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ABSTRACT 
 
The azimuthal Zernike coefficients for shells of Zernike functions with shell numbers n<N may be determined by 
making measurements at N equally spaced rotational positions.  However, these measurements do not determine the 
coefficients of any of the purely radial Zernike functions.  Label the circle that the azimuthal Zernikes are measured in as 
circle A.  Suppose that the azimuthal Zernike coefficients for n<N are also measured in a smaller circle B which is inside 
circle A but offset so that it is tangent to circle A and so that it has the center of circle A just inside its circular boundary.  
The diameter of circle B is thus only slightly larger than half the diameter of circle A.  From these two sets of 
measurements, all the Zernike coefficients may be determined for n<N.  However, there are usually unknown small rigid 
body motions of the optic between measurements.  Then all the Zernike coefficients for n<N except for piston, tilts, and 
focus may be determined.  We describe the exact mathematical algorithm that does this and describe an interferometer 
which measures the complete wavefront from pinholes in pinhole aligners.  These pinhole aligners are self-contained 
units which include a fiber optic, focusing optics, and a “pinhole mirror”.  These pinhole aligners can then be used in 
another interferometer so that its errors would then be known.  Physically, the measurements in circles A and B are 
accomplished by rotating each pinhole aligner about an aligned axis, then about an oblique axis.  Absolute measurement 
accuracies better than 0.2 nm were achieved. 
 
Keywords: interferometer, wavefront measurement, phase-shifting interferometry 
 

1.   INTRODUCTION 
 
Visible light interferometry has been used to both to characterize individual EUVL mirrors and to characterize entire 
EUVL projection optical systems1, 2.  For EUVL projection optical systems that will be used at the 32-nm lithography 
node, allowable wavefront errors will be at the one angstrom level.  Here we describe a point-source-diffraction, phase-
shifting visible light interferometer (PSDI) that is absolutely accurate to better than two angstroms after correcting for 
wavefront errors.  It is designed to characterize a 0.3 NA EUVL projection optical system that is being developed by 
Canon Inc. 
 
The PSDI achieves its extreme accuracy by eliminating all conventional optics1.  A nearly spherical measurement wave 
is emitted from a pinhole at the object plane and is relayed by the optical system under test to a focus on a reflecting 
mirror with a pinhole nearby in the reflecting surface.  This pinhole emits the nearly spherical reference wave which 
interferes with the reflected measurement wave to produce the fringe pattern which is measured by a CCD camera.  
Phase-shifting interferometry determines the complete complex wavefront from a set of intensity frames with different 
phase shifts.  Phase-shifting interferometry is capable of measuring extremely small fractions of a wavelength.  This 
complex wavefront is numerically back-propagated to the aperture plane. 
 
In order to make the light from a pinhole be a nearly perfect spherical wave, the pinhole must be made small and 
extremely round.  It must be illuminated by circular polarized light that is focused onto the back side of the pinhole with 
a spot diameter that is much larger than the pinhole diameter.  There are tight tolerances on the allowable aberrations in 
the relay optics.  However, even this nearly perfect spherical wave still isn’t perfect enough and must be accurately 
measured to calibrate its deviation from sphericity. 
 



  

   

The portable package of fiber optic connector, relay lenses, and pinhole mirror is called either a “wavefront reference 
source” (WRS) or a “pinhole aligner” (PA)3.  Its wavefront is measured on what is called the Canon Test Stand 
Interferometer, which uses a complex multi-element lens to replace the EUVL projection optical system.  The 
wavefronts of two wavefront reference sources must be measured since one is needed to emit the nearly spherical 
measurement wave and the other is needed both to reflect the focused measurement wave and to emit the nearly 
spherical reference wave. 
 
The azimuthally varying Zernike terms for a WRS wavefront may be determined by making measurements at different 
rotation angles about the optical axis.  However, the axisymmetric purely radial terms will be totally undetermined by 
this method.  It turns out that by making additional measurements while rotating about an oblique axis through the 
pinhole, that the axisymmetric terms may be exactly measured as well in principle.  
 

2.    DESCRIPTION OF THE ALGORITHM 
 
Suppose one is measuring a test optic in an interferometer with unknown errors.   Let circle A be the test optic’s circular 
aperture.  By making measurements at a set of Nrot equally spaced rotational positions for the test optic, the azimuthally 
varying Zernike coefficients for all values of m that are not multiples of N may be determined.  This is done by rotating 
all the measurements to a common orientation and taking their average.  All the Zernike functions have either a cos(mφ) 
or sin(mφ) azimuthal dependence multiplied by a purely radial function.  The average of either of these functions rotated 
to Nrot equally spaced rotational positions is zero unless m is a multiple of Nrot, in which case the rotational average is the 
original function.  This averaging procedure averages out the components of the interferometer error for which m is not a 
multiple of Nrot.  In practice there are unknown small rigid body motions other than the rotations between the 
measurements, and thus piston, tilts, and focus cannot be determined. 
 
