space select the most optimal VV code that occurs, with the

goal of minimizing the search time while retaining a high probability of obtaining a VV

code with good compression efficiency. A greedy merging process is such a method. It it

not guaranteed to find the optimal code, but it places some natural and reasonable bounds

on the search space, and the resulting codes are very good, as illustated in figure 4.3.

4.5 Properties of Merged VV Codes

We use the Huffman algorithm [27] to generate codes for our parse trees. Given a set

of inputs, the Huffman algorithm is known to produce an optimal code. For the more

general case where BV Huffman is used for parse tree coding, we know, given B, p, and

q that the resulting Huffman code is optimal. We do not know if that parse tree and set

of codewords yields a code with the best possible coding rate for that particular p, q—it

may be that some value b < B may give a more optimal code. The only way to tell is to

try all possibilities 0 < b ≤ B. This may seem like a lot of work, but if B is a reasonable

size (say, ≤ 16) the search space is very small.

VV codes are not as pleasant. Again, given a parse tree we know, for that parse

tree, that the Huffman code is optimal. But, we do not know if that parse tree and set

of codewords yields a code with the best possible coding rate for that particular p, q.

With VV codes created by the merging process, each time the parse tree changes at each

merge step, the code tree changes as well, and it is not easy to quantify exactly what the

change in the code tree will be (we do not know how the code lengths will change without
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Figure 4.8: Illustration of how the greedy merging process does not always result in the
smallest coding rate. Results for a greedy merge. In this example p = 0.6, q = 0.4. A 0
corresponds to a left branch.
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smallest coding rate. Results for an alternative merge. In this example p = 0.6, q = 0.4.
A 0 corresponds to a left branch.
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actually re–generating them). Therefore we do not know, at each step, what the change

in the overall coding rate will be—it may go up or down.

The only way to know is to try all possibilities, and indeed the only known

method for finding an optimal VV code is through an exhaustive search. Unlike the BV

codes, the search space for the VV codes is more vast as there are a variety of ways to form

the parse trees, and for each of these trees the Huffman code lengths must be computed.

Huffman code adaptation methods [54, 55] cannot be used to make the situation easier,

because these methods assume that only the probabilities of the inputs change, and that

the inputs themselves remain unchanged. This is not the case with VV codes, where one

change to the parse tree results in a different set of inputs and a possibly very different

Huffman code.

Figures 4.10 through 4.13 show the theoretical coding rate of VV codes created

through merging, where the starting string lengths are 7, 8, 9, and 10. The merging

process uses a greedy approach, selecting the least–probable leaf. The process terminates

when the longest code length is the same as the starting string length. In each of these

figures the (W, C) pair for each trace indicates that the associated code has a starting

string length of W bits, and the longest allowable code length is C bits.

From these figures we see several properties. The first is that it appears that

if the starting string length is longer the coding rate is more resilient to changes. For

example, the (10,10) coding rate shown in figure 4.10 remains largely constant, changing

from 0.476691 to 0.476732 as the longest code length changes from 30 to 15.

The second is that at some point in the merging process the coding rate will

change significantly, but it is not entirely obvious what causes a change to occur. Again

referring to the (10,10) code in figure 4.10, at the 639th merging step the longest code

length changes from 15 to 14, and at that point the coding rate begins to more noticeably

degrade, in a linear fashion. Later at the 873rd merging step (the sharp peak in the coding

rate) the coding rate begins to improve, but the longest code length remains unchanged

at 12. This brings us to the next property of VV codes: the direction of change in the

coding rate is unpredictable. Not only are local changes unpredictable, but when merging
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Figure 4.10: Coding Rate when q = 0.10.
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terminates the resulting VV code will be more or less efficient than the starting BV code,

but whether the final code is more or less efficient does not appear to be predictable.

Despite all this, these figures also show why VV codes are desirable for length–

limited binary encoding: at the termination of the merging process the final coding rate is

often not far removed from the pre-merging coding rate. For example, in the case of the

(10,10) code in figure 4.10 the final coding rate is 0.477102, compared to an original rate

of 0.476691. In figure 4.12 the (8,8) code’s rate drops to 0.939259 from a starting rate of

0.939739.

4.5.1 Using VV Codes in Data Compression

The inherent unpredictability of VV codes makes them extremely difficult to work with.

Certain types of codes, such as BV Huffman, Golomb, and arithmetic, can be adapted

to follow and more efficiently encode changing source probabilities. With VV codes this

adaptation is generally not practical [49]. If VV codes are used to encode a source where

the bit probabilities are changing, the only alternative is to have a collection of various

VV codes on hand, and either swap between then on the fly, or use a bin coder, which

is a collection of coders of memoryless sources. Swapping tables on the fly is appealing,

but such a coder is not able to track changes on a bitwise basis. Once a table has been

selected it must be used to process all incoming bits until a codeword is generated. We

take the latter approach, creating a bin coder.

4.6 Bin Coding

The idea behind a bin coder is a simple one. We showed in section 2.3 that any source

can be modeled as an interleaving of any number of memoryless sources. The probability

modeler’s task is to sort the source into several memoryless sources such that each source

can be encoded with a code that is most optimal for that subsource’s entropy. A bin coder

is a collection of zero–order entropy coders, each coder being called a bin. Each bin is

designed to efficiently encode a memoryless source over a given probability range. All the

bins, taken collectively, cover the full range 0.5 ≤ p ≤ 1.0.
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A bin coder diagram is given in figure 4.14. During the coding process, when a

bit of input is read, the probability modeler determines which bin the bit should be placed

into. When a bin accumulates a sufficient number of input bits, it outputs a codeword.

These codewords are usually interleaved together into a single output stream.

Bin 0

...

Determine

Bit Probability

Read

Input

Bin 1

Bin 2

1010100001 0001101

Figure 4.14: Diagram of a simple bin coder.

4.6.1 Bin Output Interleaving

One area of concern when using a bin coder is the handling of bin outputs. Unlike a single

coder, in a bin coder each bin has its own output. How these outputs are handled has a

significant effect on the coder’s speed and performance. Usually it is desirable to have a

single output from a data compression process. This means that when using a bin coder

each bin’s output must be interleaved into a single output stream. Since the encoding

process is deterministic, the decoding process must also be, and this means that decoded

bits must come out of the bins in the same order that they were encoded. This necessitates

maintaining a strict bin priority ordering system where bins are given priorities based on

the order in which their bits appeared in the source. A bin with a larger priority number

is not allowed to place a codeword onto the output stream if a bin with a smaller priority

number has not yet done so. If a smaller priority bin has not done so it is because it has

not accumulated enough source bits to generate a codeword. In this circumstance extra

empty bits (“flush bits”) must be inserted into the bin to force an output. For a more

detailed description of the interleaving, prioritizing, and flushing process, see [35].
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This process of maintaining priorities and flushing bins does allow bin outputs

to be successfully interleaved into a single output stream, but it also adds overhead to

the encoding process, slowing it down and reducing the overall coding efficiency. If the

interleaving is done on a coarser scale, one other than a codeword–by–codeword basis, it

is possible to reduce the overhead but not eliminate it. Because of this overhead hurting

performance, bin coders are not often favored when compared to other methods.

This type of fine–grained, codeword–by–codeword interleaving is appropriate for

circumstances such as streaming live data over a single channel, or compressing an image

on a desktop PC. However, there are circumstances in which interleaving may not be

desirable. This might be the case when there is more than one output channel. Also,

practically, a single object does not have to be comprised of one thing2. It can be comprised

of many separate things, and as long as this is hidden from the user (or the user does not

care) this is perfectly acceptable.

In our case, that of high–performance computing, our greatest concern is getting

data encoded and written to disk as fast as possible so that the simulation can continue

execution with minimum delay. We can use the extreme case: bin outputs do not need

to be interleaved at all. This results in a total elimination of binning overhead and a

corresponding increase in compression speed and efficiency.

4.7 A Hybrid Bin Coder Utilizing VV Codes

4.7.1 Related Work

Our work is related to the State–Tree Code (STC) adaptive VV coding method proposed

by Stubley in [49], but differs in some respects. The STC’s codes are generated from a set

of parse trees with a specified number of leaves. The codes used are optimum—generated

through an exhaustive search—and the number of strings in the code is necessarily kept

small (8– and 16–leaf parse trees are used). Our codes are optimal within a limited search

space, generated via the merging process (thus our search is technically not “exhaustive”),

2An example is the “application” in MacOS X, where a single application is actually a directory structure
(navigable from the command line) containing code, resources, etc.
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and have a higher leaf count. We do not care how many leaves are in the parse tree, we

only concern ourselves with the longest code length. Also, the STC does not divide up

source bits according to probability, but only switches codes after parsing a binary string

from the source. As the STC is not a bin coder, it does not have to address interleaving.

Boliek et al [8] at Ricoh created a high–performance bin coder. Their imple-

mentation is geared towards hardware (their results are taken from an FPGA hardware

implementation) while ours is designed for implementation on a computer. They address

the interleaving problem by interleaving code streams in fixed–length blocks, meaning that

a particular codeword may be split between two blocks.

Kiely and Klimesh at JPL created an adaptable binary coder [29, 30] that also

uses bins. Their technique differs from our method (and others) in that only the bin

corresponding to 50% probability outputs a stream to storage. If the bins are ordered

q1 < q2 < q3 < . . . < qn, with qn = 0.50, as the bits of the input stream are divided

among the different bins and encoded, as each bin qi outputs a codeword, the bits of that

codeword are redistributed to other bins qj , i < j. The idea is that all bits work their way

down to the 50% bin and are output. As of this writing, this coder is seeing use as the

back end for the ICER wavelet coder [31], which is being used by the Spirit and Odyssey

Mars Rovers.

4.7.2 Selecting VV Codes

For this work we created a set of VV codes using greedy merging where the parse tree

string lengths and code lengths were kept in the range 7 ≤ W ≤ 15 and 7 ≤ C ≤ 13. We

created codes for 0.01 ≤ q ≤ 0.49 at a granularity of 0.01, and from them took the codes

that had the least inefficiency. The curve resulting from these codes is given in figure 4.15.

This figure shows that together the codes created in our work have an inefficiency well

below 0.5%, but that at about q = 0.04 the inefficiency goes above 1%. Our goal is to keep

inefficiency below 1%, so to encode bits that fall into 0 < q ≤ 0.04 an alternative coding

method is needed, and we choose Golomb coding. In this range the expected run lengths

are such that optimizations can be made to quickly encode runs of bits in a single block
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Figure 4.15: Inefficiency curve of the best merged VV codes.

and not bit–by–bit. We therefore propose a hybrid bin scheme: all bins below q = 0.04

use Golomb coding, and all others use VV codes.

