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Abstract
Results are presented from a study investigating the effect of explosive and impact loading 

on geological media using the Livermore Distinct Element Code (LDEC). LDEC was 

initially developed to simulate tunnels and other structures in jointed rock masses with 

large numbers of intact polyhedral blocks. However, underground structures in jointed 

rock subjected to explosive loading can fail due to both rock motion along preexisting 

interfaces and fracture of the intact rock mass itself. Many geophysical applications, such 

as projectile penetration into rock, concrete targets, and boulder fields, require a 

combination of continuum and discrete methods in order to predict the formation and 

interaction of the fragments produced. In an effort to model these types of problems, we 

have implemented Cosserat point theory and cohesive element formulations into the 

current version of LDEC, thereby allowing for dynamic fracture and combined finite 

element/discrete element simulations. Results of a large-scale LLNL simulation of an 

explosive shock wave impacting an elaborate underground facility are also discussed. It is 

confirmed that persistent joints lead to an underestimation of the impact energy needed to 

fill the tunnel systems with rubble. Non-persistent joint patterns, which are typical of real 

geologies, inhibit shear within the surrounding rock mass and significantly increase the 

load required to collapse a tunnel.

1. Introduction
A wide range of geological applications involve materials or systems that are 

discontinuous at a small enough scale of observation. While some systems may be 

intrinsically discontinuous, other discontinuous systems are best approximated by a 

continuum, a discontinuum, or a combination of the two, depending upon the specific 

information of interest. Continuum, mesh-based methods have been applied successfully 

to many problems in geophysics, and a continuum approximation may be adequate when 

sufficiently large length scales are considered—even if the geology includes fractures and 

faults.  However, a large class of problems exists where individual rock discontinuities 

must be taken into account. This includes problems whose structures of interest have sizes 
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comparable with the block size, or when the structures experience loads that do no 

measurable damage to individual blocks, but deformation along material discontinuities 

still leads to structural failure. In these cases, a purely continuum, mesh-based treatment is 

usually inappropriate.  Field tests indicate that structural response can be dominated by the 

effect of preexisting fractures and faults in the rock mass, as shown in Figure 1. 

Consequently, accurate models of underground structures must take into account 

deformation across fractures and not simply within the intact portions of the rock mass.

The distinct element method (DEM) is naturally suited to simulating such systems 

because it can explicitly accommodate the blocky nature of natural rock masses. Cundall 

and Hart (1992) review a number of numerical techniques that have been developed to 

simulate the behavior of discontinuous systems using DEMs.  In general, an explicit 

scheme is used to evolve the equations of motion of discrete bodies directly and the 

bodies may be rigid or deformable. Early approaches employed rigid disks or spheres 

with compliant contacts (Cundall and Strack, 1979; Cleary, 1991). Cundall, (1980)

Walton, (1980) and Cundall and Hart (1985) developed two-dimensional DEMs that 

employed arbitrary polygons. Cundall (1988) and Hart et al. (1988) also developed fully 

three-dimensional DEMs composed of rigid or deformable polyhedral blocks with 

compliant contacts.

The DEM has been applied to a wide range of problems in geomechanics [see 

Cundall (2001) for a review of DEM simulations of granular material and rock]. In 

particular, Antonellini and Pollard (1995) simulated the formation of shear bands in 

sandstone using the DEM. Morgan (1999a, 1999b) applied the DEM to the mechanics of 

granular shear zones, and Heuze et al. (1993) used the DEM method to analyze 

explosions in hard rock. Sanderson and Zhang (1998) also used a two-dimensional 

distinct element method to investigate the evolution of damage zones and fluid flow in 

fracture networks and around faults.

