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Abstract. In this paper, we highlight new multigrid solver advances in the Terascale Optimal
PDE Simulations (TOPS) project in the Scientific Discovery Through Advanced Computing
(SciDAC) program. We discuss two new algebraic multigrid (AMG) developments in TOPS:
the adaptive smoothed aggregation method (αSA) and a coarse-grid selection algorithm based
on compatible relaxation (CR). The αSA method is showing promising results in initial studies
for Quantum Chromodynamics (QCD) applications. The CR method has the potential to
greatly improve the applicability of AMG.

1. Introduction

At the core of many scientific simulation codes—especially those being developed as part of the
SciDAC program—is the need to solve huge linear systems on thousands of processors. Multigrid
methods are so-called scalable or optimal methods because they can solve a linear system with N
unknowns with only O(N) work. This property makes it possible to solve ever larger problems
on proportionally larger parallel machines in constant time. Classical iterative methods like
conjugate gradients are not scalable.

The algebraic multigrid (AMG) method was originally developed to solve general matrix
equations using multigrid principles [1]. The fact that it used only information in the underlying
matrix made it attractive as a potential black box solver. Instead, however, a wide variety of
AMG algorithms have been developed that target different problem classes and have different
robustness and efficiency properties.

In this paper, we consider solving the linear system

Au = f , (1)

where A is a real symmetric positive definite (SPD) matrix. There are two main components to
a multigrid method: the smoother (or relaxation method) and the coarse-grid correction step.
The coarse-grid correction step involves operators that transfer information between the fine
and coarse “grids”, denoted more generally by the space <n and the lower-dimensional (coarse)
vector space <nc . Let P : <nc → <n be the interpolation (or prolongation) operator, and let the
restriction operator be given by P T . We use the Galerkin coarse-grid operator P TAP . In all
multigrid methods, the smoother and coarse-grid correction steps must complement each other



well. In AMG, the smoother is typically fixed, hence all of the work goes into constructing an
appropriate P .

The goal of our research is to develop new AMG algorithms and techniques that broaden its
range of applicability even further. In this paper, we will briefly describe two new developments.
In Section 2, we will discuss the adaptive smoothed aggregation method (αSA) and show some
encouraging numerical results in the area of Quantum Chromodynamics (QCD) simulations. In
Section 3, we will discuss a new coarse-grid selection algorithm for AMG that is based on the
idea of compatible relaxation (CR).

2. Adaptive Algebraic Multigrid

In order for a multigrid method to be optimal, the coarse-grid correction must eliminate those
error components—the so-called algebraically smooth error components—that are not damped
well by the relaxation process. The accuracy by which each of these components is approximated
on the coarse grid is determined by its energy. As a consequence, the near null-space (kernel)
components of the linear system must be represented almost exactly. Hence, nearly all multigrid
methods today assume some a-priori information about the near null-space of the operator.
However, for the Quantum Chromodynamics (QCD) application that we will discuss briefly at
the end of this section, a-priori knowledge of the near kernel of the operator is not possible.

To address this problem, we have recently developed a class of AMG methods called adaptive

AMG (αAMG). These methods employ the idea of “using the method to improve the method.”
Recent algorithms that utilize this basic idea are Wagner and Wittum’s adaptive filtering [2],
Brandt’s bootstrap algebraic multigrid (bootstrap AMG) [3], adaptive smoothed aggregation
[4], and a Ruge-Stüben-based adaptive AMG algorithm described in [5]. These methods exhibit
the optimal convergence properties of multigrid, but do not require a-priori knowledge of the
near null-space. Instead, they automatically “discover” these problematic components and make
adjustments for them (i.e., they adapt).

One well-known method that can be viewed as an adaptive multigrid method is the
preconditioned conjugate gradient method (PCG) (see [6] for details). The fact that PCG
is generally not an optimal method illustrates the following crucial point about αAMG:

slow-to-converge error components should not be viewed globally, but instead should
be viewed only as representatives of locally smooth error.

In the αSA algorithm [4], this is achieved by “chopping up” near-kernel components to form
the columns of a tentative interpolation operator. These column vectors can be thought of
as a locally-supported basis that spans a space containing the near-kernel components, plus

much more. The interpolation operator is then formed by smoothing the tentative interpolation
operator. This is another important step in the αSA (and SA) algorithm because it lowers
the overall energy of the space spanned by the range of interpolation, thereby improving its
effectiveness for eliminating algebraically smooth error.

As alluded to above, QCD is an ideal application for using an adaptive method such as
αSA. We have so far consider the simplified 2D Hermitian Dirac-Wilson formulation (see [7] for
details). There are several difficulties solving these systems. The system becomes extremely
ill-conditioned as the so-called quark mass ρ approaches certain critical values ρcrit. In addition,
the near null-space components of the operator are not known a-priori, and they are oscillatory
as illustrated in Figure 1.

Table 1 shows results for αSA PCG and diagonally-scaled PCG. Eight near-kernel components
were computed in the adaptive setup and used to define the transfer operators. The convergence
factors for diagonally-scaled CG in the table illustrates the worsening of the condition number as
mq := (ρ− ρcrit) approaches zero. On the other hand, the convergence factors for αSA remains
uniformly bounded away from one for all parameter values. This is the main result in [7], and
the first such result to date.
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Figure 1. Real (left) and complex (right) algebraically smooth error for the Dirac system.

β / mq .01 .05 .1 .3

2 .33 /.99 .31 /.96 .31 /.94 .31 /.85
3 .42 /.98 .42 /.97 .40 /.93 .31 /.86
5 .31 /.99 .31 /.96 .29 /.92 .28 /.83

Table 1. Average convergence factors for αSA PCG and diagonally-scaled PCG applied to the
Dirac system (size 16384) for various choices of ρ and β.