We created two hybrid bin coders, one with with 22 bins and the other with

25. In each case the coder used 18 VV code bins, and the remaining were Golomb bins.

VV codes used were selected from those created in our study. These coders perform no

interleaving. A listing of the 22–bin coder details is given in table 4.1. The specifications

for the bins used in the 25–bin coder are not available, as they were lost in a disk crash

on an LLNL workstation that turned out to not be on the backup roster3. The process

of selecting codes for the bins is currently manual, and done by visually inspecting the

inefficiency curves and choosing codes that give us an inefficiency curve that falls below

the limit we desire.

3Always make sure your files are being backed up! Do it yourself if you have to.
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# Bin Type Code q W C

1 VV 0.49 7 7
2 VV 0.44 13 13
3 VV 0.38 13 12
4 VV 0.33 12 13
5 VV 0.32 12 12
6 VV 0.30 15 12
7 VV 0.27 13 12
8 VV 0.24 15 13
9 VV 0.20 15 13
10 VV 0.18 13 12
11 VV 0.16 15 10
12 VV 0.14 15 10
13 VV 0.10 11 10
14 VV 0.11 12 11
15 VV 0.01 7 7
16 VV 0.10 10 8
17 VV 0.05 11 9
18 VV 0.05 13 9
19 Golomb 0.04 – –
20 Golomb 0.03 – –
21 Golomb 0.005 – –
22 Golomb 0.002 – –

Table 4.1: Bins for the 22–bin coder.
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4.7.3 Results

We compared our bin coders to three other coders: the Augmented ELS–coder [59]4, the

Z–coder [9]5, and an arithmetic coder written by us. The ELS–coder does not appear

to have been designed with speed as a concern [60], but we include it because its coding

rate is state–of–the–art. In this work we are interested in measuring and comparing

the efficiencies of the coders themselves, not the efficiency of the probability estimation

techniques developed for these coders—we supply the bits and the probabilities to be used

to encode them. We therefore decoupled the the actual coders from their state tables and

from each state table created a lookup table so that, given a bit and a probability, the

coder could obtain the information it needed.

As we assume without loss of generality that the least probable bit is a 1, all our

results are given with respect to q, the probability of encountering a 1. We tested each

coder on nonstationary sources, where q varies bit–to–bit. To test for a nonstationary

source we created a block of 256 probabilities, given according to the following equation:

P (i) =
ix

2 × 256x
, 0 < i ≤ 256 (4.5)

where 1 < x ≤ 10.1 is a floating–point parameter that determines the probability distri-

bution, and i is an integer. Some sample probability curves are given in figure 4.16. The

resulting probabilities were converted to the form used by each coder. After a block was

generated it was permuted, and a 30 megabyte bitstream was generated by repeatedly

iterating through the block, generating one bit per entry based on the probability in that

entry.

Timings were taken on a 1–GHz Intel Pentium III computer running Red Hat

Linux. All execution times given are an average over 5 runs. Execution time for the bin

coder is a total of time to both bin and encode all the source bits. Results for the execution

times of the coders are given in figure 4.17. Time results for the 25–bin coder were similar

to the 22–bin one, and are not shown. The “Exponent” axis values indicate the parameter

4ftp://www.pegasustools.com/Osaugels.zip
5http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/djvu/djvulibre-3.5/libdjvu
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Figure 4.16: Some test probability distribution curves, computed according to equation
4.5. The number by each curve is x, and the bit position is i.

x, used to determine the bit distribution.

Figure 4.18 gives the coding inefficiency of each coder, as computed by equation

3.3. For more skewed probability distributions there is some experimental error, which

is particularly apparent with the arithmetic coder in the form of its negative inefficiency.

This is due to using an insufficient number of bits when taking the measurements at these

skewed probabilities.

A more informative picture of the results is figures 4.19 and 4.20, comparing the

ELS, Z, and Arithmetic coders respectively to the 22– and 25–bin hybrid coders. These

figures give a graph of each coder’s execution time versus its inefficiency. Smaller values

are better, so an ideal coder would be one that is close to the origin, having a small

inefficiency and fast execution time. In figure 4.20 we also show results for hybrid coders

using 15–bit maximum length–limited BV codes, instead of VV codes. These BV codes

are generated by the PM and Huffman algorithms, and are selected from the codes used

to generate figure 4.2. The PM bin coder has 26 bins total, and the Huffman bin coder

has 28, of which, respectively, 9 and 10 are Golomb code bins.
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4.8 Discussion

From figure 4.17 we see that the Bin Coder’s execution time is generally the same for all

tested bit distributions. This is a plus—assuming that the incoming bits’ probabilities

are reasonably modeled the execution time is consistent. The execution times of the

arithmetic, Z, and ELS coders vary as the bit distribution varies.

From figures 4.19 and 4.20 we see that the the addition of three more Golomb

bins has reduced the inefficiency dramatically while leaving the execution time relatively

unchanged. We also note from figure 4.18 that the 25–bin coder’s best–case inefficiency

has improved from 0.27% to 0.23%, when x = 1.1. This indicates that proper handling

of the extreme probability ranges is essential, even in cases where the percentage of bits

that fall into the extreme ranges is the same as those that fall into other ranges.

We think that a hybrid bin coder holds promise for high–performance computing

applications. The methods used in the bins (Golomb and VV coding) are fast, simple

mechanisms, and the indications are that on a common architecture its performance rivals

that of state–of–the–art coders.

4.9 Future Work

Bin and code selection in this study was by hand. It should be possible to automate this

process, allowing the user to set a number of parameters such as memory requirements,

number of bins, anticipated probability distribution, desired inefficiency level, etc., and

have the computer make the bin selections.

The bin coders in this study do not perform output interleaving. A study into

interleaving at fixed granularities (e.g. each bin must place n codewords at a time on the

output stream) should prove informative. Also, it may be possible to develop interleaving

techniques for varying granularities. As an example, if bin 1 outputs codewords five times

as often as bin 0 then it is inefficient to interleave outputs from both bins at the same,

fixed granularity. A system that requires bin 0 to place a single codeword on the output

stream, but requires bin 1 to place 5 codewords, would likely be much more efficient. Such
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a system could even be made dynamic.

We use a greedy heuristic to select which leaf on the parse tree is selected for

merging, and this works well. All other research into VV codes uses the extension method.

Assuming that extension and merging stop as soon as the longest codeword is equal to

some threshold, the parse trees created by each method will be different, and therefore the

coding rates will be different. We need to establish how the merging method performs in

comparison to the extension approach.
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Chapter 5

Lead–1 Encoding and Surface

Contouring

In section 4.2 we reviewed encoding via table lookup, and discussed the problem of table

size and ways of limiting it. Here we revisit the problem, and one solution, in the context

of extracting isosurfaces from time–varying volume data. This work was done by Benjamin

Gregorski and co–authored by myself. Project details appeared in [21], and some of the

material here, such as the tables, most of the figures, and the results, is taken from it.

Additional details are in [22]. Here we give the information related to the data compression

method that was implemented for the project. The description is simplified somewhat; for

complete details see the previously mentioned references.

5.1 Volumes and Isosurfaces

Three–dimensional volumetric data is often given as a three-dimensional grid (array),

where each point in the grid has one or more numerical values associated with it. These

values may be created by a process such as a numerical simulation, a scanning technique

(such as MRI), etc. One method used to see, or visualize, this numerical data is to extract

an isosurface from it. Given a value, called an isovalue, the cells of the 3D grid are scanned

and polygons drawn in each cell containing the isovalue. Isosurfaces for two different data
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Figure 5.1: Two example isosurfaces. On the left is a surface of the engine block, on the
right a surface of some Carbon “buckyball” molecules.

sets are given in figure 5.1.

5.2 Time–varying Data and Contouring

Given volumetric data that varies over time, we might want to extract a surface contour

from this data and display it, seeing how the surface changes over time. In this circum-

stance all of the data is not likely to fit into memory, and even if it does the amount of

data may make the data set unwieldy. In this case storing the data in compressed form

is desirable. The data can be read in compressed form (resulting in faster loading), de-

compressed, processed, and the resulting surface displayed. To minimize any detrimental

impact on the frame rate the data needs to be encoded using a method that allows for

extremely fast decoding. Like in section 4.2 we chose a table–lookup method over other

techniques, and again we ran into the problem of table size. Because of the amount of

data being processed the decoder must be both fast and very small—it should fit in cache

and not interfere with the other computations.

For data (such as time–varying data) that tends to vary smoothly a simple dif-

ference transform is often very effective in exposing redundancy for compression purposes.

For example, the sequence 1, 2, 3, 4, 5, 5, 4, 4, 3, 4 will not compress very well, but if
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we leave the 1 unchanged, and then for each sequence number i compute the difference

between it and the the number in the previous position i − 1 we have 1, 1, 1, 1, 1, 0, -1,

0, -1, 1. This sequence is a lot more redundant and will compress better. It is sometimes

possible to get a lower entropy, or at least pull the transform coefficients toward zero,

using double differencing: repeating the difference transform on the coefficients resulting

from the first difference transform. For the time–varying data this is the approach we

used, and the transform is stated formally in equation 5.2.

TC(i) = D(i) − D(i − 1), 0 < i < n. (5.1)

TL(i) =











TC(i) : i = 1

TC(i) − TC(i − 1) : 1 < i
(5.2)

D(i) is an original data value. The first data value at i = 0 is passed along unchanged.

Since the data is time–varying we transform the data in the temporal domain, rather than

the spatial. Each sequence of data values corresponds to the value of a single spatial loca-

tion. For a dataset of dimension 2563 with 274 time steps a difference transform histogram

is given in figure 5.2. From this we see that, although the range of the coefficient magni-

tudes has expanded, more of the coefficients are grouped around zero. The transformed

coefficients will compress better.

5.3 Lead–1 Encoding

Given a set of transform coefficients, the histogram indicates that the values are at or

clustered close to zero. If we examine the magnitudes of the coefficients (in binary), we

see something like this: 00000000, 00000000, 0000010, 0000001, 0000010, 0000011, etc. In

other words, because most of the coefficients are close to zero (or are zero) each coefficient

is a string of zeros followed by a 1, and then maybe a bit or two. In these coefficients

most of the redundancy is found in the position of the coefficient’s leading 1. Table 5.1

gives lead–1 counts for the data set from section 5.2, where 0 indicates a zero coefficient,

1 is the LSB, 2 is the next significant bit, etc. We see that after transformation most of
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Figure 5.2: Histogram of coefficient magnitudes in a 2563 volume with 274 time steps.
The vertical axis is on a logarithmic scale.

the leading–1 positions are zero, 1, and 2. As an example, in the coefficient 00000110 the

leading 000001 compresses rather well, but the following 10 does not. Lead–1 encoding

takes advantage of this observation, encoding for each coefficient the position of its leading

1, and passing all remaining bits (including the sign bit) on unchanged.