One fundamental advantage of the DEM is that pre-existing joints in rock can be 

incorporated into a DEM model directly, and the joints are allowed to undergo large 

deformation. Detailed joint constitutive models [see Morris (2003) for a review] can also 
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be used to combine experimentally observed fracture properties (such as joint dilation, 

friction angle, and cohesion) with the DEM approach. However, many applications in 

geophysics require a combined continuum-discontinuum treatment for a complete 

solution. For example, projectile penetration into a rock or concrete target requires 

continuum-discontinuum analysis in order to predict the formation and interaction of the 

fragments produced. The impact of a penetrating weapon into a boulder field also lends 

itself to solution by a combination of continuum and discrete methods. Underground 

structures in jointed rock subjected to explosive loading can fail due to both rock motion 

along preexisting interfaces and fracture of the intact rock mass itself. In such 

applications, it is insufficient to simply predict whether or not the rock mass with fail—

instead, the critical issues are how fracture and discontinuous interaction lead to the 

ultimate fate of rock fragments.

To answer these questions, a continuum-discontinuum capability was developed by 

incorporating finite element analysis and cohesive elements into the Livermore Distinct 

Element Code (LDEC). This computer code was originally developed by Morris et al.

(2002) to simulate the response of jointed geologic media to dynamic loading. Section 2 

presents an outline of the Cosserat point theory that underlies the current version of 

LDEC. A discussion is also presented of preliminary work on a cohesive element 

formulation that will allow the study of fracture problems in the continuum-discontinuum 

setting. Sections 3 and 4 focus on results from simulations of fracture and fragmentation 

for the case of a shock wave impacting an underground tunnel system. In conclusion, 

Section 5 presents a short discussion of the influence of persistent and non-persistent 

joint sets on failure in rock and the versatility of combined continuum-discontinuum 

approaches.

2. Treatment of Jointed Media using LDEC
In the simplest case, the Livermore Distinct Element Code can be run in rigid-block 

mode, so that all deformation in the system is lumped into the contacts. The most 

complicated aspect of the code is then related to contact detection. In general, the 
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equations of motion of the elements are determined in a standard manner by integrating 

vector equations for both the center of mass of each element and an orthonormal vector 

triad that determines its absolute orientation. Contact detection monitors how the 

connectivity changes as a result of relative block motion. The Lagrangian nature of the 

DEM also simplifies tracking of material properties as blocks move, and it is possible to 

guarantee exact conservation of linear and angular momentum throughout the 

computation. 

2.1. Cosserat Point Formulation
Deformation within the individual blocks is often introduced into DEM formulations by 

using additional standard continuum discretization. For example, Cundall (1980, 1988)

and Hart et al. (1988) use finite differences to model the deformation of compliant 

blocks. In Morris et al., (2004) it was observed that the theory of a Cosserat point (Rubin, 

1995, 2000) can model each element as a homogenously deformable continuum. A 

Cosserat point describes the dynamic response of the polyhedral rock block by enforcing 

a balance of linear momentum to determine the motion of the center of mass (3 

translational degrees of freedom), as well as three vector balance laws of director 

momentum to determine a triad of deformable vectors, which model both the orientation 

of the element (3 rotational degrees of freedom) and its deformation (6 degrees of 

freedom for dilatation and distortion). The response of the deformable polyhedral block is 

modeled explicitly using the standard material constants that characterize the original 

three-dimensional material, and constitutive equations for the contact forces at the joints 

become pure measures of the mechanics of joints.

The version of LDEC that includes homogeneously deformable Cosserat points has 

been used successfully to model a number of problems of physical interest (Morris et al., 

2004). However, this approach is inappropriate for problems whose length scales of 

interest (such as a tunnel diameter) are only slightly greater than the block size. This 

deficiency was overcome by internally discretizing the polyhedral blocks with a 

collection of smaller tetrahedral elements. The numerical solution procedure depends on 
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nodal balance laws to determine the motion of the four nodes of each tetrahedral element, 

similar to that described above for the motion of blocks.  In general, the accelerations of 

the nodes of a particular element are coupled with the nodes of the neighboring elements.  

However, the director inertia coefficients in the theory of a Cosserat point can be 

specified so that these equations become uncoupled.  This form corresponds to a lumped 

mass assumption and is particularly convenient for wave propagation problems using 

explicit integration schemes because it does not require the inversion of a stiffness 

matrix.