3. Compatible Relaxation and Coarse-Grid Selection

One important component of all AMG algorithms is the selection of coarse “grids” or coarse

variables. Most coarsening algorithms are based on a particular notion of strength of connection

defined in terms of the relative size of off-diagonal coefficients in the matrix. It is easy to show
(by way of a simple example) that the size of off-diagonals is not a robust indicator of strength of
connection, and as a result, these coarsening algorithms are not always robust. In this section,
we discuss coarsening algorithms based on compatible relaxation (CR) as an alternative to using
strength-of-connection. We will start first with the theory behind CR.

We will use the notation in [8]. Again, consider solving the linear system in Equation (1).
Define the smoother error propagator by

I −M−1A, (2)

and assume that the smoother is convergent (in energy norm) so that (M +M T − A) is SPD.

Denote the symmetrized smoother operator by M̃ = M(MT +M −A)−1MT , i.e., M̃ is the “M”
in Equation (2) for the symmetric smoother (I −M−TA)(I −M−1A).

Let P : <nc → <n be the interpolation operator as before, and let R : <n → <nc be some
restriction operator such that RP = Ic, the identity on <nc . Note that R is not the multigrid
restriction operator. We can think of R as defining the coarse-grid variables, i.e., uc = Ru. Note
that PR is a projection onto range(P ). Consider now the two-grid multigrid operator,

ETG = (I −M−1A)(I − P (P TAP )−1P TA). (3)

The next two theorems summarize the main convergence results in [8].

Theorem 3.1

‖ETG‖
2

A ≤ 1−
1

K
; K = sup

e

‖(I − PR)e‖2
M̃

‖e‖2A
. (4)

Theorem 3.2

K ≤ ηK?; η = ‖PR‖A ; K? = inf
P

sup
e

‖(I − PR)e‖2
M̃

‖e‖2A
. (5)



Theorem 3.1 gives conditions that P must satisfy in order to achieve a fast uniformly
convergent multigrid method. The idea is to use this theory to guide us in the development
of AMG algorithms, and in particular, the selection of coarse grids. To do this, we use Theorem
3.2, which bounds the K in the first theory by two new constants, η and K?. The significance of
this theorem is that it separates the construction of P into its natural two components: coarse-
grid selection and definition of P ’s coefficients. The constant K? is the K in the first theorem
for the “best” P possible. Hence, K? measures the quality of the coarse grid in some sense,
because if it is small, we know there exists an interpolation operator that gives good AMG
convergence. Once we have a coarse grid, the expression for η gives us guidance on how to
define the coefficients of P in a way that is independent of the relaxation process.

To insure that K? is bounded in practice, we can use CR. In fact, in [8], we proved that
fast convergence of CR implies a small K? (a good coarse grid). Based on this work, we have
developed an algorithm for selecting coarse grids. The algorithm is as follows, where ρcr is the
convergence factor of CR and θ is the stopping criteria of the CR-based coarsening algorithm:

Initialize U = Ω; C = ∅; e = 1 (6a)

Do ν CR sweeps (6b)

While ρcr > θ (6c)

γi = |ei|/ ‖ei‖∞ (6d)

U = {i : γi > 1− ρcr} (6e)

C = C ∪ {independent set of U} (6f)

Do ν CR sweeps (6g)

To date, we have considered only the case where the coarse grid is chosen as a subset of the fine
grid variables. This is the classic AMG approach. In this setting, CR is simply F -relaxation.
That is, if we decompose the fine grid variables into the coarse-grid points, C-pts, and everything
else, F -pts, then CR is just relaxation on the homogeneous F -pt equations, Affe = 0. The
independent set algorithm is based on the nonzeros of A, and does not use any form of strength
of connection.

As a simple first example, consider the following 2D diffusion equation

−auxx − buyy + cu = f (7)

on a square domain with coefficients that vary in four quadrants as depicted in Figure 2. We
discretize on a uniform mesh with bilinear quadrilateral finite elements (this produces a 9-point
stencil). The resulting discrete linear system is anisotropic and strongly coupled in the x-
direction in the top left quadrant, anisotropic and strongly coupled in the y-direction in the top
right quadrant, isotropic in the bottom right quadrant, and diagonally dominant in the bottom
left quadrant. The coarse grid that our algorithm chooses is also given in the figure. We can see
that the algorithm does exactly the right thing in each of the quadrants.

As a second example, again consider the diffusion problem in Equation (7), but now with
a À b uniformly throughout the domain. Hence, the problem is everywhere anisotropic and
strongly coupled in the x-direction. In Figure 3, we show the coarse grids generated by our
algorithm, where we use a pointwise Gauss-Seidel CR method on the left, and a line Jacobi
CR method on the right. Here again, the algorithm picks the best complementary grid for
the relaxation method being used. Furthermore, there are currently no coarse-grid selection
algorithms based on strength of connection that are able to choose the grid on the right. This
is one nice feature of our algorithm; the fact that it naturally complements the smoother.

This work was performed under the auspices of the U. S. Department of Energy by University
of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.
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Figure 2. Coarse grid (right) for the diffusion equation Equation (7) with varying coefficient
data in different quadrants of the domain (left).

Figure 3. Coarse grids for the diffusion equation Equation (7) with uniformly anisotropic
coefficient data. Two different smoothers were used in the CR algorithm: pointwise Gauss-
Seidel (left), line Jacobi (right).
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