What effect does this have on the lookup tables? We saw earlier that when

using the Huffman (or a similar) algorithm the worst–case code length is the number of

input symbols N minus 1. For a 9–bit magnitude coefficient, there are 29 = 512 possible

coefficients. While we’re not likely to have a longest code length of 511 bits, it’s very

possible that a code length will be 16 bits or longer.

If we encode only the position of the leading 1, the number of symbols that need

to be encoded is 9, plus one for the zero coefficient. Thus the longest code length cannot

go over 9 bits, and the decoding table is limited to a maximum size of 29 = 512 entries.

Each entry in the decoding table only needs to give the position of the leading 1, and since

there are only 10 positions this information fits into a byte. The maximum possible size

for the decoding table is 512 bytes. The table will easily fit into cache memory and is not

likely to interfere with other computations and data.
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Lead–1 Untransformed Transformed

0 4743194 6093309314
1 9297339 1075445689
2 61897415 1453200739
3 4119536406 1010756643
4 408098714 880931513
5 282209288 704350384
6 412069938 479577928
7 2753591178 251551499
8 3977820400 78543126
9 0 1597037

Table 5.1: Lead–1 position counts for a 2563 × 274 dataset.

5.4 Results

The data for the tests consisted of a 2563 volume with 274 timesteps, and came from the

Richtmeyer–Meshkov instability dataset from Lawrence Livermore National Laboratory

[33]. Each point in the volumetric data has a numerical value and a gradient vector. The

raw data was 12.844 gigabytes in total size, or about 48 megabytes per time step. The

data compressed to a 54% of original size.

To test the process of extracting isosurfaces from compressed time–varying vol-

ume data two versions, one using compressed and one using uncompressed volumes, were

implemented. The test system was a 2 GHz Pentium 4 with 1 GB of main memory and

GeForce Ti 4600 graphics card.

To measure Disk I/O the tests were run so that the amount of data loaded from

disk was roughly the same, whether using compressed or uncompressed volumes. Tests

were performed loading data in quantities equivalent to 10, 15, and 20 uncompressed

timesteps. Figure 5.3 shows the total number of memory page faults over time when

loading compressed and uncompressed data. As expected, when using compressed volumes

there is less data read from disk at one time and the frequency of disk reads is less.

Figure 5.4 compares the actual frame rate when using compressed vs. uncom-

pressed volumes. We see that during the initial frames of the animation the system using

compressed data is faster, but the two systems very rapidly approach the same frame rate.
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Figure 5.3: Page faults, in disk read sizes of (left to right) 10, 15, and 20 uncompressed
time steps.
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Figure 5.4: Frame rate, in disk read sizes of (left to right) 10, 15, and 20 uncompressed
time steps.
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Although Lead–1 encoding is a fast process, it appears that in this case that the cost of

decompressing the volume data results in a zero net gain over using uncompressed data.

This lack of performance increase when using compressed volumes is unfortunate, but

Lead–1 encoding still gives us a win in terms of resource use. We achieve an essentially

identical frame rate while using significantly lower disk space. Also, if storage is remote

as opposed to local (these tests were done with local storage) it is possible that the frame

rate for compressed volumes would be higher, due to the lower latency of the disk reads.

5.5 Conclusion

Our use of Lead–1 encoding is an example of some of the trade–offs that exist, and decisions

that need to be made when developing a data compression system. Lead–1 encoding,

while not a state–of–the–art method in terms of compression efficiency, has the advantage

of generating small (indeed, tiny) lookup tables and is a simple, fast method. If speed is

of prime importance, Lead–1 encoding provides a fast, compact method that can deliver

a reasonable compression rate.
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Part II

Data Transformation
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Chapter 6

Wavelets

6.1 Introduction

As mentioned in chapter 1, when some data is to be compressed a transformation is

often performed on the data prior to its being encoded. The transformation decorrelates

the data, which makes it easier to compress. A transform now very common in data

compression (and other fields) is the wavelet transform. There are many different types

of wavelets, most of which will not be reviewed here. Here we review the basic principles

behind a wavelet transform.

So what exactly is a wavelet transform? The underlying principle of a wavelet

transform is that a signal can be described as the sum of translations and scalings of a

waveform. The actual waveform (or “wavelet”) used to facilitate the signal decomposition

is what differentiates the various wavelet transforms. During a signal decomposition, the

wavelet transform separates the signal into a hierarchical set of subbands, with the data

organized in order of increasing significance. Given a signal, each step in the decomposition

creates (1) an coarse–level approximation or “average” of the original signal, and (2) a

set of detail coefficients that, together with the coarse–level approximation, can be used

to reconstruct the original signal. There are quotes around the word average because the

coarse level approximation is, in most cases, not a strict average.
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6.2 The Haar Wavelet Transform

The Haar Wavelet Transform (see [20] for a description) is probably the simplest of the

wavelet transforms, and is illustrated in figure 6.1. Given a signal, such as an image, the

Haar transform takes a pair of adjacent data values (A, B). From them it computes two

values: a High–Pass value H, and a Low–Pass value L. These are computed according to

equations 6.1 and 6.2. L is the aforementioned approximation, or “average” of A and B.

H is the detail coefficient—it contains the detail information that was removed to create

the coarser approximation L. Naturally, the closer A and B are to each other in value the

closer H will be to zero, and the closer L will be to both A and B.

L =
A + B√

2
(6.1)

H =
B − A√

2
(6.2)

After all input pairs are processed the result is an approximation of the original

data (all the L coefficients) and the details that were removed in creating the approxima-

tion (all the H coefficients). The transform can then be repeated on the L values. For

a multidimensional signal (such as an image) the transform can be performed once along

the rows direction, and then once along the columns direction (the Haar decomposition of

an actual image is illustrated in figure 6.2). The process then repeats on the LL values.

6.3 Advantages of Wavelets

So, what does the Haar (or any wavelet transform) give us? The first benefit of a wavelet

decomposition is data decorrelation. Many kinds of data tend to be rather smooth, or

change gradually. That is, for any two adjacent data values the difference between them

is likely to be small. Some examples of data like this are photographs, hourly tide mea-

surements, temperature readings, etc. Because of this property, after transformation the

H coefficients tend to be at or near zero.
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Figure 6.1: Haar Wavelet Decomposition.
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Figure 6.2: Haar Wavelet decomposition of an image. Images are from the 1996 SIG-
GRAPH course “Wavelets in Computer Graphics”, edited by Wim Sweldens and Peter
Schröder.
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Figure 6.3: Histogram of Lena image (top), and histogram of transform coefficients after
image decomposition by a wavelet transform.
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Figure 6.3 shows a histogram of a grayscale photograph before and after a wavelet

transform. We see that before the transform the histogram is fairly wide and spread out.

This is not good: the more different data values there are the worse the data will compress.

After the transform we see that all of the coefficients are grouped around 0, with most of

the coefficients being at or near zero. This is good: the high level of redundancy in the

coefficients will allow them to be compressed more. An entropy measurement of the data

before and after transformation will indicate that the transform coefficients will compress

much better.

One of the most useful characteristics of a wavelet transform is the fact that it

provides us with a representation of the data broken down into levels of increasing detail

and decreasing significance. Again referring to figure 6.1, the lowest level subbands (i.e.

the LL, LH, and HL regions produced earlier in the decomposition) contain data that

is least important to the image, and the higher–level subbands contain information that

is more important. A change at a higher level subband will propagate to more of the

reconstructed image and therefore have a larger effect. A change at a lower–level subband

will have less of an impact on the overall image.

This level–of–detail representation has some advantageous properties. The first

thing to notice is that fully three-fourths of the wavelet coefficients are at the lowest

(i.e. least–significant) level of detail. Lossy coding techniques can take advantage of this:

the entropy of the coefficients can be reduced by quantization or thresholding without

adversely affecting the quality of the reconstructed image. Quantization is the process

of breaking up a continuous range into nonoverlapping subranges, such that all values vi

that lie in the subrange map to a specific value v′, also in the subrange. So for example

we might specify that all coefficients vi that lie in the range 40 ≤ |vi| ≤ 50 be set to

42. A common, simple way for quantizing is to zero the lower n bits of each coefficient.

Thresholding is the process of zeroing each coefficient whose absolute value is less than or

equal to some threshold T .

This level–of–detail representation also allows for the creation of data compres-

sion methods, such as Zerotree encoders [34, 26, 38, 46], that use wavelets to encode data
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such that the most important parts are encoded first, and the remainder of the data is

encoded in order of decreasing importance. During decoding (or transmission) the process

may be terminated at any point, and the reconstructed data is guaranteed to be the best

possible given the amount of data transmitted.

A wavelet transform may also be used for automatic generation of mipmap im-

ages. A mipmap (see [56] for an explanation) is a representation of an image at increasingly

coarse levels of detail. These images are typically precomputed, that is, the various images

(one at each level of detail) are created in advance by progressive coarse filtering. Mipmaps

are used in computer graphics as an antialiasing technique when rendering textures. When

rendering a textured object that is “far away” a texture image from the mipmap’s coarse

level of detail is used. As the object comes closer to the viewer, increasingly finer images

from the mipmap are used for texturing.

To use a wavelet transform for generating a mipmap, a detailed, base image

can be decomposed, and the coefficients stored in memory, in compressed form if desired.

Initially the coarse image is used, but if a more detailed image is needed the next subband

may be decompressed and the inverse transform performed on one level.

6.4 Dynamic Range Expansion

One difficulty encountered when using wavelet transforms is Dynamic Range Expansion,

or DRE (for a discussion of dynamic range expansion and its effects see [31]). Practically

speaking, dynamic range expansion means that if the inputs to a wavelet transform are

n bits wide, the transform coefficients will require at least n + 1 bits to represent. This

extra bit presents some problems. If the transform is being performed in hardware (such

as a video frame buffer) that has a channel width limited to n bits, some data loss will

result due to forced truncation of the coefficients. If custom hardware implementing the

transform is to be designed and built, circuitry for handling the extra bit adds complexity

and cost to the design. If the transform is implemented on a modern computer there is

a potential for inefficient use of resources. Computers allocate storage in 8–bit bytes. If

the inputs to a transform are 8 bits, the 9–bit outputs will each require 16 bits of storage.
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This is potentially detrimental in an embedded computing environment.

