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Radiation-Matter Coupling for Low Density Plasmas

H.A. Scott  
Lawrence Livermore National Laboratory, Livermore, CA  94551

Radiation can have a dramatic effect on the material properties of low 
density plasmas, altering bulk properties such as energy density and 
specific heat as well as spectral characteristics such as opacity and 
emissivity.  The response of the material to radiation must be considered 
when constructing transport algorithms that are intended to provide self-
consistent solutions for both the radiation field and plasma properties.  It 
can affect almost every aspect of the numerical solution, from the overall 
solution strategy down to details of the acceleration algorithms.  We 
discuss these issues in the context of one approach towards improving the 
stability and convergence of the solution, with examples relevant to high-
energy density physics.  We also present a direct solution technique for the 
linearized multigroup radiation transport equations that sidesteps the need 
for a multigroup acceleration process and can be used to benchmark the 
performance of iterative algorithms.

Introduction
Radiation transport methods have reached a level of maturity in which they are routinely 

applied to a wide variety of physical systems, primarily under the assumption of local 
thermodynamic equilibrium (LTE).  However, non-LTE (NLTE) materials, common in 
high energy density physics applications, respond strongly to radiation in both their energy 
content and spectral characteristics.  In this paper, we discuss the consequences of this 
response and present an extension to a class of commonly used numerical radiation 
transport methods to handle such characteristics.

In Section 2, we consider the non-LTE energetics of radiation interacting with matter, 
determining the relationship between energy density and temperature.  The generalization of 
the LTE relationship separates the dependence of the energy density on the temperature 
from the direct effect of radiative interactions.  A numerical example provides context in 
terms of the regime in which the radiation spectrum can significantly alter the material 
response and the magnitude of the effects considered.  Section 3 presents the relevant 
equations and a straightforward linearization scheme, including a natural extension of the 
scheme that explicitly incorporates the dependence of material properties on radiation.  
Efficient solutions of these extended equations may require the development of new 
acceleration methods, and section 4 presents a direct solution technique for the linearized 



multigroup equations which does not require an accelerated iterative algorithm.

Non-LTE Energetics
For matter that is not in LTE, describing the response to radiation is more complicated 

than for the corresponding LTE case.  We consider the relationship between the material 
energy density Em, the material properties and the radiation field:

Here, ne (ni) is the number density of the free electrons (ions), which are assumed to 

have a thermal distribution corresponding to the material temperature T.  Eint is the material 

internal energy, which depends not only on the temperature and density, but also on the 
radiation field, denoted by Jν, and on the time t.  For the remainder of this paper, we ignore 
the density dependence as unimportant to the discussion and focus on the temperature and 
radiation.  We also adopt a single-temperature description of the material for simplicity of 
exposition.

For material in LTE, the internal energy depends only on temperature, then the rate of 
change in material energy density and temperature are related through the specific heat (at 
constant density) cV:

Implicit in this formulation is the assumption that either radiative interactions are 
completely unimportant or that the extant radiation also has a thermal distribution, i.e. Jν = 
Bν, where Bν is the Planck distribution.  In the more general non-LTE formulation, the rate 
of change of material energy density is comprised of three different types of terms:

The first term on the RHS of Equation  describes the response of the material energy 
density to a change in temperature, but with fixed radiation densities, while the second term 
describes the material response to a change in radiation at fixed temperature.  The 
coefficient of the first term plays the part of the non-LTE specific heat, which is related to 
the LTE specific heat by

The last term on the RHS of Equation  arises from evolution of the material at fixed 
temperature and radiation, and acts as a source or sink of energy.  This term can be quite 
important in following the thermal evolution of matter at very low densities and 
temperatures, but for the remainder of this discussion we assume this term is negligible and 
do not consider it further.

Non-LTE effects will become significant at densities low enough for important radiative 
transition rates to become comparable to the corresponding collisional rates.  A numerical 
example illustrates the relative importance of the temperature and radiative responses to the 



specific heat.  For this example, we calculate the energy density and specific heat of a Xe 
plasma at three different densities.  Figure 1 shows the energy density (per ion) as a 

function of temperature for an ion number density of 1018 cm-3.  Both the total energy 
densities (solid lines) and internal energy densities (dashed lines) are shown, for a case 
with a Planckian radiation field (blue lines) and no radiation field (green lines).  The internal 
energy densities differ by more than an order of magnitude, reflecting the effect of the 
radiation on the internal (excited state) structure of the Xe ions.  The difference between the 
internal energy density and total energy density reflects the ionization state of the Xe and 
differs by a factor of two between the two cases.

