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Accelerator mass spectrometry (AMS) is a sensitive and robust technique 

typically applied to the quantification of long-lived radioisotopes in samples too small to 

be decay-counted.  AMS is characterized by a high rejection of interferences and a low 

susceptibility to matrix components, which reduce the demands on sample preparation 

chemistry.  At Lawrence Livermore National Laboratory (LLNL) Center for Accelerator 

Mass Spectrometry (CAMS), we have developed an AMS capability for the measurement 

of actinide concentrations and isotopic ratios.  To date, this capability has been primarily 

devoted to the measurement of 239Pu and 240Pu in bioassay and environmental samples 

including soils, sediments, waters, and human urine.  For these analyses, a known amount 

of 242Pu is added to the samples as a reference isotope for normalization.  Measurements 

of standard and intercomparison samples have shown that quantification is accurate and 

precise from at least 106 to 1011 atoms/sample.  Recently, the ratios of 240Pu, 241Pu, 242Pu, 

and 244Pu to intrinsic 239Pu have been successfully measured in soil samples from nuclear 

test sites.  In addition, initial measurements of U and Np isotopes have yielded results 

consistent with the Pu measurements with respect to sensitivity, accuracy, precision, and 

linear range. 
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Introduction 

Measurements of plutonium isotopes and other actinides at very low 

concentrations are required in a number of important applications that include 

radiobioassay programs, environmental assessments, radioactive waste treatment, and 

basic research in chemistry and geochemistry.  Atom counting techniques currently 

provide considerably better sensitivity than traditional radiometric methods for long-lived 

radionuclides.  Among these techniques, AMS is widely used to measure very low levels 

of isotopes such as 14C, 10Be, 26Al, 36Cl, 41Ca, and 129I.1  In recent years, AMS has been 

further developed to incorporate the measurement of additional isotopes, particularly 

actinides, to its capabilities.2,3,4,5  Fifield et al.2 have demonstrated the feasibility of 

measuring plutonium isotopes using AMS with a limit of detection of ~106 atoms per 

sample, which is about two orders of magnitude lower than conventional counting by 

alpha spectrometry.  AMS is also capable of distinguishing between 239Pu and 240Pu, thus 

providing additional information that can be used for source identification.  For example, 

the ratio 240Pu/239Pu due to integrated global fallout is on average 0.18 while that of 

weapons-grade Pu is <0.07.6  Other advantages of AMS are a large dynamic range, 

typically 5 orders of magnitude, and being less demanding on sample preparation than 

similarly sensitive techniques because of its high rejection of molecular isobaric 

interferences and low susceptibility to matrix effects. 

An AMS system usually consists of a negative ion source, a low-energy 

spectrometer or injector system, a tandem accelerator, and a high-energy spectrometer.  

In general, the sample has to be in a solid form to be loaded into the ion source for 

measurement, e.g., graphite for 14C measurements or AgCl for 36Cl measurements.  The 
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sample is ionized by Cs sputtering and the negative ions produced are mass/energy 

analyzed and injected into the tandem accelerator where they are accelerated towards the 

positive terminal.  At the positive terminal, the negative ions pass through a foil or gas 

stripper and lose electrons to become positive.  During the stripping process, molecular 

ions are dissociated thereby reducing background interferences that may originate from 

isobaric hydrides or oxides.  The positive ions are accelerated away from the positive 

terminal into the high-energy spectrometer, then mass/energy analyzed and, finally, 

counted in a gas ionization chamber or similar detector. 

Due to the complexity of the processes involved in the ionization and transport of 

ions through the spectrometer, AMS requires that a reference isotope be measured 

concurrently with the isotope of interest for normalization.  For example, 14C is counted 

in an ionization chamber while stable 13C or 12C is measured as a current in a Faraday 

cup.  The actual atomic ratio 14C/13C or 14C/12C is calibrated using standards.  

Normalization for actinides like plutonium is unique because there is no natural stable 

isotope.  An isotope spike has to be added as reference and can also be used as a recovery 

tracer for quantification of the total atoms in the sample.  In most practical actinide 

applications, the amount of reference isotope would be too low to be measured as a 

current using a Faraday cup.  Therefore, the reference isotope must be counted as well.  