In continuum regions, where the nodes of neighboring elements are forced to remain 

common (i.e., unbreakable), the Cosserat point formulation is basically the same as 

standard finite element models (FEM) that use homogeneously deformable tetrahedral 

elements. In this case, the computational effort in LDEC is significantly reduced: many 

nodes are shared and there is no need for contact detection on shared element surfaces. 

While standard finite element formulations are based on shape functions and weighting 

functions, the latest version of LDEC utilizes balance laws for the directors of each 

Cosserat point (associated with the positions of the nodes of the tetrahedral elements). 

LDEC can be run simultaneously in DEM and FEM-like modes, dynamically blending 

continuum and discrete regions, as necessary.

2.2. LDEC Fracture Algorithm
The research described here focuses on extending the advantages of both continuum and 

discontinuum descriptions to include dynamic fracture in jointed and heterogeneous rock. 

First, a volume-weighted average Cauchy stress is calculated in the elements surrounding 

each node. At each time step, LDEC determines the principal stresses iσ (positive 

indicates tension) and the associated principal directions ip , ordered such that

1 2 3.σ σ σ≥ ≥ (1)

When 1σ first equals the failure stress fT of the medium, the node is split into two 

daughter nodes that are connected by a special “cohesive” element, as shown in Figure 
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2(a).  Figure 2(b) depicts the weakening force law that is used to simulate the process of 

nodal de-cohesion (Dugdale, 1960; Barrenblatt, 1962). This approach is somewhat 

different from that taken by Xu and Needleman (1994) and Camacho and Ortiz (1996), 

for example, who focus on the separation of surfaces instead of nodes and who include 

combined effects of failure in tension and/or shear.

The remaining nodes that are directly connected to the daughter nodes by edges of the 

neighboring elements can be tested to determine if they become new exterior nodes or 

remain interior nodes based on the criterion that a newly created fracture surface will 

have its normal closest to the principal direction associated with the failure. In this way, 

the fracture surface will open up along those existing element boundaries that are most 

closely aligned with the plane of largest (tensile) principal stress.

In order to compute the evolution of each node, consider Kx to be the virtual position 

of the previously “unbroken” node K, and let Ax and Bx be the positions of the daughter 

nodes A and B. Each of these nodes is surrounded by a part consisting of neighboring 

elements.  Now, define /B Af to be the force applied by the part associated with A on the 

part associated with B, and define the converse, /A Bf , similarly. Also, let AF be the force 

applied to A due to the elements connected to A and let BF be the force applied to B due 

to the elements connected to B. If the effective mass of nodes A and B are Am and Bm , 

respectively, then the equations of motion for these nodes are simply:
2

/2

2

/2 ,

A
A A A B

B
B B B A

dm
dt

dm
dt

= +

= +

x F f

x F f
(2)

where / /B A A B= −f f .  Before the initiation of fracture, the motion of node K is given by 

adding the equations in (2) together, subject to the constraint that A B K= =x x x . Thus,

2

2 ,K A B

A B

d
dt m m

+
=

+
x F F (3)

and the cohesive force /A Bf is given by
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/ fracture
,A B B A

c A B
A B

m m
m m

−
≡ =

+
F Ff f (4)

when the daughter nodes are first created.

In this work, de-cohesion is considered as a central-force process derived from the 

weakening law depicted in Figure 2(b).  Let ( )d t be the distance between the points Ax

and Bx , so that

.B Ad = −x x (5)

The cohesive force directed between the daughter nodes, / /A B B Af=f e , depends on the 

unit vector ( )/
1

B A B Ad
= −e x x and the weakening law:

max

max

1 .c
c

df f δ
α

δ δ
 

= − 
 

(6)

Here, c cf = f is calculated at the onset of fracture using (4) and remains constant.  The 

coefficient α determines whether the forces that cause daughter nodes to separate are 

continuous in time ( 1α = ) or are discontinuous in time ( 0 ≤ α < 1) [see Papoulia et al.

(2003)].  Finally,

( )max maxmin , cdδ δ= (7)

and

( )max maxmax ,d d d= (8)

are calculated at each time step to allow for reversible unloading and reloading along a 

linear path from the origin to the most recent position on the (weakening) force-

displacement curve. The singularity arising in (6) when maxδ vanishes is removed by 

simply setting max/ 1d δ = in that case.