Figure 1. Energy density per ion as a function of temperature for a Xe plasma of 

number density 1018 cm-3, in units eV/particle.  The solid lines give the total energy 
density while the dashed lines give the internal energy density only.  The blue lines  
give results in the presence of Planckian radiation field (Tr= Te, where Te is the 

material temperature and Tr is the radiation temperature), and the green lines give 

results with no radiation field (Tr=0).

Figures 2a - 2c show the specific heat as a function of temperature for ion number 

densities of 1018, 1020 and 1022 cm-3, respectively.  In each figure, the red line gives the 

LTE specific heat, cV
LTE, while the blue line gives the non-LTE specific heat cV

NLTE 

evaluated assuming a Planckian radiation field at the given temperature, and the green line 

gives cV
NLTE evaluated assuming no radiation field.At the highest of the three densities, 

LTE is a good approximation and the specific heat varies little with the radiation.  As the 

density decreases, the difference between cV
LTE and cV

NLTE increases, and it becomes 

apparent that the material radiative response dominates the temperature response.  
Regardless of other considerations, use of the LTE specific heat at low densities in the 
presence of non-Planckian radiation fields will not describe the material energetics 
correctly.

(a) (b)

(c)

Figure 2.  (a) Specific heat per ion as a function of temperature for a Xe plasma of 

number density 1018 cm-3, in units eV/eV.  The red line gives the LTE specific heat, 
the blue line gives the non-LTE specific heat for a Planckian radiation field (Tr= Te, 

where Te is the material temperature and Tr is the radiation temperature), and the green 



line gives the non-LTE specific heat with no radiation field (Tr=0).  The dashed line 

gives the specific heat obtained from Eq. (4) using the diagonal approximation.  (b) 

Same as (a) for a number density of 1020 cm-3.  (c) Same as (a) for a number density 

of 1022 cm-3.



Representative absorption coefficients for two of these cases (assuming zero radiation 
field) are displayed in Figures 3a and 3b, for temperatures of 100 eV (blue curves) and 500 
eV (red curves).  Numerous strong bound-bound radiative transitions are apparent for 

energies between 102 and 104 eV.  At low densities, these transitions couple strongly to 
the radiation field and poorly to the material temperature.

(a) (b)

Figure 3. Absorption coefficients for a Xe plasma of density (a) ni  = 1018 cm-3 and 

(b) ni  = 1020 cm-3.  The blue curves correspond to a material temperature of 100 eV 

and the red curves correspond to a material temperature of 500 eV.  The calculations 
assume steady-state conditions with no radiation field.

The new response terms  involve all frequencies.  These terms do not introduce any 
new complications into the solution method, but computing all the additional derivatives is 
extremely expensive.  In the low-density regime where we expect strong line radiation to 
dominate the radiative response, we can make the additional approximation that each 
bound-bound radiative transition responds to radiation of a single frequency.  Implicit in 
this approximation is the assumption that each strong line is contained within a single 
frequency bin, and we make no attempt to resolve any of the lines.  Under these conditions, 
we can easily calculate the required derivatives from the atomic kinetics equations.  We 
refer to this as the “diagonal” approximation, as it uses only the diagonal terms from the 
complete response matrix.  Figures (2a) – (2c) demonstrate that this approximation indeed 
does very well at low densities, but less well near LTE.

A measure of the radiative coupling, in the “diagonal” approximation, is given by , 
which is displayed in Figures 4a and 4b for the same conditions as Figures 3a and 3b.  
Large values, , correspond to strong line features in the spectrum.

(a) (b)

Figure 4. Diagonal response coefficients  for the same conditions as Figure 3.

Linearized Equations
The system of equations describing energy transport by radiation consists of the 

radiation transport equation

and the material energy equation

where Iν is the specific intensity at frequency , αν and ν are the absorption coefficient 



and emissivity, Q represents other energy sources, Jν is the angle-averaged intensity

and  is the source function.  In LTE, the source function is the Planck function, Bν, and 
is a function of temperature only.