In some applications, it may be possible to choose one of the isotopes present in the 

sample as reference to obtain intrinsic ratios. 

CAMS has recently added the capability of measuring plutonium and other 

actinides with the implementation of a heavy-ion beam line.7,8  Here we describe the 

CAMS heavy-ion spectrometer and its current measuring capabilities for actinides. 
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Experimental 

Sample Preparation 

Actinide samples have to be converted to a manageable amount of solid to be put 

into the AMS ion source.  In the case of environmental or bioassay samples, the actinides 

have to be solubilized by acid digestion, separated, and purified, following standard 

procedures common to other techniques such as alpha spectrometry.  The purified 

actinide solution was taken to dryness, the actinide redissolved in 5 mL of 10 M HCl, and 

coprecipitated with 0.15 mg of Fe(III) by adding a 1:1 solution of NH4OH.  The 

precipitate was centrifuged, washed, redissolved in 0.15 mL of an 8M HNO3-15% H2O2 

solution containing 0.15 mg of Nb(V), and transferred to a ~1-mL capacity quartz 

crucible where it was taken to dryness.  The solid in the crucible was subsequently heated 

to 800°C in a muffle furnace to convert it to the oxide form.  The solid, comprised mostly 

of Fe2O3 and Nb2O5, was scraped from the crucible and loaded in an aluminum target 

holder.  Blanks and standards were prepared in the same manner to turn them into solid 

form.  For routine measurements of 239Pu and 240Pu, a pure 242Pu spike was added as 

reference tracer.  For test measurements of uranium isotopes, pure 233U was used.  For 

lack of an adequate neptunium isotope spike, 242Pu was used for the measurement of 

237Np.  Blanks, calibration curves, and standard isotopic solutions were used to evaluate 

the capabilities of the AMS system and for quality control during routine measurements. 

Accelerator Mass Spectrometry 

The AMS heavy-ion beam line is illustrated in Fig. 1.  The Cs-sputtering ion 

source produced 40 keV negative ions (e.g., 239Pu16O–, 236U16O–) ions that were 

transported first to a 90º energy-analyzing spherical electrostatic deflector, and then to a 
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90º mass-analyzing double-focusing magnet to be injected in the tandem accelerator† 

operated at +6.5 MV.  At the high-voltage terminal of the tandem, the negative molecular 

ions passed through a gas stripper and were converted to a charge distribution of positive 

atomic ions (e.g., 239Pu5+, 239Pu6+, etc).  Electrostatic repulsion then accelerated the 

positive ions out of the tandem through a 30º mass-analyzing magnet into the heavy-ion 

beam line.  The heavy-ion beam line is equipped with fast-switching electrostatic 

deflector plates, an energy-analyzing 45º cylindrical electrostatic deflector, and a two-

anode longitudinal-field ionization detector.  The electrostatic deflector plates were used 

in combination with the fast mass switching capability of the low-energy spectrometer for 

isotope mass selection and fast normalization, i.e., fast switching between an isotope of 

interest and the reference isotope during measurement in time intervals of hundreds of 

milliseconds.  This improves the accuracy and precision of the ratio because the ion 

source output remains essentially constant between the short sampling intervals. 

The target wheel of the CAMS facility accommodates up to 64 samples.  In 

automatic operation, the system could measure up to 5 different isotopes consecutively, 

repeat or move to another sample according to programmable instructions.  During each 

isotope measurement cycle, the system alternated the mass selected for counting between 

that of an isotope of interest and that of the reference using sampling intervals of 400 and 

100 msec, respectively. The measurement time per isotope was normally 10 seconds and 

the set of up to 5 isotopes was repeated 3 times per cycle for 15 total measurements per 

cycle.  This measurement cycle was repeated 4 times for each sample.  One of the 5 

isotopes was selected to be the reference isotope.  This measurement should yield a ratio 

                                                 

† High Voltage Engineering Corporation, Model FN Tandem Accelerator 
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of 1 and is used to normalize the data for any differences between the two channels 

(electronics, manual gates, etc.).  The high-energy spectrometer was set to select the 5+ 

charge state (Ekinetic = 39 MeV) for detection.  The signals from the detector were used to 

set a charge gate to count the 5+ events only, using an interactive two-dimensional plot of 

the energy signal of one anode of the detector versus the other.  This gate was sufficient 

to reject neighboring 4+ and lower charge-state ions that make it to the detector. 