What causes DRE? Taking the Haar transform as an example, if we assume that

we have data values that require a minimum of n bits each to store and if we plot the

domain of all possible transform inputs (A, B) we see from figure 6.4 that the domain is a

square, centered at the origin, with an edge length of 2n. If we plot the range of all points

(L, H), given the domain, we see that the range is simply the domain, rotated 45–degrees

about the origin. From figure 6.4 we see the cause of DRE: since the domain is a square,

after rotation the corners lie outside the original domain area. The range, as measured

along the axes, is larger than the domain. These values that lie towards the corners of the

range require n + 1 bits of storage.

A

B H

L

Haar Domain Haar Range

Figure 6.4: Dynamic Range Expansion in the Haar transform.

The Haar transform, although illustrative of what causes DRE, is not the best

example because it always produces real–valued coefficients. Real–valued coefficients can

be scaled, and so DRE is not really a problem here. However, DRE is a problem when

one desires an integer–to–integer transform.

If the normalization by
√

2 is removed from equations 6.1 and 6.2 we have the

non–normalized Haar transform of equations 6.3 and 6.4. The non–normalized Haar trans-

form is a real–to–real or integer–to–integer transform.
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L = A + B (6.3)

H = B − A (6.4)

If we plot the domain and range of the non–normalized Haar transform (see figure

6.5) we see that, like the Haar, it is a 45–degree rotation about the origin, but the distance

between the points is expanded by a factor of
√

2, as expected. The range of the low– and

high–pass values, as measured along the axes, is now twice that of the domain. In the

case of the integer–to–integer non–normalized Haar transform it seems that we are stuck:

DRE cannot be completely removed without producing real–valued coefficients.

Non−Normalized

Haar

Domain

L

H

B

Non−Normalized Haar Range

A

Figure 6.5: The non–normalized Haar transform.

6.5 Removing DRE: The S–Transform

Looking again at figure 6.5, we see that not all integer positions lying within the non-

normalized Haar range are occupied. In fact, the number of occupied positions in the

range is equal to that of the domain. The range is just spread out over a larger area.

The S–Transform [24] is an integer–to–integer transform closely related to the Haar that

eliminates DRE in the low–pass coefficients by taking advantage of the extra space in the

non–normalized Haar range.
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S−Transform Range

Figure 6.6: Eliminating low–pass dynamic range expansion by “squashing”.

The S–transform is conceptually a two–step process, as illustrated in figure 6.6.

First, each pair of inputs (A, B) is transformed via the non–normalized Haar transform.

Second, the range is “squashed” in the low–pass direction, eliminating the space between

the points. This transform is accomplished via equations 6.5 and 6.6. Note that for any

pair of inputs to the non–normalized Haar transform, H and L have the same least–

significant bit (LSB). Because of this the low–pass values can be squashed without loss of

information (the LSB needed to completely reconstruct the “unsquashed” L can be taken

from H).

L =

⌊

A + B

2

⌋

(6.5)

H = B − A (6.6)

The S–Transform has seen a lot of use because it is easy to implement and

extremely fast. Unfortunately, the S–Transform produces high–pass coefficients with an

expanded range. Eliminating DRE in the low–pass values is desirable because the low–

pass range will be the same at each iteration of the transforms, and so at each stage of

the wavelet decomposition the high–pass coefficients, although expanded, will all fall into

the same range. However, the high–pass coefficients are of greater interest, as these are

what remains when the transform terminates. It would be nice to eliminate DRE in both

the low– and high–pass coefficients.
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Chapter 7

N–bit to N–bit Transforms

7.1 More on Dynamic Range Expansion

An n–bit to n–bit transform is one that has no dynamic range expansion. If the data values

used as transform inputs are n–bits wide, the resulting coefficient outputs are also n–bits

wide. Be careful not to confuse “n–bit to n–bit” with “integer–to–integer”. As shown

in section 6.5 a transform may be integer–to–integer and have dynamic range expansion;

indeed, this is usually the case.

Dynamic range expansion (DRE) presents some hurdles when performing a trans-

form. The first is that DRE may require a transformation to use twice as much memory as

the data being transformed. For example, if an 8–bit grayscale photograph is transformed

using the S–transform, the 9–bit coefficients will require 16 bits each to store, since modern

computers allocate storage in 8–bit bytes. A raw image requiring 10242 bytes of storage

will generate coefficients requiring 2 × 10242 bytes.

It is also possible that the data being transformed must be sent over an n–bit

channel. If the channel is n bits wide, and the transformed data n + 1 bits wide, we

have to determine what to do with the extra bit. It can be truncated, but that results

in automatic data loss. This may well be undesirable, especially in circumstances such as

medical imaging. The transform coefficients can be bit–packed together, and the packed

stream can be sent in 8–bit pieces. This works, but is a slow process. It would be best if
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we didn’t have that bit to worry about in the first place.

Recall from section 1.2 that our interest in n–bit to n–bit transforms is motivated

by the need to transform an image in graphics hardware and send the coefficients over a

DVI channel [23], which is 8–bit. Thus for best performance we need an n–bit to n–bit

transform.

7.1.1 Can Dynamic Range Expansion be Eliminated?

It would be nice if DRE could be completely eliminated. This would allow a transform

to be performed more compactly and quickly, and simplify the process of working with a

transform in hardware. Can DRE be removed?

The answer at first glance is yes. If we reexamine the diagrams of the Haar and

non–normalized Haar transforms, we see that the number of points in the domain is equal

to the number of points in the range; their arrangement in the range differs only by a

rotation and possible expansion. Thus, if a new arrangement of the range points can be

found such that (1) the arrangement fits into the exact same area as the domain and (2)

the new arrangement results in the desired transform properties (e.g. data decorrelation)

then we will have created a transform without DRE. As such, an n–bit to n–bit transform

makes the range a permutation of the domain. How this permutation is done differentiates

the different n–bit to n–bit transforms.

7.1.2 Review: The Method of Chao, Fisher, and Hua

To our knowledge, prior to our work in this area there was only one published method on

an n–bit to n–bit transform. This was the method first released by Chao and Fisher in a

preprint [12], and later published by Chao, Fisher, and Hua [13] (although we note that

Swanson and Tewfik [51] presented a wavelet decomposition for binary bilevel images that

has no dynamic range expansion). The preprint identifies this method as being suitable for

lossy and lossless coding, the final published version states it is suitable for lossless coding

only (the final version is correct, as will be shown later). The method of Chao, Fisher, and

Hua (CFH) takes advantage of modular arithmetic to eliminate dynamic range expansion.
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Given a bit width n, the range of representable signed values is [−2n−1, 2n−1 − 1]. Given

inputs A and B the CFH transform is computed as in equations 7.1 and 7.2:

H = (B − A) mod 2n (7.1)

L =

(⌊

H

2

⌋

+ A

)

mod 2n (7.2)

where we use the standard convention that −x mod 2n = 2n − x for 0 < x < 2n.

The CFH method has an aliasing problem that causes undesirable behavior when

the difference between A and B overflows and wraps around, causing H to have a sign

opposite the expected. CFH is unable to distinguish large positive numbers from small

negative ones (and vice–versa) because they have the same binary representation. For

example, if n = 8, the range is [-128,127]. If A = −1 and B = 127, the CFH method

computes H = −128, which is nowhere near the difference between A and B. The L value

is generally considered to be an “average” of A and B, but because of H being far from

the expected value, L is computed as −65, which is also far from its expected value. If

the wavelet coefficients are kept lossless then this aliasing does not cause any problems

and the original image can be reconstructed. However, if a lossy method is used to encode

the coefficients then severe artifacts may appear in the reconstruction. Many continuous–

tone images do not have adjacent pixel pairs with differences wide enough to cause this

behavior, so in practice CFH works well for a wide range of images, reconstructed both

with and without loss. However, this aliasing problem is a fundamental weakness in the

method, and means that the CFH transform is not continuous.

The lookup tables for the CFH transform are given in figure 7.1. The origin of

each table is its center, with the A and L–axes being horizontal. An examination of these

lookup tables shows the aliasing problem: it creates discontinuities, as evidenced by the

abrupt transitions. Examining the inverse transform table, should a coefficient pair (L, H)

fall into one of the four discontinuous regions, quantization or thresholding of H may pull

the point across the discontinuity. Then upon reconstruction the resulting (A, B) pair

will have a value much different than expected. This can result in artifacts that ruin a

reconstruction. This is more clearly illustrated in figure 7.2, and an actual example is given
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Figure 7.1: CFH transform lookup tables. The forward transform is on the left, and the
inverse is on the right.

(L,H)

(L’,H’)

H

L

Figure 7.2: A diagram of the inverse CFH transform table, showing the axes and discon-
tinuities. If a point (L, H) is located near one of the discontinuities, a process such as
quantization will pull (L, H) across the discontinuity to a new point (L′, H ′). Artifacts
will result upon reconstruction.
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in figure 7.3, where the Wedding photo has been thresholded to an equivalent entropy of

one bit per pixel. The artifacts are obvious.

Figure 7.3: The Wedding photo, transformed by CFH and thresholded to an equivalent
entropy of one bit per pixel.

7.2 Transform Evaluation

To evaluate a data transform’s suitability it helps to have a set of metrics that can be

used. These metrics, given data and a reconstruction of that data, produce a number

indicating how close the reconstructed data is, or how faithful the reconstruction is, to

the original. As with anything of this nature the weaknesses of these metrics need to

be understood, and their results interpreted in light of those weaknesses and the uses to

which the transforms will be put. In the data compression literature the metric typically

used is the Peak Signal–to–Noise Ratio.

7.2.1 Peak Signal–to–Noise Ratio

A signal reconstruction is composed of original data (signal) and noise (errors, quantization

artifacts, etc.). The Peak Signal–to–Noise Ratio (or PSNR), as its name implies, is a

measure of the amount of signal present in a reconstruction vs the amount of noise present.
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The PSNR metric presumes that that a higher amount of signal indicates a better, or

perhaps a more faithful, reconstruction.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(vi − v′i)
2 (7.3)

PSNR = 20 × log

(

255

RMSE

)

(7.4)

Equation 7.3 is the equation for the root mean square error (RMSE) of the

reconstructed image. In this equation vi indicates the original value of a pixel and v′i is

the reconstructed value. RMSE computes a value indicating how far the value of each

reconstructed pixel deviates from the value of the original. Note that this definition of

RMSE is almost identical to the definition of standard deviation used in statistics and

error analysis.

From the RMSE we can define the PSNR as in equation 7.4. The value of the

numerator of the fraction in this equation is set to be the largest possible value that can

occur in the data being examined. In our case, since we use 8–bit grayscale images for

testing, we set the numerator to 255. In the worst case, 100% deviation in the reconstructed

image, the RMSE will be computed as the maximum possible value 255. In this case then

the PSNR will be zero. In the best case of no deviation (i.e. the reconstructed image is

identical to the original) the RMSE will be zero, and the PSNR will be infinite.