A common method of solving this non-linear set of equations is to discretize in time 

and linearize about the current temperature T0.  Applying these operations to Eq.  gives

where

acts as a specific heat for the total system of matter and radiation.  Equation  can be 
analytically combined with the linearized and discretized version of Eq. , resulting in

We have assumed a fully-implicit time discretization, since applications usually require 
at least a partially-implicit treatment for stability.  The superscript “0” denotes values at the 
beginning of the time interval.  This treatment can be, and in LTE often is, generalized to an 
iterative procedure to converge the nonlinear dependence of Sν on the temperature.

Extending these equations to include the radiation response terms is straightforward.  
Linearizing the equations about the current temperature and radiation spectrum, using the 
diagonal approximation, produces

where  is defined as in Equation (9) using the NLTE specific heat.  Equations  and  
retain the same multigroup structure as before, and may be solved in the same manner.

A numerical implementation of the broadband equations can be extended in a very 
simple manner.  Most of the changes in the implementation are captured by the 
substitutions:

In the absence of the diagonal approximation, these changes include the obvious sums 
over frequencies.  Besides these substitutions, only the term involving  remains to be 
handled separately.

Omitting radiative response terms from the linearized equations can destabilize a 
numerical solution, as demonstrated in Scott (2005).  Equally worrisome, a solution may 
appear to have converged by usual criteria while remaining inaccurate.  Given the 
magnitude of these effects, we anticipate that instability or poor convergence will result for 
other solution methods as well.  Unfortunately, the radiative response terms can be 
extremely expensive to calculate, even more so than the non-LTE opacities and emissivities 



themselves.  One possible avenue towards allowing tabulated information to be used for 
these calculations is under investigation, as discussed in Scott (2005).

A related issue has to do with the solution technique used for these extended equations, 
which often employs a grey acceleration (Morel, et al, 1985).  This acceleration may 
become ineffective, both because it uses Planckian weights and because the efficiency 
depends on the opacity spectrum.  Grey acceleration remained effective for the application 
described in Scott (2005), but this may not hold true for other applications.  An alternative 
procedure is to directly solve Eq.  for all frequencies simultaneously.  A reduction 
procedure, described in the next section, makes this quite economical in one dimension and 
provides a tool to address this issue.  This procedure might also serve as the basis for an 
approximate operator approach in higher dimensionalities.

Direct Solution of the Linearized Equations
The direct solution of the linearized equations is accomplished via a straightforward 

algebraic reduction.  In the following description, we use operator notation for conciseness, 
while a numerical implementation performs the same operations with matrices.  We do not 
explicity consider boundary conditions, again for conciseness, but note that standard 
conditions specifying boundary intensities pose no difficulties for the numerical 
implementation.

We begin by writing the linearized version of the transport equation  in terms of the 
lambda operator λν

The tilde denotes that the absorption coefficient may include the radiative response 
terms, either in the diagonal approximation or utilizing all derivatives.  For simplicity of 
notation, we drop the tilde from this point on.  Substituting for ΔT from the linearized 
material energy equation  and collecting terms produces a single equation coupling 
intensities for all frequencies, angles and spatial positions:

 

where

 

Formally solving Eq.  for Iν and integrating over all angles and frequencies, weighted 
by αν , produces a single equation for the quantity

 

where

 

This is the desired result, as substitution of Eq.  into Eq.  provides the intensities through

 

The operator algebra employed here reduces to simple matrix operations for discretized 



equations, and the usual boundary conditions specifying incident intensities are trivially 
incorporated into the solution.

This technique becomes particularly simple to implement inside an iterative process for 
converging nonlinearities.  We define the iterates through

 

The intensity corrections are then given by

 

where

 

Either formulation isolates a single quantity which couples the radiation intensity to the 
change in temperature.  Equation  can be derived more directly by linearizing Eqs.  and  
with respect to K.

Each evaluation of λν requires a transport sweep.  However, Λ is a full matrix of rank 
equal to the number of zones that must be inverted once during the solution process.  This 
is a nominal expense for most one-dimensional problems, but becomes quite expensive for 
higher dimensionalities.  Numerical experiments using a small number of diagonals of Λ as 
an easily invertible approximate operator, similar to the method of Olson, et al (1986), have 
not proved encouraging.  It remains possible that some portion of Λ could be used in this 
manner, but at present this method remains a useful one-dimensional tool.