Results and discussion 

The detection efficiency of plutonium isotopes, based on samples with known 

amounts of atoms, is estimated at about 5×10-5, a value that corresponds to a combination 

of the efficiencies of sample preparation and AMS.  Note that the final stage in sample 

preparation is the transfer of ~0.3 mg of solid containing the actinide from a quartz 

crucible to a target holder.  This process cannot be strictly quantitative because the 

crucible may adsorb some of the actinide and it is very difficult to get 100% yield in the 

transfer of the solid.  To date, hundreds of measurements of 239Pu and 240Pu have been 

performed on bioassay and environmental samples by adding typically 3.0×109 atoms of 

242Pu as the reference isotope.  In all of these measurements, blanks for 239Pu and 240Pu 

have been consistently below 106 atoms.  For example, the weighted averages and 

standard deviation of 18 and 10 sample blanks taken for 239Pu during two separate runs 

were 0.05±0.29 and 0.02±0.26 ×106atoms, respectively. 

Calibration samples have been included in every AMS run to cover the range of 

concentrations expected in the samples.  A recent calibration curve ranging from 5.0×105 

to 1.0×107 atoms of 239Pu is shown in Fig. 2.  A weighted least-squares linear fit to the 

data gave a slope of 1.146±0.041 and an intercept of (0.087±0.038)×106 atoms of 239Pu.  
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The slope is greater than 1, which could be due to a difference between the nominal and 

actual concentration of the 239Pu or 242Pu solutions used to prepare the samples.  Routine 

plutonium measurements also include samples of NIST traceable isotopic standards CRM 

128 (present day ratio 239Pu/242Pu = 0.9989±0.0003) and CRM 138 (present day ratio 

240Pu/239Pu = 0.0862±0.0001) to make corrections for mass bias if needed.  Most of our 

isotopic standard measurements to date have been in agreement with the expected values 

within the uncertainty, e.g., in a recent AMS run, the weighted mean of 6 CRM 138 and 6 

CRM 128 samples were 240Pu/239Pu = 0.0859±0.0012 and 239Pu/242Pu = 0.9968±0.0091, 

respectively.  In addition, the measurement of the reference isotope (242Pu/242Pu) has also 

been consistently 1, indicating that there are no significant differences between 

measuring and reference channels. 

A particular concern in the measurement of 239Pu is the presence of uranium in the 

sample matrix.  Uranium can produce molecular isobaric interferences during ionization 

in mass spectrometric measurements (e.g., 238UH+ at mass 239Pu+, 238U17O+ or 238U16OH+ 

at mass 239Pu16O+; similar cases occur for negative ions) and, for some techniques, 

special reagents and a high degree of sample purification are needed to attain 106-atom 

sensitivity.  To assess the interference of 238U in 239Pu measurements, samples containing 

approximately 1013 238U atoms have been routinely measured demonstrating a rejection 

factor better than 107.  Therefore, sample preparation does not require special reagents for 

our 239Pu measurements by AMS. 

For the initial assessment of CAMS capabilities for uranium isotopes, we set out 

to measure 234U, 235U, and 236U.  A constant spike level of 2×109 atoms of 233U was used 

as reference.  Calibration samples for 236U were prepared ranging from about 105 to 108 
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atoms.  A weighted least-squares linear fit to the data, plotted in Fig. 3, yielded a slope of 

1.046±0.015 and an intercept of (0.050±0.027)×106 atoms of 236U.  The weighted average 

of 3 blanks resulted in (0.000±0.075)×106 atoms of 236U.  Three samples containing ~1013 

atoms of natural uranium were measured and the ratio 234U/235U was calculated from the 

measured ratios 234U/233U and 235U/233U.  The weighted average of the ratio 234U/235U was 

