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the 4s − 4p transition energies of copperlike heavy ions �
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Abstract

The 4s − 4p transition energies for high-Z copperlike ions are calculated using the relativistic configuration-
interaction (RCI) method. These calculations are based on the relativistic no-pair Hamiltonian which includes
Coulomb and frequency-dependent, retarded Breit interactions and use B-spline orbitals as basis functions. Mass
polarization and quantum electrodynamic (QED) corrections are also calculated. The present RCI energies agree
very well with results from the relativistic many-body perturbation theory. With QED corrections included, our
total transition energies are in very good agreement with recent high-precision measurements.

Key words: Atomic spectroscopy, QED corrections
PACS: 31.30.Jv, 32.30.Rj, 31.25.-v, 31.15.Ar

The spectra of high-Z Cu-like ions feature
prominent lines from the 4s−4p transitions. These
resonance lines have been subjected to several
theoretical and experimental investigations in the
past two decades. The first such measurements
were carried out in the mid 80’s with laser pro-
duced plasmas by Seely et al. using the OMEGA
laser [1]. Theoretical calculations at the time were
mostly based on the multiconfiguration Dirac-
Fock (MCDF) method [1–3] and were not very
accurate. While comparisons between theory and
experiment did show the importance of finite nu-
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clear size and quantum electrodynamic (QED)
corrections [3], precision tests of these effects were
nevertheless hampered by the lack of correlation
corrections in these early MCDF calculations.

The situation has changed with the develop-
ment of relativistic correlation calculations such
as the relativistic many-body perturbation theory
(RMBPT) [4] and the relativistic configuration-
interaction (RCI) method [5]. Atomic theory can
now match the accuracy of experiment, enabling
rigorous tests of many-electron QED theory in the
presence of strong external fields. Recent high-
precision measurements [6–8] of the 4s−4p transi-
tion energies in Cu-like heavy ions have exceeded
the accuracy, and revealed the deficiency, of early
laser-plasma experiments [1,2]. To compare with
these new results, we have carried out large-scale
RCI and QED calculations for these transitions.
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Details of our RCI method can be found in
Ref. [5]. Briefly, our RCI calculations are based on
the relativistic no-pair Hamiltonian [9,10] which
includes the Coulomb and frequency-dependent,
retarded Breit interactions. Positive-energy pro-
jection operators are used in the no-pair Hamil-
tonian to prevent spurious interactions with
virtual electron-positron pairs. Many-electron
configuration-state functions (CSF) are con-
structed from one-electron B-spline (basis spline)
functions which are radial Dirac orbits of an elec-
tron moving in a screened nuclear potential con-
fined to a finite cavity [11]. B-spline orbitals form
a complete, finite basis set and separate cleanly
into positive- and negative-energy states. The no-
pair requirement is implicitly satisfied by using
only positive-energy B-spline orbitals in our RCI
calculations.

In this work, we use 29-electron Dirac-Kohn-
Sham (DKS) potentials with Fermi nuclear charge
distributions as our model potentials to generate
one-electron B-spline basis functions in a cavity
about 3 a.u. in radius. Parameters for the Fermi
charge distribution of the nucleus are from John-
son and Soff [12], except for thorium and uranium
which are from Zumbro et al. [13,14]. For each
angular momentum state, 40 positive- and 40
negative-energy B-spline orbitals are generated
and the lowest 25 positive-energy B-spline orbitals
are used in our RCI calculations. Contributions
from the remaining higher energy basis functions
are small and can be ignored.

Starting from the reference configuration of a
4lv valence electron outside a closed 3d10 Ni-like
core, all single- and double-excitations from core-
valence (CV) and core-core (CC) interactions are
systematically included for well converged RCI en-
ergies. For CV excitations, CSFs include configu-
rations from single excitations of the valence elec-
tron (3d10)nlv and those from excitations of the
valence electron plus one core electron

3d−1nln′l′, 3p−1nln′l′, 3s−1nln′l′,

2p−1nln′l′, 2s−1nln′l′, 1s−1nln′l′,

where 0 ≤ l, l′ ≤ 5 and a−n denotes n electrons re-
moved from the core state a. Single excitations of
a core electron are part of the above configurations
with nl = 4lv. For CC excitations, their contribu-

Table 1
Contributions to the 4s − 4p transition energies (eV) of
Cu-like uranium. Here, CV and CC are core-valence and
core-core contributions to the Coulomb energies, while ω =
0 and ω �= 0 are frequency-independent and frequency-
dependent contributions to the Breit energies.

Contribution 4s − 4p1/2 4s − 4p3/2

RCI Coulomb CV 146.72 473.14

CC 0.04 0.01

Sum 146.76 473.15

Breit ω = 0 2.62 -0.31

ω �= 0 0.08 -0.54

Sum 2.70 -0.85

Total 149.46(2) 472.30(2)

Mass Polarization 0.00 0.00

QED Self-energy -4.24 -4.33

Uehling 1.02 1.25

Wichmann-Kroll -0.05 -0.06

Core Relaxation -0.02 0.03

2-loop Lamb Shift 0.02 0.02

Total -3.27(5) -3.09(5)

Theory 146.19(5) 469.21(5)

tions are small and are calculated for Coulomb en-
ergies only. To limit the size of these RCI expan-
sions which can easily get out of hand, CSFs are
limited to excitations from the n = 3 subshells and
to 0 ≤ l, l′ ≤ 3. They are given by

3d−24lvnln′l′, 3p−13d−14lvnln′l′,

3p−24lvnln′l′, 3s−13d−14lvnln′l′,

3s−24lvnln′l′, 3s−13p−14lvnln′l′.