Note that the Zernike functions having a cos(mφ) azimuthal dependence with m=0 are not measured since zero is the 
zero multiple of Nrot.  Thus the coefficients of the purely radial Zernikes cannot be determined by this method.  However, 
both the radial Zernike coefficients and the azimuthally varying Zernikes coefficients for the test optic’s wavefront can 
be exactly determined by making measurements in two circles with the smaller circle offset with respect to the larger 
circle but still contained within the larger circle.  How this is done is the subject of the rest of this section. 
 
Let circle A be the larger circle and let circle B be the smaller circle that is contained within circle A.   The figure shows 
the geometry.  Suppose that we make Nrot equally spaced measurements about the center of circle A and that we also 
make Nrot equally spaced measurements about the center of circle B.  By the averaging procedure just described we can 
obtain the coefficients of the azimuthally varying Zernikes in circle A for which m is not a multiple of Nrot.  These 
coefficients are for a set of Zernike functions which have the center of circle A as their center and the radius of circle A 
as their normalizing pupil radius.  Similarly, we can obtain the coefficients of the azimuthally varying Zernikes in circle 
B for which m is not a multiple of Nrot.  These coefficients are for a set of Zernike functions which have the center of 
circle B as their center and the radius of circle B as their normalizing pupil radius.  From these two sets of measurements 
we wish to determine the coefficients of the purely radial Zernikes in circle A. 
There are various normalizations and orderings for the circular Zernike functions in the literature4, 5, 6.  We use what are 
called the FRINGE Zernike polynomials that were originally developed at the University of Arizona 6.  This set of 
polynomials, possibly normalized, has increasingly become the standard.  They are also the most natural set (appendix 
A).  Within each n shell, the ordering is m=n, m=-n, …, m=1, m=-1, m=0.  Positive values of m denote Zernike 
functions whose azimuthal dependence is cos(mφ) and negative values of m denote Zernike functions whose azimuthal 
dependence is sin(|m|φ). 
 
We work with Zernike shells n < Nrot.  In the recursion relations (appendix A), the Zernike functions are partitioned into 
shells.  The number of Zernikes in shells 0, 1, …, n is (n+1)2.  Within each shell, m varies from –n to +n.  The 
convention is that minus values of m denote Zernikes having a sin(mφ) azimuthal dependence while positive values of m 
denote Zernikes having a cos(mφ) azimuthal dependence.  The n=0 shell consists only of piston and the n=1 shell 
consists of x and y tilts and focus.  The reason for the concern with shells is that a Zernike function in one coordinate 
system can always be expressed in terms of Zernike functions in another coordinate system in the same or lower shells.  
This property gives closure to the problem.  If it happens that the wavefront can be exactly represented by Zernikes in 



  

   

shells with n lower than Nrot, then the mathematical algorithm to be described here will exactly recover these Zernike 
coefficients in the absence of noise. 
 
Appendices A and B describe the mathematics necessary to transform from one Zernike representation to another.  The 
closure property is also proved in these appendices.  Although the transformations in these appendices are not directly 
used in the algorithm to be described here, they were used to test this algorithm.   
  
 
 
 

Figure 1   Geometry for the determination of the azimuthally 
symmetric and non-symmetric errors by making measurements 
in two circles, one in circle A and the other in circle B, which 
is off center with respect to circle A but is contained in circle A. 

 
 
 
 
We are given the non-radial Zernike coefficients for circle A about its origin and with its pupil radius and for circle B 
about its origin and for its pupil radius.  If the unknown radial Zernike terms are included, the two Zernike expansions 
must agree in their overlap region, which is all of circle B.  We thus have: 
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We may rewrite this as 
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where the unknown terms are now on the left and the known terms are now on the right.  The upper limit for the shell 
number n in the sums is N=Nrot-1.  We might think to use least squares to solve for the unknown coefficients but there is 
one complication that must be addressed first.  There may be piston, tilts and focus between the A and B measurements.  
Thus we really wish to do least squares with the following expansion: 
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Note that only the Zernike terms for n>=2 have been kept.  The least squares functions are the piston, the x tilt, the y tilt, 
the focus and the coefficients of the radial Zernikes for n>=2 for both circle A and circle B.  The least squares functions 
are on the left hand side of the equation. 
 