0.0075±0.0002 in good agreement with the expected value for natural uranium of 

0.0075±0.0007.9 

To evaluate the capability of the AMS system to measure 237Np, calibration 

samples containing nominally 106 to 1010 atoms of 237Np and 3.0×109 atoms of 242Pu as 

the reference isotope were prepared and measured (see Fig. 4).  A weighted linear least-

squares fit to the data resulted in a slope of 0.603±0.013 and an intercept of 

(0.39±0.28)×106 atoms.  The slope is significantly less than 1.0.  This is not unexpected 

since the reference isotope was a different element and would behave differently in the 

ion source.  Fifield et al.3 measured the relative negative-ion formation for the monoxide 

ion of some actinides with respect to PuO– and the result for NpO–/ PuO– was 0.77±0.03.  

This value is significantly higher than the slope of our data.  However, Fifield et al. used 

a matrix of Fe2O3 in their work while we used a matrix of Fe2O3 and Nb2O5 that could 

affect the ionization process and explain, at least partly, the difference observed.  The 

weighted average of 6 blanks is (0.34±0.23)×106 atoms.  Correction for the slope factor 

would yield a background level of (0.56±0.38)×106 atoms of 237Np. 

Among the applications of this technology, one of the most important is the 

determination of Pu in urine to assess dose or exposure in humans.  Therefore, we have 

participated in a blind interlaboratory exercise designed to evaluate the capability of 
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various techniques to measure 239Pu and 240Pu in this matrix.  The results of this 

intercomparison demonstrate that AMS is capable of accurate and precise measurements 

down to ~10-6 Bq (~106atoms).10  Recently, the ratios of 240Pu, 241Pu, 242Pu, and 244Pu to 

intrinsic 239Pu have been successfully measured in soil samples from nuclear test sites.11 

Conclusions 

We have described the determination of actinides concentrations and isotope 

ratios using AMS at LLNL.  Results from standard and intercomparison samples have 

shown that quantification is precise and accurate down to ~106 atoms for plutonium.  

Initial studies using uranium isotopes have yielded similar results.  Direct measurements 

of isotopic ratios of plutonium standards and natural uranium show no significant mass 

bias within the uncertainties.  Background determinations for 239Pu are equivalent to ~105 

atoms and samples containing 238U demonstrated that this system has a rejection factor of 

107 or better for 239Pu measurements.  Initial measurements of 237Np using a 242Pu spike 

as reference have shown similar results albeit at a somewhat smaller sensitivity and larger 

background.  Sample preparation did not require special reagents or facilities, which 

together with the high-throughput design of the CAMS instrument offers a sensitive and 

cost-effective method to measure actinides with rapid turn around of results. 
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Figure captions 

 

Fig. 1.  Diagram of the actinide AMS system at LLNL. 

 

Fig. 2.  AMS calibration curve of 239Pu.  The curve consists of 6 blanks and 5 quantity 

levels in triplicate, with 3.0×109 atoms of 242Pu as the reference isotope.  A weighted 

least-squares fit to the data follows:  

239Pumeas=[(1.146±0.041)×239Puexpected + (0.087±0.038)]×106 atoms, r2 = 0.975. 

 

Fig. 3.  AMS calibration curve of 236U.  The curve consists of 3 blanks (not shown) and 4 

quantity levels in triplicate, with 2.0×109 atoms of 233U as the reference isotope.  A 

weighted least-squares fit to the data follows: 

236Umeas=[(1.046±0.015)×236Uexpected + (0.050±0.027) ]×106 atoms, r2 = 0.998. 

 

Fig. 4.  AMS calibration curve of 237Np.  The curve consists of 6 blanks (not shown) and 

5 quantity levels in triplicate, with 3.0×109 atoms of 242Pu as the reference isotope.  A 

weighted least-squares fit to the data follows: 

237Npmeas=[(0.603±0.013)×237Npexpected + (0.39±0.28)]×106 atoms, r2 = 0.990. 



Fig. 1. 
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