A higher PSNR indicates a reconstructed image whose average is closest to the

average of the original image. It is generally accepted that a higher PSNR means a better–

quality reconstruction. This is typically the case, but figure 7.4 gives one example of the

dangers in relying on computed metrics for determining image quality. Reconstruction 1

has a PSNR of 12.01, and Reconstruction 2 a PSNR of 12.21. Although the PSNR indicates

that in terms of preserving the original image the two reconstructions are essentially the

same (with Reconstruction 2 being slightly favored), it should be obvious that for an

observer Reconstruction 2 is a much better reconstruction.

The weakness of the PSNR metric is that it favors reconstructions that are closest

to the average of the original image. A reconstruction that preserves few details but lies
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Original Image Reconstruction 1, 12.01 Reconstruction 2, 12.21

Figure 7.4: One of the dangers of relying on computed metrics to determine image quality.
The PSNRs of both reconstructions are almost identical, but Reconstruction 2 is obviously
a much better reconstruction.

close to the average of the original data will have a PSNR that is comparable to, or better

than, a reconstruction that preserves details but lies far from the average.

7.2.2 L∞ Error

The L∞ error is defined by equation 7.5, and is a measure of the maximum distance

that any reconstructed pixel value is from its original value. This measure is useful for

determining how effective a transform is at keeping actual pixels close to their original

value. With a metric like PSNR it is possible to have a reasonably good value when

the reconstructed image has some artifacts or errors present. With the L∞ metric any

artifact that severely alters the value of a pixel will result in a high error value overall.

The obvious weakness in this metric is that if a reconstruction contains a single large error

in one pixel—even if the rest of the image contains little or no error—the L∞ error value

is high.

L∞ = ∀i : max(|pi − p′i|) (7.5)

7.2.3 Images

Although data transforms are applicable to a wide variety of data types we use images

to illustrate our transforms and study their effectiveness, as with images the results are
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more obvious to most observers. This requires a collection of images on which to test.

The sources for the images are listed in the Acknowledgements section at the beginning of

this work. A description of the image categories is given here, and some examples of the

categories are in figure 7.5. BW Lines: Some small images containing black and white

lines. LineArt: Line art images. These have hard edges, lines, regions of solid color,

gradient fills, etc. ObjectBank: Some simple computer–generated images. MRI: MRI

images of a person’s upper spine/neck. These are padded to 2562 resolution. ccitt: Some

standard FAX test images. DB1 B: Fingerprint images. DB2 B: Same images as DB1 B,

but enhanced and with altered dimensions. Photos: Photos, including standard tests

images (e.g. Lena, Mandrill), ISO images (Woman, Bike), and some personal photographs

(e.g. Wedding). r2 slices: Some random image slices from the LLNL PPM dataset.
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Figure 7.5: Test images. From top, left to right: MRI, Fingerprint, ObjectBank, Photos,
LineArt, CCITT.
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Chapter 8

Table–Lookup Haar

Our first contribution to the field of n–bit to n–bit transforms is the Table–Lookup Haar

method (TLHaar) [41, 42]. TLHaar is a transform that uses table lookups to perform its

transform. It is extremely fast and produces coefficients that compress well. However, the

TLHaar transform is very discontinuous and is in many ways inferior to the CFH trans-

form (TLHaar was developed before we were aware of the CFH method). Nevertheless,

the development of TLHaar was a useful and beneficial process, during which much was

learned.

We saw in section 7.1.1 that an n–bit to n–bit transform has a range that is

simply a permutation of the domain. TLHaar [41] is an integer–to–integer transform

that, given a bit width n, uses a pair of procedurally–created square two–dimensional

lookup tables (each with an edge dimension of 2n). One table, AB2LH, is a mapping

(A, B) → (L, H) for the forward transform, and the table for the inverse, LH2AB, is a

mapping (L, H) → (A, B). Each table is initialized with an identity transform, and then

the rows and columns of the inverse transform table are sorted so that for any given two

pairs of inputs their high– and low–pass values will have the same magnitude relationships

as those in Haar. When a swap occurs in the inverse transform table, the corresponding

entries in the forward transform table are also swapped. Because the tables are initialized

with an identity transform no table entry will have a value outside the transform domain.

Thus dynamic range expansion cannot occur.
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8.1 Transform LUTs

In order for the transform to be reversible there must be a 1:1 mapping between the

domain and range. We therefore initialize each table with an identity transform prior to

sorting, as this is the simplest 1:1 mapping. Given two pairs of inputs (Ai, Bi), (Aj , Bj),

the sort of the inverse transform table obtains the following two properties:

∀L̃ : |Hi| ≤ |Hj | ⇐⇒ H̃i ≤ H̃j (8.1)

∀H̃ : Li ≤ Lj ⇐⇒ L̃i ≤ L̃j (8.2)

where H indicates a Haar high–pass coefficient, and H̃ indicates a TLHaar coefficient.

The pseudocode for this procedure is the following:

do {

For each L Column in LH2AB

Sort based on |(B − A)|

For each H Row in LH2AB

Sort based on (A + B)

} while (there was a swap)

During the sort process whenever a swap occurs in HL2AB the corresponding entries in

AB2HL are also swapped.

Figure 8.1 shows the lookup tables for the case when n = 8. We see that the

desired properties are obtained. The closer A and B are in value the closer L is to their

average, as evidenced by the smooth transition from 0 to 255 along the diagonal of the

AB → L table. Likewise, the closer A and B are in value the closer H is to zero, as

evidenced by the black band along the diagonal of AB → H.

Figure 8.2 shows the LH2AB LUT for n = 3, with a column and row breakout

for a particular table entry. Note how all column entries satisfy property 8.1 and all row

entries satisfy property 8.2. Also, from figure 8.3 we see that this transform results in data

decorrelation and is suitable for use in a data compression system.
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AB → H AB → L

LH → A LH → B

Figure 8.1: Forward and inverse transforms resulting from the sort. A and L are on the
horizontal axes, and B and H on the vertical. The origin (0, 0) is the lower–left corner of
each table. Black indicates a value of 0, and white a value of 255.
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Figure 8.2: LH2AB LUT for n = 3, showing a column and row breakout. Entries are
(A, B).
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Figure 8.3: Histogram of the “Lena” image, before and after transformation.
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Figure 8.4: TLHaar’s discontinuities, and their effects. The Mandrill reconstruction is
after quantization to 6 bits.

It was not clear beforehand that this sort would converge. At this time we do

not have a general proof that the sort will always converge, however we tested this process

of creating tables for values 2 ≤ n ≤ 12, and our tests indicate that in all cases the sort

converges. We are unable to test further since when n > 12 the tables become so large

they are impractical. For n = 13 a single LUT will contain over 67 million entries and be

256 megabytes in size.

8.1.1 Discontinuities

TLHaar is a discontinuous transform, and is therefore only suited for lossless coding.

The left of figure 8.4 shows a close–up of the LH → A inverse transform table. The

discontinuities are obvious and plentiful, and indicate that even a small quantization can

result in a reconstructed value very different from the original. This results in severe

artifacts, that usually ruin the image. For an example, the right side of figure 8.4 shows

the Mandrill image reconstructed after quantization to 6 bits.
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8.2 Sorted LUTs Are not Unique

In section 8.1 we demonstrated the method used for creating the TLHaar LUTs, using a

sort on an identity transform. If the LUTs are initialized with a 1:1 mapping different from

our original method, will the sort still result in the same transform LUTs? The answer to

this question is no, implying that LUTs satisfying relationships 8.1 and 8.2 are not unique.

As a test we permuted one of the initialized LUTs before sorting, by randomly swapping

entries. The corresponding entries in the other LUT were also swapped, maintaining a 1:1

mapping. We then performed our sort on the permuted tables. The resulting transform

tables were different from those of our original method. By varying the number of swaps

and the seed to the pseudorandom number generator we produced tables that were similar

to each other, but not identical.

8.3 TLHaar Implementation Optimizations

Because TLHaar operates on and produces n–bit data, when n is both a power of 2 and an

integer size common in modern computer architectures (8–bit byte, 16–bit short integer,

etc.) it is possible to store the low–pass and high–pass values in arrays of that integer type.

This allows us to implement and take better advantage of some special optimizations. Here

we describe optimizations made for an implementation that operates on 8–bit images.

We first altered how we perform table lookups in a row transform. Since input

values A and B are adjacent in memory, instead of reading A and B separately and

indexing the AB2HL LUT with both (i.e. HL = AB2HL[A][B]) we cast the input array

of bytes into an array of 16–bit short integers, and read A and B together as a single

short AB. This allows us to perform a complete table lookup using fewer operations:

HL = AB2HL[AB].

We would like to use the above optimization when performing a transform in

the column direction. The standard row transform operates on an image one row at a

time, writing out the resulting low–pass values such that they are contiguous in the row

direction. Thus a given image column is not contiguous in memory. To solve this when
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AB → H AB → L

LH → A LH → B

Figure 8.5: Transform tables resulting from a randomized initialization.



90

performing a row transform we transform two rows at a time. Given the k-th pair of pixels

from rows i and i + 1 we transform AiBi and Ai+1Bi+1, and place Li and Li+1 adjacent

to each other in preparation for the column transform. The column transform can then

proceed down columns in image space, but along adjacent memory locations. The idea

behind the optimization is shown in figure 8.6. The right side shows the low–pass values

ordered in memory.

AB2HL

AB2HL

i

i+1

AB2HL

AB2HL
i

i+1

Ai Bi

Ai+1 Bi+1 Ai+1 Bi+1

Ai Bi

Li Li+1

Ai Bi Ai Bi

Ai+1 Bi+1 Ai+1 Bi+1

Li Li+1

Li Li+1Li Li+1

Figure 8.6: TLHaar row transform data reordering optimization. The top shows the
normal transform procedure, and the bottom the reordering procedure.

8.4 Results

8.4.1 Execution Time

To compare execution times we implemented procedures to perform the S–transform and

TLHaar transforms on 8–bit grayscale images, and optimized each separately. We also

implemented versions of TLHaar and the S–transform that perform data reordering and

operate on square images with edge lengths that are a power of 2. Timings were taken on

a 550 MHz PowerBook G4 running MacOS 10.1.5. The time given is an average over 10

transform runs, where a run transforms all images in a particular category, and includes

only the time taken to transform the image. Execution times are given in table 8.1.