  

   

3.   TESTING OF THE ALGORITHM 
 

The mathematical algorithm has been tested by assuming a Zernike expansion in circle A, then finding the Zernike 
expansion in circle B using the translation and scaling transformations described in the appendices, then by setting the 
coefficients in both expansions for the radial Zernikes and the x and y tilts to zero, and then by doing least squares fitting 
in circle B.  The procedure is exact when there is no noise.  The least squares fitting gives the radial Zernike coefficients 
for both circles A and B. 
 
Let fi(x) be a set of functions for which the equation                                                is to be least squares fit. 
Here xk is a set of (x,y) points on a grid filling circle B, the fi(x) are the functions on the left hand side of Eq (7), and g(x) 
is the right hand side of Eq (3).  The denser the grid the more accurate the result.  We find that a 100x100 square grid 
masked to circle B is more than fine enough. This can be cast as the matrix equation 
                                     where                                                        and  
 
Since g(x) is linear in the non-radial Zernike coefficients for n ≥ 2 for circles A and B, so are the coefficients in the 
solution vector ci. This solution vector gives the radial Zernike coefficients for n ≥ 2 for circles A and B and the 
coefficients of the piston, tilts, and focus terms on the left-hand side of Eq (7).  These last coefficients are of course of no 
physical interest. 
 
We next present a numerical example to demonstrate the numerical well-behavedness of this method.  Define the circle 
A coordinate system so that circle A is centered at the origin and has unity pupil radius.  Let circle B have origin 
(X0B,Y0B)=(0.33,0) and pupil radius RpupilB=0.5 in this circle A coordinate system.  Choose an arbitrary set of circle A 
coefficients cA and solve for the circle B Zernike coefficients cB using the appendices to obtain the below table. 

 
 
 
Table 1    Numerical example for the algorithm.  The table 
gives the Zernike coefficients in the circle A and B 
coordinate systems.  The circle B Zernike coefficients are 
derived from the circle A coefficients, which have been 
arbitrarily chosen. 
 
 
 

If we zero the coefficients for the tilts and all the purely radial Zernikes and use least squares as described in section II, 
we exactly recover the purely radial Zernike coefficients for both circles A and B except for piston and focus.  We also 
get the error sensitivity matrix.  We have studied the sensitivity of the solved-for radial Zernike coefficients for 
measurement errors in any quantity including the individual coefficients for the azimuthally varying Zernikes for either 
circle A or circle B and including errors in the origin or pupil radius of circle B.  We find the algorithm to be numerically 
robust.  This algorithm has been extensively tested with different Zernike coefficients, different circle B origins and 
pupil radii, and different maximum Zernike shell numbers. 
 

4.   WAVEFRONT REFERENCE SOURCE CALIBRATIONS 
 
 
 

Figure 2   Rotation of the WRS about the aligned 
axis which is the optical axis of the Canon test 
lens.  This axis passes through the pinhole.  Four 
equally spaced rotations were performed.  The 
last rotation on the far right returns the WRS to 
its original orientation. 

 

N n m cA cB Zernike 
1 0 0 +1.00 +0.780591445 1 
2 1 1 +0.20 -0.566567000 X 
3 1 -1 +0.30 +0.150000000 Y 
4 1 0 +0.50 -0.051850000 2 R2-1 
5 2 2 -1.00 -0.004975000 X2-Y2 
6 2 -2 +0.00 +0.000000000 2 X Y 
7 2 1 +0.00 0.2475000000 (3 R2-2) X 
8 2 -1 +0.00 +0.000000000 (3 R2-2) Y 
9 2 0 +0.75 +0.0468750000 6 R4 – 6 R2 + 1 
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Three WRS wavefronts were measured using Nrot=4.  For each, four rotations were done about the aligned axis (figure 2) 
and four rotations were done about the oblique axis (figure 3).  The wavefront reference source under test is the bottom 
WRS in the Canon Test Lens Interferometer, which is shown in figure 4.    The outer vacuum vessel is shown cut away. 
 
 
 

Figure 3   Rotation of the WRS about the oblique axis.  
This axis passes through the pinhole but is at an angle 
to the optical axis of the test lens.   Four equally 
spaced rotations were performed.  The last rotation on 
the far right returns the WRS to its original orientation. 