2.3. Effective Properties in Crack Propagation
Cohesive elements characterize the averaged deformation in a region around the crack 

tip. Integrating the power dissipated by the cohesive element from initiation to failure 
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(whence max cδ δ= ) leads to an expression for the total work done by the element, which is 

denoted by cW . Let fA be the total surface area associated with the newly created 

fracture surface (including both faces of the new fracture surface) and let Γ be the 

fracture energy per unit area associated with creating this surface. Therefore,

1 ,
2c c c fW f Aα δ− = = Γ (9)

so that the critical opening displacement cδ of the cohesive element is given by

2
.f

c
c

A
f

δ
α

Γ
= (10)

Length scales analogous to cδ serve as effective measures of the size of a cohesive zone 

around the crack-tip singularity, where linear elasticity breaks down (Freund, 1990).

Averaging over this zone can remove the singularity, but it necessarily introduces 

additional models of plastic flow and inelasticity (such as the weakening law). Typical 

values of the critical displacement can be deduced from experiments using a continuum 

version of (10), and are found to be approximately 10 µm in PMMA and 10 cm in 

concrete (Ruiz et al., 2000). Many FEM fracture computations utilize a mesh resolution 

that is significantly finer than the smallest length scale in the simulation, cδ , because 

field variations on the scale of the cohesive zone can lead to dynamical instabilities and 

branching, which are not always observable on the macroscale. Indeed, some branching 

processes are initiated at critical crack-tip velocities that may be universal features of 

brittle fracture in isotropic, homogeneous media (Sharon and Fineberg, 1996). 

LDEC runs for large-scale geophysical problems will be unable to resolve the 

dynamics near the crack tip. Instead, simulations rely on straight, flat cracks, as depicted 

in Figure 3. This trajectory represents a loss of microscale information: the true path 

length and total exposed area, as well as the effective fracture energy, ( ) ,Γ v depend on 

both the scale and the effective crack-tip velocity v . Preliminary results for brittle 

fracture in PMMA plates are shown in Figures 4(a) and 4(b), where an applied stress is 

used to initiate failure using a seed crack at the plate’s center. Cohesive elements are 
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constrained to lie along the middle line only, and a constant value of Γ was used (the 

mesh resolution is 1000 cδ ). The crack-tip velocity quickly asymptotes to a value near the 

Rayleigh wavespeed, just as expected for straight cracks (Fineberg and Marder, 1998). 

Crack branching is observed when the initiation of cohesive elements is unconstrained. 

Current research is focusing on comparing these behaviors to experimental data and 

developing techniques to use observed values of ( )Γ v to remove the mesh dependence 

that arises as an artifact of spatial averaging.

3. Simulations of an Underground Facility in Fractured Rock
A series of simulations were recently performed on the “Thunder” supercomputer at 

Lawrence Livermore National Laboratory to model the effects of a surface explosion 

(and subsequent shock wave) on an underground tunnel system surrounded by jointed 

rock. In practice, the extent of an LDEC simulation is limited by the computational effort 

required to simulate the necessary number of rock blocks. Thunder provides a maximum 

of 4008 Itanium processors, allowing us to consider models of greater size and 

complexity than had previously been possible.

The solution domain spanned 60 m in each direction and encapsulated a generic 

facility that included several tunnel sections and a lift shaft (see Figure 5).  Several 

geological models were considered as part of this study. In particular, the behavior of 

regular, persistent joints was compared to the effect of non-persistent (i.e., randomized) 

joints in the surrounding rock. The rigid block capability was used to model hard rock 

and to emphasize the role of joint geometries, but cohesive elements were not included in 

these simulations. Figure 6 shows an example of the randomized jointing present in the 

non-persistent model geology. In both cases discussed here, the joint patterns resulted in 

typical block sizes of 30 cm. Consequently, each model contained approximately 8 

million individual polyhedral rock blocks and approximately 100 million contact 

elements, making these the largest simulations of this type performed to date. The 
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facilities were subjected to loading corresponding to one kiloton at the surface 50 m 

above.