8.4.2 Compressibility of Coefficients

As our main interest in developing TLHaar was to create a fixed–width transform we are

not greatly concerned about how efficiently TLHaar’s coefficients compress compared to
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Transform Time (sec)

Category TLHaar S–transform % Gain

BW Lines 0.06368 0.06540 2.63
LineArt 0.15289 0.27621 44.65

ObjectBank 0.90947 1.08220 15.96
MRI 0.45442 0.55188 17.66

MRI (reord) 0.38121 0.51650 26.19
ccitt 1.31669 1.96779 33.09

DB1 B 0.25860 0.36670 29.48
DB2 B 0.31501 0.35577 11.46
Photos 1.02017 1.34319 24.05
r2 slices 0.31479 0.39773 20.85
Power2 0.23322 0.31506 25.98

Power2 (reord) 0.20557 0.29665 30.70

Table 8.1: Test image categories and transformation times. (reord) indicates execution
time using the reordering method of section 8.3.

the S–transform. If the resulting compression ratio of TLHaar coefficients is within a

percent or two of the rate obtained by the S–transform, we are content. To get a feel

for how coefficients generated by TLHaar compress compared to those produced by the

S–transform we transformed the test images and then compressed the results using three

freely available compression programs: gzip1, bzip2, and an arithmetic coder available

from Alistair Moffat3. We used binary and byte arithmetic encoding.

To gauge the effect of sign bits on the compressibility of S–transform coefficients

we compressed them in two ways. In the first method the coefficient magnitudes were

written as a stream of bytes and compressed, and the sign bit for each nonzero magnitude

was appended uncompressed. In the second method coefficient magnitudes were written

as a stream of bytes, and then a binary stream consisting of the sign bits of all nonzero

magnitudes was appended. The combined stream was then compressed.

Due to lack of space we present in table 8.2 results only for the former method,

as it presents the S–transform more favorably and the comparison to TLHaar is more fair.

Generally when the latter method is used, the S–transform coefficients do not compress

nearly as much as the TLHaar coefficients. With byte arithmetic coding the TLHaar

1http://www.gzip.org
2http://sources.redhat.com/bzip2/
3http://www.cs.mu.oz.au/~alistair/arith_coder/
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coefficients always compress to a smaller size. Some example results in this case are

TLHaar being 4.45% better in the Photos category and 7.23% better in the MRI category.

Image TLHaar S–transform % Gain TLHaar S–transform % Gain

gzip bzip

BW Lines 360972 466731 22.66 391737 500173 21.68
LineArt 419235 528964 20.74 445387 515182 13.55

ObjectBank 3131056 3341803 6.31 3115625 3258474 4.38
MRI 5477859 5381934 -1.78 5281869 5190000 -1.77
ccitt 1157989 1557889 25.67 1013614 1454085 30.29

DB1 B 5016509 5086675 1.38 4973728 4853424 -2.48
DB2 B 5820744 6165921 5.60 6175512 6353409 2.80
Photos 15029496 14912472 -0.78 14963474 14651157 -2.13
r2 slices 777975 801756 2.97 785564 783836 -0.22

Binary Arithmetic Byte Arithmetic

BW Lines 391472 494289 20.80 377422 496202 23.94
LineArt 509478 627262 18.78 535573 677915 21.00

ObjectBank 3290576 3474223 5.29 3620160 3771556 4.01
MRI 5691930 5627898 -1.14 5408487 5407783 -0.013
ccitt 1199500 1652339 27.41 1288297 1969556 34.59

DB1 B 5673653 5346789 -6.11 4796648 4703212 -1.99
DB2 B 6415074 6803730 5.71 5679509 5946472 4.49
Photos 15234370 14873308 -2.43 14285797 14090810 -1.38
r2 slices 828160 850696 2.65 823509 834297 1.29

Table 8.2: Compressed category sizes (in bytes).

Results for TLHaar in table 8.2 are when using unpermuted tables, as described

in section 8.1. Currently it seems that while randomly permuted and sorted tables may

give better performance for continuous-tone images (photographs), they are horrible when

it comes to things that have a lot of contrast, lines, hard edges, etc. In general, starting

with an identity transform and then sorting seems to offer the best all-around performance.

We do not include the size of the transform LUTs in the TLHaar coefficient sizes.

The tables are a static part of the transform process and are therefore known ahead of

time, so in a coding application the tables do not need to be sent as part of the encoded

data.
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8.5 Conclusions and Possible Extensions

The development of TLHaar was very fruitful, in that it led to the development of the

PLHaar transform, which will be reviewed next. However, TLHaar’s shortcomings may

mean that it will not be suitable for actual use. In particular, TLHaar must be used

with a lossless coding system, and if lossless coding is required then the CFH transform

is probably more suitable. Both CFH and TLHaar require the same amount of space for

lookup tables, but CFH can be performed by direct computation as well, so it is more

versatile. Also, its performance with continuous–tone images is likely to be at least as

good as, if not better than, TLHaar (see figure 9.5 for example). Finally, when using a

lossless coding method, should data corruption occur CFH is more tolerant of errors than

TLHaar.

There is one avenue of future research that may prove worthwhile. Up to this

point, we have created TLHaar tables using the sort method described in section 8.1, in

order to mimic the Haar transform. Tests have shown that a given set of data only touches

part of the tables during the transform process (see figure 8.7). So we have the question:

can we move away from a procedurally created LUT and instead create a table that is

custom–optimized (in terms of minimizing entropy) for a specific set of images? The

process of investigating this question will likely involve developing a method using both

simulated annealing and genetic algorithms and be computationally intensive, requiring

parallel computation to solve more quickly. It is very possible that it will be impractical

(or impossible) to create tables that are suitable for a large number of images, and some

preliminary work indicates that this may be the case.
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Photos ObjectBank

MRI LineArt

Figure 8.7: LUT access images (log normalized) for four types of images. Lighter pixels
indicate more accesses to that entry.
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Chapter 9

Piecewise–Linear Haar

The Piecewise–Linear Haar (or PLHaar) transform [43, 44] is our second contribution to

research in n–bit to n–bit transforms. PLHaar is suitble for lossless and lossy coding,

is simple to implement, requires only one lookup table to perform both the forward and

inverse transforms, and can compete with the S and CFH transforms in terms of PSNR.

9.1 Transformation by Rotation

9.1.1 Haar: an L2 Rotation

Recall from Chapter 6 that the Haar transform is defined by the following equations 9.1

and 9.2, or in matrix form as in equation 9.3.

H =
B − A√

2
(9.1)

L =
A + B√

2
(9.2)
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(9.3)

These Haar equations, and the non–normalized Haar transform, transform the

domain via a 45–degree (or one–eighth) rotation about the origin in Euclidean, or L2,

space. That is, each point in the domain can be thought of as lying on a circle whose
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Figure 9.1: Haar L2 rotation.

center is at the origin, and whose radius is the distance from the point to the origin. Since

the domain is square in shape, the furthest points in the range (the corners of the square)

will fall outside the original area occupied by the domain.

9.1.2 PLHaar: an L∞ Rotation

The PLHaar transform is a similar rotation, but in L∞ space. In this space, points that

are “equidistant” from the origin lie on the perimeter of a square. A one–eighth rotation

(analogous to the 45–degree rotation of the Haar transform) about the origin in this

space amounts to moving a point one–eighth of the distance along the perimeter of its
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Figure 9.2: PLHaar L∞ rotation.
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square. If we divide the domain and range into octants, then as shown in figure 9.2 a

one–eighth rotation moves all points from their positions in a given octant into the next

lower octant (with wraparound). The transform as a whole is nonlinear, but when taken

on a piecewise (octant–by–octant) basis, the transform from octant to octant is linear.

The name “Piecewise–Linear Haar” derives from this property.

The transform of a point at coordinates (A, B) is given by
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H
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(9.4)

where R is one of four matrices, as given in equation 9.5, depending on the octant (Oct.)

where the point (A, B) is located.
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(9.5)

Note that R is the non–normalized Haar matrix, but with one of the four elements zeroed

out.

The big advantage of this transform is that it is continuous. Thus, PLHaar is

suitable for lossy and lossless coding. Indeed, from the literature it appears that PLHaar

is currently the only n–bit to n–bit transform suitable for lossy coding. Figure 9.3 shows

the lookup tables for the S, CFH, PLHaar, and TLHaar transforms. The origin of each

table (except for TLHaar) is at its center, with the horizontal axis corresponding to A

and the vertical to B. Red corresponds to L and green to H, biased by 128. For TLHaar

the origin is in the lower–left, and there is no bias. The discontinuities in the CFH and

TLHaar transforms were pointed out earlier. The S–Transform has no discontinuities, but
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many of its high–pass entries (as indicated by the blue–tinted areas in the corners) lie

outside of the domain.

9.2 Efficiency Considerations

In the definitions of the Haar and PLHaar transforms, the choice of using H = A − B or

H = B − A is arbitrary; the choices presented thus far make Haar and PLHaar proper

rotations. If the opposite choice is made, the result is a rotoinversion R′—a rotation

followed by a reflection—with the property that R′(R′(A, B)) = (A, B), i.e. R′ = R′−1 is

an involution.

Having PLHaar be an involution is a desirable property because it reduces the

number of procedures required to compute the forward and inverse transforms—the same

procedure is able to compute both. Also, if lookup tables are to be used, instead of a

procedure, the same lookup table can be used for the forward and inverse transforms.

Thus, compared to other n–bit to n–bit methods, the storage required for tables is cut in

half.

Conceptually, in order to make the transform an involution an additional step is

added to the transform, where after rotation H is negated. This causes a vertical flip in

the domain. To make PLHaar an involution we negate the second row of each R matrix,

previously defined in equation 9.5. This has no effect on the transform’s continuity. If

these coefficients are also rotated and flipped, they return to their original positions. This

is illustrated for the discrete case in figure 9.4.

9.3 Characteristics of PLHaar

9.3.1 Data Decorrelation

Wavelet and other transforms are typically used because they provide (among other things)

data decorrelation. We see from equation 9.5 that R(x, x) = (x, 0), decorrelating adjacent

identical values, just as in the Haar transform. Thus PLHaar should be useful for a data

compression system.
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Figure 9.3: The transform LUTs for (clockwise from the upper–left) S–Transform, CFH,
PLHaar, and TLHaar. Here we use A − B (and not B − A) when computing H. The
PLHaar table is the only one that does not have discontinuities or out–of–range values.

rotate flip

rotateflip

Figure 9.4: PLHaar interpreted as an involution. Note that both rotations are in the same
direction.
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To verify that PLHaar is usable as a transform for compression we iteratively

transformed some test images, at each iteration applying the transform to the low–pass

coefficients resulting from the previous iteration, until there was a single low–pass coeffi-

cient remaining. We then took a histogram of the coefficients and measured the normalized

zero–order entropy E [45] according to

E =
∑

i

−pi × log256 pi (9.6)

where pi is the probability of coefficient value i and the summation is taken over all

nonzero pi. We compared the entropy resulting from the PLHaar transform to those of

the S, TLHaar, and CFH transforms. Results are in figure 9.5, and we see that in all cases

PLHaar results in a reduction in entropy. A comment on the results for the “WashSat”

image is in order. The original image had a narrow histogram, and so some form of

histogram expansion was performed to enhance contrast. Apparently the CFH and S

transforms do not respond well to this, at least on this particular image—they actually

increase the entropy of this image somewhat. A plot of coefficient histograms for the Lena

image is given in figure 9.6.