 
 
 
 
 
The bottom WRS provides the measurement wave which is the phase-shifted wave in this phase-shifting, point-source-
diffracting interferometer (PSDI).  The complex multi-element test lens (center) focuses the light from the bottom 
pinhole to a spot near the top WRS’s pinhole, which emits the reference wave.  The measurement and reference waves 
interfere at the CCD camera, forming a fringe pattern with nearly linear fringes.  
 
 
 
 
 
 

 Figure 4   Canon Test Lens Interferometer 
 
 
 
 
 
 
 
The top WRS is inclined at a small angle so that the reflected light may be directed onto a CCD chip which is out of the 
way of the incident measurement wave.  The CCD chip is remote from most of the electronics for the CCD camera and 
is mounted at the end of a small carrier board which has minimal electronics.    The carrier board is only a little wider 
than the CCD chip.  In this way, minimal clearance is needed and the top WRS needs to be inclined only at a small angle. 
 
The twelve-frame, π/4  phase-shifting interferometry phase-shifting algorithm7 enables both the phase and amplitude to 
be determined.  The particular algorithm that is used reduces the errors caused by the PZT voltage ramp having the 
wrong slope or being curved and reduces the errors caused by a linear variation in time of the background light or the 
laser power.  The algorithm is also insensitive to CCD power law nonlinearities up to and including the sixth power.  
Numerical back-propagation is used to propagate the wavefront from the CCD camera to the aperture plane at the 
bottom of the test lens. 
 
For each rotational position of the bottom WRS, the average of a set of measurements over a “tilt grid” is done.  A “tilt  
grid” is a set of focus points on the top WRS mirror for the measurement wave.  The focus point is moved with respect 
to the pinhole by translating the top WRS.  The set of points in a “tilt grid” is always chosen to have inversion symmetry 
with respect to the top WRS’s pinhole.  This property makes the errors due to distortion average out.  A tilt grid also 
provides averaging over the roughness of the reflecting surface and provides averaging for the fringe print-through. 
 



  

   

Each WRS provides rotation about its own axis by using inner and outer cylindrical shells which may be rotated with 
respect to each other using high precision bearings.  This gives the rotation about the “aligned” axis.  In addition, the 
bottom WRS is mounted on an inclined rotation stage whose rotation axis passes through the pinhole.   There is a wedge 
block between the bottom WRS and the rotation stage.  This wedge has the same wedge angle as the rotation stage’s 
inclination angle.  At the 0° rotation angle, the body z axis of the WRS coincides with the optical axis of the test lens.  
This gives the rotation about the “oblique” axis.   
 
The use of circular polarization is crucial to the algorithm.   The measurement wave diffracted from the bottom WRS 
pinhole is RH circular while the reference wave diffracted from the top WRS pinhole is LH circular.  After the 
measurement wave is reflected from the top WRS’s reflecting surface, it is LH circular polarized.  If a linear polarization 
were used that was fixed with respect to the interferometer, then it would no longer necessarily be true that the wavefront 
errors from the bottom WRS would rotate with the bottom WRS.  If a linear polarization were used that was fixed with 
respected to the bottom WRS so that the direction of linear polarization rotated with the bottom WRS, then it would no 
longer necessarily be true that the interferometer errors would be fixed. 
 
For all the wavefront reference sources, the principal wavefront error was astigmatism.  The WRS wavefronts had about 
0.2 to 0.4 nm of aberration which could be measured with about 0.1 to 0.15 nm reproducibility (one sigma with respect 
to the mean).  The results of several measurement sets were averaged to obtain each WRS’s wavefront. 

 
5. SUMMARY 

 
By rotating about an oblique axis as well as an aligned axis, the complete wavefront of the wavefront reference sources 
could be measured.  By calibrating the wavefront for each WRS, an absolute accuracy of 0.2 nm can be achieved for the 
interferometer. 
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Appendix  A   Translational transformation of the Zernike functions 
 
Since the Zernike functions are a complete set, a Zernike function in one coordinate system can be expressed in terms of 
the Zernike functions in any other coordinate system.  Here we wish to consider only a change of origin or a translation.  
Scaling transformations due to changes in the normalizing radius are discussed in appendix B, while rotational 
transformations are trivial.  The Zernike functions have the form Znm(ρ,φ) = fnm(ρ2) ρmcos mφ with n ≥ m for m ≥ 0 

and fn|m| ρ|m|sin |m|φ with n  ≥  |m| for m < 0.  It is more convenient to work with N = n-|m| rather than n since the 

functions f N
(m) (x ) are of degree N in x = ρ2 and are defined for N ≥ 0.  The Rodrigues formula for these functions also 

has a simpler form.  For each m, the functions f N
(m) (x )  form a complete set over x.  The Zernike functions are defined to 

be orthogonal on the unit circle with the normalization condition f N
(m) (1) = 1.   The factor f N