Figure 7 compares the velocity fields of the two simulations at 30 ms. Results 

obtained for the regular, persistent joint set and irregular, non-persistent model differed in 

several key ways:

• The regular model exhibited strong anisotropy. Since the joints are weak under 

shear loading, the regular, persistent joint sets tend to channel the waveform, 

resulting in variations in wavespeed with direction of propagation.

• The irregular model exhibited higher attenuation. Again, because the joints are 

weak under shear loading, the irregular joint structure results in more effective 

plastic deformation on the joints and, consequently, more attenuation.

• Persistent joints allow shear motion along the entire length of the computational 

domain, resulting in large “chimney” effects above collapsed tunnels sections.

• The irregular model resulted in more diffraction of waves around cavities in the 

rock mass.

Figure 8 shows two snapshots of the collapse of the largest room within the facility using 

the non-persistent joint set simulation. While the largest room within the facility has 

totally collapsed, the narrowest access tunnels experienced minimal damage. The midsize 

tunnels show a range of damage, with most damage occurring in tunnel sections that 

contain a junction with another tunnel or lift shaft. This behavior is consistent with the 

idea that tunnel junctions compromise tunnel strength.

4. Simulations of a Tunnel Opening in Infrequently Jointed Rock
Previous LDEC runs have modeled tunnels in heavily jointed, hard rock, where the 

tunnel diameter was spanned by many blocks. It is then appropriate to simulate the rock 

mass using a “tight” structure consisting of polyhedral blocks that are either rigid or 

homogenously deformable (with deformable points of contact in both cases). In contrast, 

the focus of this section is on a class of problems where the joints are sufficiently 
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infrequent so that the predominant failure mechanism is block breakage rather than intact 

rock displacement.

This preliminary simulation is performed in two dimensions. The geology consists of 

blocks of limestone, measuring 1.83 m wide, by 0.30 m high, surrounding a tunnel 

measuring 2.73 m by 2.80 m. The tunnel is subjected to loading that corresponds to a 

tamped, one-ton detonation located 4.88 m left and 5.75 m above the tunnel. The 

calculation was performed in two stages. Initially, LDEC was run with deformable blocks 

of limestone internally discretized into 10 cm tetrahedral elements. Cohesive elements 

were not included. In this mode of operation, the time step is quite short so that modes of 

deformation within the 10 cm elements can be captured. After 10 ms, the LDEC 

calculation was switched over to rigid-block mode, which ignores internal modes of the 

elements to increase the size of the time steps and to investigate the flow of rubble into 

the tunnel over long time scales. The simulation shows that a significant portion of the 

rock mass surrounding the tunnel is reduced to rubble by the tension produced as waves 

reflect from the interior surface of the tunnel. This rubble mass is sufficient to fill in the 

original tunnel.

5. Conclusions

The Livermore Distinct Element Code is capable of simulating the dynamic response of 

elaborate, underground facilities and tunnel systems to shock-wave loading. Such large-

scale studies allow the investigation of the interaction between different parts of the 

facility, and the study of how these interactions lead to tunnel collapse and overall failure. 

The results highlight the importance of including realistic irregular, non-persistent joint 

sets. Geologies that were modeled using rigid blocks with deformable contacts and non-

persistent jointing were found to withstand significantly more shear deformation than 

would be predicted using regular joint sets. Moreover, discretizing the blocks internally 

with tetrahedral elements increases the potential accuracy of large-deformation 

simulations, especially in cases where the predominant failure mechanism is block 

breakage rather than intact rock displacement.
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Capturing the physics of fracture in heterogeneous media requires more than 

renormalization arguments based on lattice approximations (Nguyen and Ortiz, 2002). 