Figure 9.5: Zero–order entropy of the wavelet coefficients produced by the transforms.



102

-200 -100 0 100 200
Coefficient Value

0

5000

10000

15000

20000

25000

30000

C
o
ef

fi
ce

in
t 

C
o
u
n
t

Original Image

TLHaar
CFH
PLHaar
S-Transform

Coefficient Histograms

"Lena"

-10 0 10

4000

5000

Figure 9.6: Histograms of “Lena” image, and the S–Transform, PLHaar, TLHaar, and
CFH coefficients.

9.3.2 No Average Preservation

The next thing that we see about PLHaar is that PLHaar does not preserve averages,

while other transforms, such as Haar, CFH, and S, do. The forward and inverse Haar

matrices are given in equations 9.7 and 9.8. If we let A = 42 and B = 50, L = 65.05

and H = −5.66. If H is thresholded to zero the reconstructed A and B values are both

46, which is the average of the original A and B. If the difference between A and B is

great, then the closer H is brought toward zero the closer the reconstructed A and B will

be to their average. Thus when an average–preserving transform is used in a multiscale

decomposition (such as is commonly done with a wavelet transform) and the amount of

coefficient thresholding is significant, the reconstructed image pixels will be closer to the

overall average of the image. This causes a kind of “fade to gray” effect, that is illustrated

later in figure 9.16.







L

H






=

1√
2







1

−1

1

1













A

B






(9.7)
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The forward and inverse transform matrices for the octant 2/6 PLHaar transform

(noninvoluted) are given in equations 9.9 and 9.10. If we use the same A and B as before,

we compute L = 50 and H = 8. If H is set to zero, the reconstructed A and B values

are both 50, which is not near the average of the original A and B. Instead, it is further

away. If PLHaar’s coefficients are coded lossily, as more loss is incurred the reconstructed

values for A and B will be further from the average, and the reconstructed image will have

increased contrast. This has some implications in terms of PSNR; these will be covered

later in section 9.5.3.
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9.3.3 Signed Zeros

A rotation must happen about a center point. If a transform is real–valued this is not a

concern, as there is always a real–valued center point. If the transform is integer–valued

there may not be a center point about which to perform the rotation. Specifically, if the

domain has a dimension that is even, there is no integer–valued center to the domain. The

solution to this problem is to divide the domain into quadrants, and pack them as shown

in figure 9.4. During transformation we select an artificial center: an integer point near

the domain’s (non–integer) center. Then, each octant is translated so that its corner lies

on this center point. The linear transformation of the point is performed, and an inverse

translation is performed on the resulting points.

These manipulations are similar (but not equivalent) to performing signed one’s

complement arithmetic. This presents us with an additional problem. Since the domain

had no integer center, the range has no integer center as well. The result is that the
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transform coefficient histogram is not centered about zero, as it is with the Haar, S, and

CFH transforms, but about positive and negative zero. The “signs” on the zeros cause

difficulties. Since the signs of the zeros are more or less distributed randomly, they must

be encoded with 1 bit per pixel (bpp). This means that these signed–zero coefficients can-

not be encoded to a bitrate less than 1bpp (There is some work on intelligently encoding

wavelet coefficient signs—see [14] for example—but the PSNR improvements in the recon-

structed images generally are less than 0.7 dB). Since these signs are the least–significant

data they can be discarded, but on image reconstruction it is impossible to know which

sign a given zero should have.

We refer to PLHaar with signed zeros as PLHaar2, and the unsigned–zero version

as PLHaar1. When referring to things common to both transforms we use the term

PLHaar.

Note that practically speaking having an even–dimensioned domain may not be

an issue. If we are only concerned with keeping the range limited to a size that is equivalent

to a standard hardware memory unit (an eight–bit byte, for example) then we may be

able to use PLHaar1 on an even domain. For example, if our domain is not 8–bit but fits

within 8 bits (a 6–bit domain, for example, where all values are < 26 but each is stored

in an 8–bit byte) we can “pad” the domain by assuming it is odd–dimensioned (26 + 1 by

26 + 1) and use PLHaar1.

9.4 Implementation

Source code for the continuous and discrete PLHaar transforms is given in figures 9.7 and

9.8. Note that both of these procedures implement the modified transform (the involution)

described above.

The procedure for the discrete transform uses no extra intermediate precision,

and can take both signed and unsigned integers. Its use is self–explanatory, with the

exception of the bias parameter, which is used to move the output range. For example,

if the inputs are n–bit values from a domain [0, 2n − 1] the bias parameter should be set

to 2n−1 to keep the high– and low–pass coefficient range equal to the domain. In the
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#define ABS(x) ((x) < 0 ? -(x) : (x))

#define SIGN(x) ((x) < 0 ? -1 : 1)

void

plhaar_float(

FLOAT *l, // low-pass output

FLOAT *h, // high-pass output

FLOAT a, // input #1

FLOAT b // input #2

)

{

if (SIGN(a) == SIGN(b)) {

*l = ABS(a) > ABS(b) ? a : b;

*h = a - b;

} else {

*l = a + b;

*h = ABS(a) > ABS(b) ? a : -b;

}

}

Figure 9.7: Source code for the continuous PLHaar transform.

source, the lines marked (**) are necessary only when the domain and range contain an

even number of integers (e.g. [0,255])—this is PLHaar2. In this case there is no unique

origin, so we translate each quadrant so that its origin is at a common point, perform the

transform, then translate the quadrant back. If the domain and range contain an odd

number of integers (e.g. [0,254]) then the lines marked (**) may be removed and the bias

set accordingly (e.g. 127)—this is PLHaar1.

These procedures are able to perform both the forward and inverse transforms.

To perform the inverse transform, L is passed as parameter a, H as b, and A and B are

taken respectively from parameters l and h.

9.5 Results

9.5.1 Execution Time

To measure execution time we implemented the S, CFH, and PLHaar transforms in both

direct–computation and table–lookup versions, and measured the time it took to transform
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void

plhaar_int(

INT *l, // low-pass output

INT *h, // high-pass output

INT a, // input #1

INT b, // input #2

INT c // bias

)

{

const INT s = (a < c), t = (b < c);

a += s; b += t; // (**) nudge origin

if (s == t) { // A * B > 0?

a -= b - c; // H = A - B

if ((a < c) == s) // |A| > |B|?

b += a - c; // L = A (replaces L = B)

} else { // A * B < 0

b += a - c; // L = A + B

if ((b < c) == t) // |B| > |A|?

a -= b - c; // H = -B (replaces H = A)

}

a -= s; b -= t; // (**) restore origin

*l = b; *h = a; // store result

}

Figure 9.8: Source code for the discrete PLHaar transform.
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square photographic images of edge length 256, 512, 1024, and 2048 pixels.

Because PLHaar is a transform from one octant to the next there is some ad-

ditional overhead incurred during the transform process: before each point can be trans-

formed its octant must be identified (see equation 9.5). In our current implementation this

requires two nested if–then statements. Because of this we anticipated that PLHaar would

be slower than the CFH and S transforms. We also note that PLHaar execution time may

vary, depending on the more frequently taken path through the transform procedure.

Execution time was measured on a Dell Precision Workstation 530 with dual 2.2

GHz Intel Xeon processors (only one was used in the tests), 512 kilobytes of cache, and 512

megabytes of RAM. The operating system was RedHat Linux 3.2.3. All times reported

are an average over 256 forward transformations. Results for execution time using direct

computation are given in figure 9.9, and for table lookup in figure 9.10. From figure 9.9

we see that as expected the execution times for PLHaar are slower than the S and CFH

transforms, due to the additional work required for determining which octant a point is

located in. Even so, PLHaar has a throughput of about 28 megabytes a second. When

table lookups are used the difference in execution times between the CFH and PLHaar

transforms essentially disappears.

Interestingly, for small images the direct computation execution time of the S

transform is slower than the other transforms (this is not obvious from the graphs). We

believe that this is because of some additional overhead incurred in the S–transform. Its

coefficients are stored in 16–bit short integers, as opposed to 8–bit bytes, and therefore the

coefficients do not fit in cache as well as CFH and PLHaar. For larger data this overhead

is made up for by the S–transform’s fast execution speed.

9.5.2 Quantization and PSNR

To gain a basic understanding of how useful PLHaar will be when used in lossy compression

or a progressive transmission scheme, we first performed some quantization tests on a set of

test images. We transformed the images as in section 9.3.1, and then iteratively quantized

the coefficients to shorter bit widths. We treated the S–Transform coefficients as being
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Figure 9.9: Times for direct computation.
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9 bits wide (sign bit plus an 8–bit magnitude). We used the PLHaar2 transform, and

performed sign–preserving quantization on the coefficients.

Quantized coefficients fall into a range of uncertainty. For example, if the co-

efficient 42 (00101010) is quantized to 5 bits of precision, it falls into the range [40,47].

Assuming a uniform distribution, to avoid biasing quantized coefficients towards zero, and

to preserve contrast, we place the quantized coefficients near the center of the range of

uncertainty. For a given non–negative uncertainty interval [u, v] we compute the center

as ⌊(u + v)/2⌋, and center the quantized coefficients accordingly. We then computed the

PSNR of the reconstruction.

A graph of the PSNR curves for the “Bike” [6] image is given in figure 9.11,

and the L∞ error curves are given in figure 9.12. From these we see that the PLHaar2

transform gives a better reconstruction than all other tested methods. In particular, due

to the aliasing problem discussed earlier, the CFH transform is unable to give a good

reconstruction of the image. Figure 9.13 shows the Bike image, transformed by CFH and

PLHaar, quantized to 3 bits of precision, and reconstructed. Underneath each image is a

set of four details.

As mentioned earlier, the low–pass values computed by PLHaar have a higher

contrast than the inputs to the transform. This means that the more PLHaar coefficients

are quantized, the higher the contrast in the reconstructed image. Although this increased

contrast can result in a lower PSNR, it has the benefit, at a low quantization precision, of

helping to bring out edges that are “blurred” away in the CFH and S–Transforms. Figure

9.14 shows the reconstructed “Barbara” image, after transformation by CFH and PLHaar

and quantization to three bits. The PSNR of these images is respectively 19.06 and 16.48.