(m) (ρ 2 ) of the Zernike 



  

   

function Znm(ρ,φ) is actually a Jacobi polynomial whose argument has been scaled and shifted.   A large literature on the 
properties of Jacobi polynomials exists.  Note that this function does not contain all the radial dependence of the 
corresponding Zernike function except when m=0.  Any polynomial in X and Y can be represented as a sum of Zernike 
functions since they can be shown to form a complete set of functions in the XY plane. 
 
The reason that the factor ρ|m| exists and that the remainder of the radial dependence depends only upon ρ2 can be seen as 
follows: only terms in XkYl with k+l ≥ m ≥ 0 can give rise to terms in cos mφ and sin mφ.  Thus if the azimuthal 
dependence is either cos mφ or sin mφ, there must be a ρm factor.  The polynomial in ρ multiplying ρmcos mφ or ρmsin 
mφ must then depend only upon ρ2 for we require invariance under the identity transformation ρ → −ρ and φ → 180°+φ, 
which maps a point into itself. 
The generators for the translations in X and Y are ∂/∂X and ∂/∂Y, respectively, where X and Y are the normalized x and y 
coordinates.  We wish to find expansions for ∂/∂X Znm(ρ,φ) and ∂/∂Y Znm(ρ,φ) in terms of the Znm(ρ,φ).  Define x = ρ2.  
Orthogonality on the unit circle requires that: 

 
f N

(m) (x)
0

1

∫ f N'
(m) (x )x mdx = 0 for N ≠ N'

 (A.1) 
These are orthogonal polynomials on the unit interval [0,1] with weighting factor xm.  This property completely 
determines these polynomials except for their normalization.  It also determines the differential equation they obey and 
their generating function. Using the theory of orthogonal polynomials, they can be shown to obey the differential 
equation: 

 
x(1 − x) d2

dx2 + (m + 1) − (m + 2)x[ ] d
dx

+ λNm
 
 
 

 
 
 

f N
(m) (x ) = 0

 (A.2) 
where the eigenvalue λNm = N2+(m+1) N. 
 
The theory of orthogonal polynomials starts with a differential equation of the form: 

 

p(x ) d2

dx2 + q(x ) d
dx

+ λn
 

 
 

 

 
 f n (x ) = 0

 (A.3) 
Here p(x) = p2x2 + p1x + p0 is a polynomial of no higher than the second degree and q(x) = q1x + q0 is a polynomial of 
no higher than the first degree.  It may be proved, except for normalization, that: 
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dxn w( x)pn (x )[ ]
 (A.4) 

where 
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 (A.5) 
It may also be proved that the eigenvalue λn is determined by p2n(n-1)+q1n+λn=0. From Sturm-Liouville theory, 
orthogonality on an interval [a,b] with weighting factor w(x) requires that  

 

e
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dx∫
W( f n , f m )

a

b

= 0

 (A.6) 
where W(fn,fm)  is the Wronskian of fn(x), and fm(x).  Since w(x)=xm for f N

(m) (x ) : 
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 (A.7) 
If p(x) has zeros at 0 and 1, then the polynomials will be orthogonal on [0,1] with weighting factor xm for m ≥ 0.  Thus 
p(x) has the form x(1-x) up to a factor.  The polynomial q(x) may be determined so as to make xm the weighting factor 
 
The functions f N

(m) (x )  are given by the Rodrigues formula: 
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They obey the orthogonality relation: 
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 Now we are ready to find the expansion for the gradient of a Zernike function in terms of the Zernike functions.  
Since X = ρ cos φ and Y = ρ sin φ, we have: 
 

 

∂
∂X

= cosφ ∂
∂ρ

−
sinφ

ρ
∂

∂φ

∂
∂Y

= sinφ ∂
∂ρ

+ cosφ
ρ

∂
∂φ  (A.10) 

Thus: 

 