Also, scaling laws will be critical for removing mesh dependence in the simulations. The 

current version of LDEC provides simultaneous DEM and FEM-like domain partitioning, 

as well as the possibility of converting between the two modes dynamically. Future work 

will focus on combining the DEM, FEM, and cohesive elements together to produce a 

efficient formulation that is both accurate and robust.  Specifically, it is anticipated that 

this effort will produce the capability of large-scale simulations of fragmentation and 

dynamic fracture of an important class of problems that are simply beyond the scope of 

current codes.

Acknowledgments
This research was performed under the auspices of the U.S. Department of Energy by 

Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. M.B. 

Rubin was partially supported by the Fund for Promotion of Research at Technion.  Also, 

the authors would like to acknowledge helpful discussions with L. Glenn and T. Antoun.

nijhuis2
Text Box
This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.



14

References

Antonellini, M. A. and Pollard, D. D. (1995), Distinct element modeling of deformation bands in 

sandstone, J. Struct. Geol., 17, 1165-1182.

Barrenblatt, G. I. (1962), The mathematical theory of equilibrium of cracks in brittle fracture, Adv. Appl. 

Mech., 7, 55-129.

Camacho, G. T. and Ortiz, M. (1996), Computational modeling of impact damage in brittle materials, Int. J. 

Solids Structures, 33, 2899-2938.

Cleary, P. W. (1991), Extensions of the hybrid method for granular flows, Proceedings 5th International 

Computational Techniques and Applications Conference, Adelaide, Australia.

Cundall, P. A. (1980), UDEC-A generalized distinct element program for modeling jointed rock, Final 

Tech. Rep. Eur. Res. Office (US Army Contract DAJA37-79-C-0548), NTIS order No. AD-A087 

610/2.

Cundall, P. A. (1988), Formulation of a three-dimensional distinct element model - Part I. A scheme to 

detect and represent contacts in a system composed of many polyhedral blocks, Int. J. Rock Mech. 

Min. Sci. Geomech. Abstr., 25, 107-116.

Cundall, P. A. (2001), A discontinuous future for numerical modeling in geomechanics?, Proc. Inst. Civ. 

Eng-Geotech. Eng., 149, 41-47.

Cundall, P. A. and Hart, D. H. (1992), Numerical modeling of discontinua, Eng. Comput., 9, 101-113.

Cundall, P. A. and Hart, R. D. (1985), Development of generalized 2D and 3D distinct element programs 

for modeling jointed rock, Misc. Paper SL-85-1, US Army Corps of Engineers, SL-85-1.

Cundall, P. A. and Strack, O. D. L. (1979), A discrete numerical model for granular assemblies, 

G'eotechnique, 29, 47-65.

Dugdale, D. S. (1960), Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100-104.

Fineberg, J. and Marder, M. (1998), Instability in Dynamic Fracture, preprint submitted to Elsevier 

Preprint.

Freund, L. B. (1990), Dynamic Fracture Mechanics, Cambridge University Press, New York, NY.

Hart, R., Cundall, P. A., and Lemos, J. (1988), Formulation of a three-dimesional distinct element model -

Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral 

blocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr.,  25, 117-125.

Heuze, F. E., Walton, O. R., Maddix, D. M., Shaffer, R. J., and Butkovich, T. R. (1993), Analysis of 

explosions in hard rocks: the power of discrete element modeling, in Comprehensive Rock 

Engineering, Hudson, J. A., Brown, E. T., Fairhurst, C., and Hoek, E., Pergamon Press,  New York, 

NY, pp.  387-413.

Morgan, J. K. (1999a), Numerical simulations of granular shear zones using the distinct element method 1. 



15

Shear zones kinematics and the micromechanics of localization, J. Geophys. Res., 104, 2703-2719.

Morgan, J. K. (1999b), Numerical simulations of granular shear zones using the distinct element method 2. 

Effects of particle size distribution and interparticle friction on mechanical behavior, J. Geophys. Res.,

104, 2721-2732.

Morris, J. P. (2003), Review of Rock Joint Models, Lawrence Livermore National Laboratory, UCRL-ID-

153650, http://www-r.llnl.gov/tid/lof/documents/pdf/244645.pdf.