Resulting large-scale RCI expansions reach over
300,000 configurations and Davidson’s method
[15,16] is used to solve for the first few eigenstates
of these big RCI matrices. Mass polarization (MP)
corrections are then calculated as expectation val-
ues of the operator HMP = (1/M)Σi>j pi · pj ,
where M is the nuclear mass, using RCI eigen-
wave functions.

Our QED corrections are evaluated from the
one-loop self-energy and vacuum polarization di-
agrams with methods similar to those used in
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Table 2
The 4s − 4p transition energies (eV) of Cu-like ions.

Transition Contribution Reference W45+ Au50+ Pb53+ Th61+ U63+

4s − 4p1/2 Coulomb This work 97.85 110.49 118.43 140.85 146.76

RMBPT [4] 97.83 110.47 118.40 140.83 146.74

Breit This work 1.05 1.40 1.64 2.46 2.70

RMBPT [4] 1.06 1.40 1.65 2.47 2.72

QED This work -1.36 -1.78 -2.07 -3.00 -3.27

Blundell [23] -1.34 -2.05 -2.98 -3.25

Kim et al. [24] -1.33 -1.74 -2.02 -2.92 -3.18

Total This work 97.54 110.11 118.00 140.31 146.19

Dielec. recomb. [6] 118.010(1)

Laser-plasma [2] 97.63(1) 110.22(1) 118.15(2) 146.39(37)

4s − 4p3/2 Coulomb This work 200.25 255.25 294.78 430.73 473.15

RMBPT [4] 200.25 255.22 294.76 430.72 473.13

Breit This work -0.13 -0.24 -0.33 -0.71 -0.85

RMBPT [4] -0.14 -0.24 -0.33 -0.72 -0.86

QED This work -1.23 -1.63 -1.91 -2.81 -3.09

Blundell [23] -1.22 -1.88 -2.78 -3.05

Kim et al. [24] -1.21 -1.59 -1.86 -2.73 -2.99

Total This work 198.89 253.38 292.54 427.21 469.21

EBIT [7] 198.90(1) 253.40(1) 292.60(4) 427.20(4) 469.06(3)

EBIT [8] 427.21(1) 469.22(3)

Laser-plasma [2] 198.99(5) 253.40(8) 292.65(10) 427.68(22) 469.53(25)

Ref. [17]. Specifically, leading vacuum polarization
corrections are calculated as expectation values of
the Uehling potential. Electron self-energy (SE)
and Wichmann-Kroll (WK) corrections are calcu-
lated non-perturbatively to all orders of Zα with
partial wave expansions of bound-state Green’s
functions. Details of our SE and WK calculations
can be found in Refs. [18] and [19], respectively. To
account for screening and relaxation corrections,
one-loop QED energies are evaluated in DKS po-
tentials specific to the valence configurations of
the initial and final states. This procedure has
yielded very accurate QED corrections for high-Z
Li-like and Be-like ions [20] as well as for Na-like

to Si-like uranium [17]. It should work just as well
for heavy Cu-like ions here. Finally, higher-order
two-loop Lamb shift contributions are small and
are estimated from the H-like 1s results [21,22]
using the 1/n3 scaling rule.

Table 1 shows various contributions to the
4s − 4p transition energies, using Cu-like ura-
nium as an example. Here, core-core contribu-
tions to the Coulomb energies are seen to be very
small and their contributions to the Breit ener-
gies should thus be quite negligible. Also, while
frequency-dependent Breit (ω �= 0) energies are
significant and can even be larger than frequency-
independent Breit (ω = 0) energies, mass polar-
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ization corrections are found to be completely
negligible. Theoretical uncertainties quoted here
are estimates only. For RCI energies, they are due
mainly to the neglect of triple and quadruple exci-
tations. For QED corrections, they come from the
approximated treatment of screening and relax-
ation corrections and, to a lesser extent, the ne-
glect of negative-energy contributions to electron
correlation energies.

Tables 2 shows 4s − 4p transition energies for
high-Z Cu-like ions. It can be seen that our RCI
Coulomb and Breit energies agree with RMBPT
results of Johnson et al. [4], while our QED en-
ergies agree with Blundell’s ab initio results [23]
but deviate from those obtained with the Welton
method by Kim et al. [24]. Also, our 4s − 4p1/2

transition energy in Pb53+ is in excellent agree-
ment with the dielectronic recombination measure-
ment [6], while our 4s − 4p3/2 transition energies
are in excellent agreement with recent EBIT mea-
surements [7,8]. It should be noted that the EBIT
energy of 469.06(3) eV for the 4s−4p3/2 transition
in Cu-like uranium as reported in Ref. [7] appears
to be way off. The new EBIT value of 469.22(3)
eV as report in Ref. [8] are in much better agree-
ment with theory and are more consistent with the
systematic trend along the isoelectronic sequence.
From this table, it is also clear that early laser-
plasma measurements of Seely et al. [2] are consis-
tently too high in energy when compare with re-
sults of recent high-precision experiments.

In conclusion, we have calculated the 4s − 4p
transition energies for copperlike ions with Z = 74,
79, 82, 90 and 92. Our results show that large-scale
RCI calculations including core-valence and core-
core excitations can get very accurate relativis-
tic correlation energies for Cu-like ions, and that
screening and relaxation corrections to the QED
energies can be well approximated by evaluating
self-energy and vacuum polarization contributions
in Dirac-Kohn-Sham model potentials.
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