∂
∂X

f (ρ2 )cos mφ = f ' (ρ2 )ρm+1 cos(m + 1)φ + ρ2 f ' (ρ2 ) + mf (ρ2 )[ ]cos(m −1)φ

∂
∂X

f (ρ2 )sinmφ = f ' (ρ2 )ρm+1 sin(m +1)φ + ρ2 f ' (ρ2 ) + mf (ρ2 )[ ]sin(m − 1)φ

∂
∂Y

f (ρ2 )cosmφ = f ' (ρ2 )ρm+1 sin(m + 1)φ − ρ2 f ' (ρ2 ) + mf (ρ2 )[ ]sin(m −1)φ

∂
∂Y

f (ρ2 )sin mφ = − f ' (ρ2 )ρm+1 cos(m + 1)φ + ρ2 f ' (ρ2 ) + mf (ρ2 )[ ]cos(m − 1)φ
 

Here f(ρ2) represents f N
(m) (ρ2 ) .  We wish to expand 

d
dx

f N
(m) (x) in terms of f N'

(m+1) (x )  with varying N’ and 

to expand 
d
dx

f N
(m) (x) + mf N

(m) (x ) in terms of f N'
(m−1) (x ) with varying N’.  Note that there is a problem here 

when m=0 since f N
(m) (x ) is not defined for negative m.  For the m=0 case, only the cos mφ functions exist and we only 

need 
d
dx

f N
(0) ( x) in terms of f N

(1) (x ) . 

 
We will prove that for m ≥ 0 and N ≥ 0 



  

   

   

d
dx

f N
(m) (x) = [2( N −1) + m + 2] f N −1

(m+1) (x )
[2(N − 2) + m + 2] f N −2

(m+1) (x )

[2(N − N ) + m + 2] f0
(m+1) (x )  (A.12) 

 
We will also prove that for m > 0 and N ≥ 0: 

  

x d
dx

f N
(m) (x ) + mf N

(m) ( x) = [2(N − 0) + m] f N
(m−1) (x )

[2(N − 1) + m] f N −1
(m−1) (x )

[2( N − N ) + m] f 0
(m−1) (x)

 (A.13) 

The expressions d
dx

f N
(m) (x)  and x d

dx
f N

(m) (x ) + mf N
(m) ( x)  are polynomials of degree N-1 and N, respectively.  The 

expansion (A.12) is for m ≥ 0 while the expansion (A.13) is for m > 0.  The coefficients in these two expansions are given 
by: 

 

d
dx

f N
(m) ( x) 

 
  

 
 f N'

(m+1) (x )xm+1dx
0

1

∫
f N'

(m+1) (x) f N'
(m+1) ( x)x m+1dx

0

1

∫  
and 

 

x d
dx

f N
(m) (x) + f N

(m) (x ) 
 
  

 
 f N'

(m−1) (x )x m−1dx
0

1

∫
f N'

(m−1) (x ) f N'
(m−1) (x)x m−1dx

0

1

∫  
The first integral may be easily evaluated by using the Rodrigues formula formula given earlier and integrating repeatedly 
by parts.  The same approach may be used on the second integral after making the substitution 

 
x d

dx
f N

(m) (x ) + f N
(m) (x) =

1
x m−1

d
dx

x m f N
(m) (x)[ ]

 (A.14) 
The explicit equations for the expansion of the gradient of a Zernike function when m ≠ 0 are: 
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∂
∂Y

Zn,±m (ρ,φ ) =

± [2n − m]Zn ,∓(m+1) + [2(n −1) − m]Zn−1,∓(m+1) + +[2(m + 1) − m]Zm+1,∓(m+1){ }
∓ [2(n −1) − m + 2]Zn−1,∓(m−1) + [2(n − 2) − m + 2]Zn−2,∓(m−1){
+ +[2(m −1) − m + 2]Zm−1,∓(m−1)}1− δ± m,+1( )  (A.15) 
The factors of (1-δ±m,-1) and (1-δ±m,+1) are present since there is no Zernike function in sin mφ with m=0.  For m=0: 

  
∂

∂X
Zn,0 (ρ,φ ) = 4nZn,+1(ρ,φ ) + 4 n − 1( )Zn−1,+1(ρ,φ )+ +4Z1,+1 (ρ,φ )  

  
∂

∂Y
Zn,0 (ρ,φ ) = 4nZn,−1(ρ ,φ ) + 4 n −1( )Zn−1,−1 (ρ,φ )+ +4 Z1,−1(ρ,φ )  (A.16) 

 
Let Xc and Yc be the location of the origin of the coordinate system for the Zernike expansion measured in units of the 
normalizing radius.  Note that  ∂/∂Xc = -∂/∂X and ∂/∂Yc = -∂/∂Y.  The operators ∂/∂Xc and ∂/∂Yc are the generators for 
infinitesimal translations of the origin of the coordinate system in the X and Y directions, respectively.  The operator 
representing the finite translation (∆Xc, ∆Y)c is exp(∆Xc ∂/∂Xc + ∆Yc ∂/∂Yc).  Let the matrices A and B be given by: 