Morris, J. P., Glenn, L. A., and Blair, S. C. (2002), The distinct element method - application to structures 

in jointed rock, in Lecture Notes in Computational Science and Engineering: Meshfree Methods, 26, 

Springer-Verlag,  Heidelberg, pp. 291-306.

Morris, J. P., Rubin, M. B., Blair, S. C., Glenn, L. A., and Heuze, F. E. (2004), Simulations of underground 

structures subjected to dynamic loading using the distinct element method, Engng Comput., 21, 384-

408.

Nguyen, O. and Ortiz, M. (2002), Coarse-graining and renormalization of atomistic binding relations and 

universal macroscopic cohesive behavior, J. Mech. Phys. Solids, 50, 1727-1741.

Papoulia, K. D., Sam, C.-H., Vavasis, S. (2003), Time continuity in cohesive finite element modeling,  Int.

J. Numer. Meth. Engng, 58, 679-701.

Rubin, M. B. (1995), Numerical solution of two- and three-dimensional thermomechanical problems using 

the theory of a Cosserat point, in J. of Math. and Phys. (ZAMP), 46, Casey, J. and Crochet, M. J., 

Brikhauser Verlag,  Basel , pp. S308-S334.

Rubin, M. B. (2000), Cosserat Theories: Shells, Rods and Points, Solid Mechanics and its Applications, 

Kluwer, The Netherlands.

Ruiz, G., Ortiz, M., and Pandolfi, A. (2000), Three-dimensional finite-element simulation of the dynamic 

Brazilian tests on concrete cylinders, Int. J. Numer. Meth. Engng, 48, 963-994.

Sanderson, D. J. and Zhang, X. (1998), Deformation, damage, and fluid flow in fracture networks and 

around faults, Fall Meeting of the American Geophysical Union, 

Sharon, E. and Fineberg, J. (1996), Microbranching instability and the dynamic fracture of brittle materials, 

Phys. Rev. B, 54, 7128-7139.

Walton, O. R. (1980), Particle dynamics modeling of geological materials, Lawrence Livermore National 

Laboratory, UCRL-52915.

Xu, X.-P. and Needleman, A. (1994), Numerical simulations of fast crack growth in brittle solids, J. Mech. 

Phys. Solids, 42, 1397-1434.



16

Figure 1: The blocky nature of the rock mass is evident in the collapse of this cavern in 

Tuff. This cavern collapsed at stresses below the yield strength of the intact rock mass.

Figure 2: Cohesive elements. (a) Daughter nodes created near a crack tip; (b) weakening 

law, including reversible unloading and reloading paths to the origin.
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Figure 3: Scale- and velocity-dependent properties (such as the effective fracture energy, 

Γ ) arise naturally in large-scale simulations of crack propagation, which are often unable 

to resolve surface roughness and unstable branching on the microscale.

Figure 4: Center-line fracture in PMMA plates. (a) Applied tensile stress along the x-axis 

causes a seeded crack to tear; (b) the resulting crack-tip speeds are close to the Rayleigh 

wavespeed, just as expected for straight cracks that cannot branch.



18

Figure 5: Generic facility model including several tunnel sections and a lift shaft. The 

facility spans 60m and is 50m below the surface.

Figure 6: The non-persistent randomized geology in the vicinity of one of the tunnels. 

The near-horizontal joint set persists through the model. However, joint sets in the near 

vertical direction persist only through several consecutive layers at a time.
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Figure 7: The velocity magnitude for the two models at 30ms. The non-persistent, 

randomized geology model (left) and regular jointed model (right) exhibit fundamentally 

different responses to loading.

Figure 8: Snapshots of the largest room at 0 ms and 200 ms, using the non-persistent joint 

set simulation. The simulation predicts that this large room within the facility would 

completely collapse under the applied loading.
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Figure 9: The infrequently jointed model is displayed top left, with individual blocks 

colored randomly to emphasize joint locations. The simulation results at 10 ms, 500 ms 

and 1000 ms, show that a significant portion of the surrounding rock is reduced to rubble 

and fills the tunnel. Colors in the figures denote velocity magnitudes, with blue 

indicating 0 m/s and red indicating 10 m/s. 