A simple test problem demonstrates that efficacy of this method for solving the 
multigroup equations, even when grey acceleration fails.  The physical setup is that of a 
uniform slab of material of thickness 2 cm with a constant specific heat corresponding to an 

ideal gas of density 1 g/cm-3, initially at a temperature of 1 eV, which is illuminated by a 
Planckian radiation field of radiation temperature 1 keV.  We consider two frequency 
distributions for the absorption coefficient:

 Case A Case B

where ν  denotes the photon energy in keV.  The exponential cutoff of the absorption 
coefficient in case B violates necessary conditions for the effectiveness of grey acceleration, 
and we expect poor convergence in this case.

Figure 5 shows the (angle-integrated) radiation field within the slab at several positions 
for two different times.  The evolution of both cases is similar in that the radiation gradually 
“fills in” the optically thick portion of the spectrum as time evolves.  Eventually, the 
material in both cases reaches a uniform temperature of 1 keV and the radiation field 
becomes a Planckian everywhere.  The timescales for this evolution are very similar, but the 
details of the radiation spectra differ due to the absorption coefficients.



(a) (b)

(c) (d)

Figure 5. Angle-integrated radiation spectrum at several positions within the material.  
(a) Case A, t = 1 ns, (b) Case B, t = 1 ns, (c) Case A, t = 5 ns, (d) Case B, t = 5 ns

The convergence properties of grey acceleration differ dramatically for these two cases, 
as shown in Figure 6.  The blue curves show the iterations required to converge Equations 

(5) and (6) to the 10-4 level using grey acceleration.  The dashed curves correspond to 
solving the linearized versions of these equations, while the solid curves correspond to 
solving the full nonlinear equations, including the full temperature dependence of the 
(Planckian) source function. Case A requires at most 10 iterations during the first 10 ns, 
while case B requires nearly 100 iterations, even with conservatively small timesteps.  The 
direct solution method, with results given by the green curves, does obtain the solution to 
the linearized equations in a single pass, while requiring only a few iterations to produce the 
solution to the full nonlinear equations.  The red curves show the results obtained using the 
diagonal of the Λ operator in Equation (21), as an approximate operator that could be easily 
applied in two- and three-dimensional geometries.  The approximate operator improves 
upon the convergence of grey acceleration when grey acceleration performs poorly, but 
converges much slower than grey acceleration otherwise.

(a) (b)

Figure 6. Iterations necessary to converge the solution of the equations to 10-4 as a 
function of time for (a) Case A and (b) Case B.  The dashed lines correspond to the 
solution of the linearized equations, while the solid lines correspond to the solution of 
the nonlinear equations.  The blue curves give the results for grey (synthetic) 
acceleration, and the green curves gives the results for the direct solution method.  The 
red curves give the results obtained using the diagonal of the Λ operator.

To allow for the comparison with grey acceleration, the results presented in Figure 6 
were obtained with a diffusion operator rather than a full transport operator.  For this 
problem, the convergence properties of the direct method (full and approximate) observed 
with the transport operator were very similar to those observed with the diffusion operator.

This example assumes LTE and has none of the NLTE radiative response 
characteristics discussed above.  We only seek to demonstrate that the method does indeed 
solve the linearized multigroup equations without iterations, and that it can be useful for 
checking convergence properties (of both the linearized and non-linear equations).  This 
method was applied to a fully NLTE situation in Scott (2005) to confirm that, in this case, 



grey acceleration did indeed successfully converge to the solution of the extended equations 
(11) and (12).

Conclusions
Solving the radiation transport equation also involves evaluating material properties that 

can depend on the radiation field.  In NLTE, the material properties can depend directly on 
the radiation field as well as on the temperature, and the coupling between the material and 
radiation takes on a different character than in LTE, which should be reflected in the 
computational algorithms.  In this paper, we have discussed some of these issue and 
presented an extension to a common algorithm, which successfully handles applications 
with strong NLTE radiation.  We have also presented a direct solution algorithm for the 
linearized multigroup equations that bypasses the need for a multigroup acceleration 
process and can be used to benchmark the performance of iterative algorithms.
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