An examination of the images shows that the image reconstructed from PLHaar coefficients

is visually more appealing. Ignoring the artifacts present in the CFH reconstruction, we

see that the PLHaar reconstruction has preserved such things as the lines in her face (note

the eyes), the edges and lines on her pants, and the table covering.

If figure 9.15 we give images of the reconstructed “Lena” image, after being

transformed by the TLHaar, CFH, PLHaar, and S transforms and quantized. In the
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Figure 9.13: Bike [6] image and details, transformed by CFH (left) and PLHaar (right)
and quantized to 3 bits.
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Figure 9.14: Barbara transformed by CFH (left) and PLHaar (right), and quantized to 3
bits.

CFH reconstruction a few artifacts appear in the three–bit image (note the inner edge

of the mirror frame, along the edge of her shoulder, and along the brim of her hat).

Also, when comparing the three–bit CFH and PLHaar reconstructions, we see again how

PLHaar’s increased contrast improves the visual quality of the reconstructed image. Note

for example that in the PLHaar reconstruction her facial features are more intact.

9.5.3 Thresholding and PSNR

Thresholding (the zeroing of coefficients less than some threshold T ) is a more common way

of lossily coding transform coefficients, so we examine thresholding here. Where PLHaar2

is used we do not preserve coefficient signs, and all thresholded coefficients are set to

“negative” zero. Results are given in terms of zero–order entropy vs. PSNR. This allows

us to compare PSNR resulting from sets of transform coefficients that would compress to

approximately the same size.

Some lossy reconstructions for the Mandrill and Wedding Photo images are given

in figures 9.16 and 9.17. From figure 9.17 we see again the artifacts inherent in a CFH

reconstruction when the original data has areas of high contrast. The Mandrill image

does not contain many areas of high contrast, so in figure 9.16 we see that there are no

immediately obvious artifacts in the CFH reconstruction. We do see that as the bitrate
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Figure 9.15: Lena, quantized to five, four, and three bits. From the top: TLHaar, CFH,
PLHaar, and S–Transform.
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27.82 19.86 16.93

24.82 14.42 13.85

Figure 9.16: Mandrill, thresholded to an approximate entropy of (from left) four, two, and
0.5 bits per pixel. Upper images are CFH, lower are PLHaar1. PSNR is given beneath
each image.
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15.92 11.21 8.04

31.32 24.54 20.27

Figure 9.17: Wedding photo, thresholded to an approximate entropy of (from left) 2.1,
1, and 0.5 bits per pixel. Upper images are CFH, lower are PLHaar2. PSNR is given
beneath each image.

falls the CFH reconstruction exhibits the characteristic fading (also found in the Haar and

S transforms) as pixel values in the lossy reconstructions are pulled closer to the overall

image average. PLHaar does not have this property, so at a lower bitrate the PLHaar

reconstruction is more visually appealing—any details in the image are more immediately

obvious.

PSNR graphs for four test images are given in figure 9.18. From them we see that

for identical zero–entropy values the PLHaar reconstructions have a smaller PSNR than the

S and CFH transforms. This is due to the increased contrast of the PLHaar reconstruction

at a lower bitrate. The PSNR metric favors techniques that produce reconstructions

close to the overall average of the original image. Since PLHaar does not do that, its
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PSNR values are lower, although a viewer would most likely indicate that the PLHaar

reconstruction was more appealing.
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Figure 9.18: PSNR vs. Entropy graphs for four test images.

9.6 Signed Zeros in PLHaar2

9.6.1 Predicting Signed Zeros

Signed zeros present some difficulties when encoding. Some coding methods, such as those

that use zerotrees and similar techniques [34, 26, 25, 38, 46], assume that the coefficients

are centered around an unsigned zero. With signed zeros an explicit pass must be made to

encode the signs. Also, because these signs are the least–significant parts of the coefficients,

we anticipate that in most cases the signs will be fairly randomly distributed, and will not

compress well, if at all.
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Naturally, we want to deal with these coefficients as efficiently as possible. Ideally,

we would like to see if there is some correlation between the sign of a zero and some other

quantity. There are two types of correlation to exploit: parent–child (PC) correlation, and

H–L pair (HL) correlation. In PC correlation we attempt to see if there is any correlation

between the sign of a zero high–pass coefficient and the sign of its parent in the wavelet

tree. In HL correlation we attempt to see if there is a correlation between the sign of a

zero high–pass coefficient and the sign of its associated low–pass coefficient.

HL correlation would allow us to not encode the signs of the zero coefficients,

and then during image reconstruction set the sign of the coefficient to be the same as that

of its associated low–pass coefficient.

To measure the amount of sign correlation in the PC and HL relationship we

transformed several representative images from our suite of test images. Results are shown

in figure 9.19. In this figure a value of 50 indicates no correlation, and 100 indicates perfect

correlation. From this we see that the highest levels of correlation are found in images that

have large regions of a single shade, such as line art and MRI images (which are padded

to a dimension of 256x256 pixels). Overall, there does not appear to be any consistently

exploitable sign correlation. This is not good, because it means that for an image to be

coded losslessly the signs will have to be coded explicitly, thereby hurting the execution

time and coding rate.

However, the signs of the zeros are the least–important information in the trans-

form coefficients. One good consequence of this lack of sign correlation is that if an image

is to be used for something not requiring perfect reconstruction—as are probably most

uses (e.g. viewing on the Internet, photo proofing, textures in games, etc.)—then the

signs can be thrown away without any visible decline in image quality. Any “reasonable”

scheme can be used to add the signs to the coefficients when the image is reconstructed.

9.6.2 Signed Zeros and PSNR

Here we briefly examine the signed zeros in PLHaar2 and their effect on PSNR. To do this

we implemented PLHaar2 with thresholding when signs are preserved and not preserved.
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Figure 9.19: Amount of zero sign correlation for PC and HL coefficient relationships. A
value of 50 indicates no correlation, and 100 indicates perfect correlation.

In the case of not preserving the signs they are all set to “negative” zero. We then used LH

correlation to predict the signs of the zeros when signs are not preserved. If a high–pass

coefficient is zero it is given the sign of its corresponding low–pass coefficient.

As would be expected from figure 9.19 the results are not very good. Figure 9.20

gives the Entropy vs PSNR plots of the four test images from figure 9.18. In these plots

+/-Pres indicates if the zero coefficients’ signs were preserved, and +/-Pred indicates

if sign prediction was performed. We see from the figures that the signs are not very

predictable. Other tests, not reported here, indicate that if the zero coefficient sign bits

are not preserved, then there is no sure method for reconstructing the signs. Setting them

to all negative or positive, or initializing randomly, does not deliver consistent results.

One positive conclusion that we can draw from the figures is that since the signs are the

least–significant data in the coefficients it does not make much difference what we do with

them.
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Figure 9.20: PSNR vs. Entropy graphs for four test images using PLHaar2.
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9.7 Conclusions and Possible Extensions

To our knowledge the Piecewise–Linear Haar transform is the first transform to demon-

strate that it is possible to eliminate dynamic range expansion and have a transform useful

for lossy and lossless coding. Eliminating DRE and remaining useful for lossy and lossless

coding comes at a price, the major one being that when performing the transform by

direct computation PLHaar is slower than other transforms, although table lookup execu-

tion is slightly, but consistently, faster than other transforms. Another issue is PLHaar’s

increased contrast at lower bitrates. Whether this is good or bad depends entirely on the

user’s requirements. While increased contrast isn’t favored by the PSNR metric, it is more

likely to satisfy the casual viewer.

For the future there are many things that need to be investigated. The first

question is, now that we have successfully created a useful n–bit to n–bit transform that

approximates the simple Haar transform, can we move on and create n–bit to n–bit trans-

forms that are more complex, using a lifting scheme for instance?

PLHaar has increased contrast at lower bitrates. While this is good for the

viewer, image metrics do not favor it. If we desire to “play the metric game” to improve

PSNR what changes need to be made to the transform?

PLHaar was developed with the intent of using it in hardware. We need to write

a version for execution on modern graphics hardware, and perhaps even prototype some

other custom hardware using FPGA logic.

Another matter we need to address is the theory behind n–bit to n–bit trans-

forms. While Chao, Fisher, and Hua demonstrated n–bit to n–bit transforms using mod-

ular arithmetic, we showed that this method is not suitable for lossy coding. What can

we say about n–bit to n–bit transforms that are good for lossy coding? Are more com-

plex (and better) transforms even possible? If so, what are they? Do they exist but are

impractical for use and implementation? Or is the PLHaar transform the best we can do?

Any definite theoretical work in this area would be a significant contribution to the art.
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Chapter 10

Conclusions and Future Directions

This dissertation presents several solutions for performing data compression and transfor-

mation in length–limited environments.

Chapters 4 and 5 described solutions for the problem of requiring length–limited

codes. These were respectively variable–to–variable length codes, and Lead–1 encoding for

the extraction of isosurfaces from time–varying volume data. We created VV codes through

a merging process, as opposed to the prevailing extension process, and demonstrated that

a coder using these codes can compete—in terms of compression rate and speed—with

other state–of–the–art coding techniques. We showed that Lead–1 encoding, while simple,

provides an effective and fast method of encoding transform coefficients. These methods,

and the results derived from using them, are a reminder that despite the plethora of

sophisticated data compression techniques available, sometimes the best solution is one

that is both simple and well thought out.

Chapters 8 and 9 present two techniques for performing a Haar–like transform

without dynamic range expansion: the Table–Lookup Haar and Piecewise–Linear Haar

transforms. With the PLHaar transform in particular we demonstrate that it is possible

to have a transform with no dynamic range expansion that is also simple, compact, fast,

and suitable for lossy and lossless coding. PLHaar is the first of its kind, to our knowledge.

There is quite a lot of work to be done, particularly in developing transforms with

no dynamic range expansion. Of particular interest is the theory behind such transforms.
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If no dynamic range expansion occurs during the transform then a tradeoff occurs. This

tradeoff can take the form of a loss of continuity (in the case of the CFH transform) or

a slower execution speed (in the case of the PLHaar transform). What can we say about

transforms with no dynamic range expansion? Exactly what are the tradeoffs? Can more

complex, continuous transforms be created, or is it impossible? Some concrete theory

surrounding these issues is needed.

With regards to the bin coder, to make such a coder more practical it would

be beneficial to develop a system where the design of the coder (number of bins, specific

code used for each bin, etc.) is automated: the user specifies a few parameters, and

the rest is automatic. Such a system is likely to involve conflicting requirements (e.g.

a high compression rate but a low number of bins), and it would be both fascinating

and beneficial to develop a systematic approach for negotiating between them. Also, a

study of bin output interleaving would be a worthwhile contribution. A system where

bin outputs are interleaved with a dynamic granularity could potentially lead to some

significant improvements in coder throughput.
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