 

∂
∂Xc

Znm (ρ,φ ) = An,m;n' ,m' Zn' m' (ρ,φ )

∂
∂Yc

Znm (ρ,φ ) = Bn,m;n' ,m' Zn'm' (ρ,φ )

 (A.17) 

The matrices A and B are infinite dimensional.  However, note that An,m;n’,m’ and Bn,m;n’,m’ are zero if n’>n.  If the 
expansion in Zernike functions is truncated at some shell n, then translation will not couple to Zernike functions in higher 
shells.  The matrices A and B will then be finite-dimensional and nilpotent.  Nilpotency for a matrix A means that there is 
some non-negative integer r such that Ar=0.  The operators ∂/∂Xc and ∂/∂Yc couple a Zernike function Znm(ρ,φ) either to 

lower shells or to higher magnitude |m|.  The operators ∂/∂Xc and ∂/∂Yc have the property  that (∂/∂Xc)r (∂/∂Yc)s 

Znm(ρ,φ)=0 whenever r+s > 2n-|m|.  This means that (∆Xc ∂/∂Xc + ∆Yc ∂/∂Yc)t Znm(ρ,φ)=0 whenever t > 2n-|m|.  

Define the matrix Q=∆Xc A + ∆Yc B.  Q is nilpotent since Qt=0 whenever t > 2n, where n is the highest shell kept in the 

expansion.  In evaluating eQ=1+Q+Q2/2!+...+Qk/k!+..., only the first 2n+1 terms have to be kept. 
Suppose one has a set of functions fN(P;Xc,Yc) where P is the point and Xc,Yc is the origin for the expansion.  Also 
suppose that matrices A and B are defined so that ∂/∂Xc fN(P;Xc,Yc) = AN,N’ fN’(P;Xc,Yc) and that ∂/∂Yc fN(P;Xc,Yc) 
= BN,N’ fN’(P;Xc,Yc).  Note that ∂P/∂Xc=0 and ∂P/∂Yc=0.  If some function F(P) is expanded in terms of these 
functions with coefficients aN such that F(P) = Σ aN fN(P;Xc,Yc), then ∂/∂Xc aN = -aN’ AN’,N and ∂/∂Yc aN = -aN’ 
BN’,N. since ∂/∂Xc F(P)=0 and ∂/∂Yc F(P)=0. 
 
It is common to number the Zernike functions.  They are ordered by shells n where n ≥ 0 and –n ≤ m < n.  Within each 
shell, the Zernikes are ordered as follows: m = +n, m = -n, m = +(n-1), m = -(n-1), ..., m = +1, m = -1, m=0.  The 
numbering is usually 1-based so that the purely radial Zernikes Z00(ρ,φ), Z10(ρ,φ), Z20(ρ,φ) , ... , Zn0(ρ,φ), ... have N=1, 

4, 9,..., (n+1)2, ....  Note that this N differs from the N used as a subscript on the functions f N
(m) (ρ2 ) .  Eqn (A.17) can 

alternatively be written as: 



  

   

 
∂

∂Xc
ZN (ρ,φ ) = AN, N' ZN' (ρ ,φ )

∂
∂Yc

ZN (ρ,φ ) = BN ,N' ZN' (ρ,φ )

 (A.18) 

 
Appendix B   Scaling transformation of the Zernike functions 
 
The Zernike functions Znm(ρ,φ) depend upon the normalized radius ρ=r/R and the azimuthal angle φ.  We wish to 
express the Zernike functions with the normalizing radius Rold in terms of the Zernike functions with a different 
normalizing radius Rnew.  The operator R ∂/∂R is the generator for an infinitesimal scale transformation.  Note that R 

∂/∂R Znm(ρ,φ) = -ρ ∂/∂ρ Znm(ρ,φ).  The Zernike functions have the form Znm(ρ,φ)=fnm(ρ2)  ρm cosmφ with n ≥ m for 

m ≥ 0 and fn|m| ρ|m| sin |m|φ with n ≥ m for m <  0.  The operator -ρ ∂/∂ρ only couples Zernike functions of the same m.  
Restrict attention to m ≥ 0 since the coefficients of the expansion depend only upon |m|.  Now for m ≥ 0 

 −ρ ∂
∂ρ

Znm (ρ,φ ) = −ρ ∂
∂ρ

fnm (ρ 2 )
 

 
 

 

 
 ρ m cosmφ − mZnm (ρ,φ)  (B.1) 

so that we need only to expand ρd/dρ fnm(ρ2) in terms of fnm(ρ2) of the same m but differing n.  Let x = ρ2 so that -

ρ d/dρ = -1/2 x d/dx.  Also, it is more convenient to work with N = n-m rather than n since the functions f N
(m) (x )  obey 

the Rodriguez formula 

 f N
(m) (x ) =

1
N!x m

d N

dx N x N +m ( x − 1)N[ ] (B.2) 

The functions f N
(m) (x ) are normalized so that  

 f N
(m) (x) f N'

(m) ( x)
0

1

∫ x m dx =
1

2N + m + 1
 (B.3) 

We wish to find the coefficients aN’ defined by  

 

x d
dx

f N
(m) (x ) = aN' ( N,m)

N'= 0

N

∑ f N'
(m) (x)

 (B.4) 
The set of orthogonal polynomials ( )( )xf m

N
 is a complete set for each m.  N varies from zero to infinity and is the degree 

of the polynomial.  Since f N
(m) (1) = 1 for all m≥0 and N≥0, we can integrate by parts to obtain: 

aN' (N, m) = (2 N' +m +1) 1 −
1
N!

d N

dx N x N +m ( x − 1)N[ ] 1
x m

d
dx

x m+1 f N'
(m) (x )[ ] 

 
  

 
 

0

1

∫
 

 
 

 

 
 dx Since 

f N'
(m) (x )  is a polynomial of degree N’, it follows that the factor in parentheses in the integrand is also a polynomial of 

degree N which we choose to call pN’(x).  Repeated integration by parts gives: 

 

aN' (N, m) = (2 N' +m +1) 1 − (−1)N 1
N!

x N +m (x −1)N d N

dx N pN' (x )
0

1

∫
 

 
 

 

 
 dx

 (B.6) 



  

   

For N’<N, the Nth derivative of pN’(x) vanishes.  Thus aN’(N,m)=2N’+m+1 for N’<N and, of course, aN’(N,m)=0 for 

N’>N.  Thus we need to evaluate aN’(N,m) only for the remaining case N’=N.  Now the leading coefficient in xN for 

x d
dx

f N
(m) (x ) is N times the leading coefficient of xN for f N

(m) (x ) .  Thus 

 

x d
dx

f N
(m) (x ) = N f N

(m) (x ) + (2 N' +m +1)
N'=0

N−1

∑ f N'
(m) (x )

 (B.7) 
Since N=n-m and since x d/dx=1/2 ρ d/dρ,we have 

 ρ d
dρ

f nm (ρ2 ) = 2(n − m) f nm (ρ2 ) + 2 (2n' −m +1)
N'=0

N −1

∑ f n' m (ρ2 )  (B.8) 

or 

 − R ∂
∂R

Znm (ρ,φ ) = (2n − m)Znm (ρ,φ ) + 2 (2n' −m +1)
N'=0

N −1

∑ Zn'm (ρ,φ )  (B.9) 

We thus have 

 − R ∂
∂R

Znm (ρ,φ ) = Tnn' (m)
n'
∑ Zn' m (ρ,φ )  (B.10) 

The matrix Tnn’(m) is a lower triangular matrix which depends upon m.  Let some function F(ρ,φ) be expanded in the 
Zernike functions, so that F(ρ,φ) = Σ anm Znm(ρ,φ).  Both the coefficients anm and the Zernike functions Znm(ρ,φ) are 
implicitly functions of R, but F(ρ,φ) does not depend upon R.  This implies 

 R ∂
∂R

anm = − an'm
n'
∑ Tn'n (m)  (B.11) 

Since the diagonal elements of the lower triangular matrix Tn’n(m) are all distinct, it may be diagonalized by some 
similarity transformation S with the property 

 

S−1( )ik
TklSlj = Tiiδ ij

k,l
∑

 (B.12) 
Let a(m) be the vector 

   

a (m) =

am+ 0,m

am+1,m

am+ 2,m

 

 

 
 
 
 

 

 

 
 
 
 

 (B.13) 
Then 

 
R ∂

∂R
a(m) = −a (m)S T (diag) S−1

 (B.14) 
This has the solution 

 a(m) (R) = a(m) (Ro )elog(R/Ro ) S−1T (diag)S
 (B.15) 

or 

 
a (m) (R) = a (m) (Ro ) S−1 R

Ro

 

 
 

 

 
 

T (diag )

S
 (B.16) 




