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Abstract— Noise self-generated by a surface ship 
towing an array in search of a weak target presents a major 
problem for the signal processing especially if broadband 
techniques are being employed. In this paper we discuss the 
development and application of an adaptive noise cancelling 
processor capable of extracting the weak far-field acoustic 
target in a noisy ocean acoustic environment. The 
fundamental idea for this processor is to use a model-based 
approach incorporating both target and ship noise. Here we 
briefly describe the underlying theory and then demonstrate 
through simulation how effective the canceller and target 
enhancer perform. The adaptivity of the processor not only 
enables the “tracking” of the canceller coefficients, but also 
the estimation of target parameters for localization. This 
approach which is termed “joint” cancellation and 
enhancement produces the optimal estimate of both in a 
minimum (error) variance sense.

I. INTRODUCTION

One of the problems that arises in towed-array processing, 
along with the usual noise sources such as background 
ambients and transients, is that the platform itself is a 
source of interference. This is especially true when the 
platform is a surface ship, which generates broadband flow 
and cavitation noise as well as the usual narrowband 
spectral lines originating from the engine and propellers [1-
2]. Attempts to reduce these noises and interferences 
usually assume that only narrowband processing is 
necessary for such tasks as detection, localization and 
tracking; therefore, much of this platform noise is 
inherently removed anyway and can therefore be ignored. 
Other approaches, recognizing the detrimental effects of the 
inherent noise, develop more complex conventional filters 
to mitigate it, but this approach can partially remove the 
weak signal being sought and therefore can actually 
decrease the effective signal-to-noise ratio (SNR) [3-4]. A 
more effective approach to solving the signal enhancement 
and noise cancellation problem is to use a reference sensor, 
close to the ship, to obtain a useful sampling of this 
interference and develop an optimal noise canceling 
processor [5]---this is the approach we pursue in this paper. 
We cast the problem into a model-based framework to 
develop a joint cancellation/signal enhancement solution. 
Given the reference measurement, a model-based processor 
is developed which provides a joint estimate of the signal 
and the noise, thereby allowing the signal to evolve as a 
separate component of this estimate from which the noise 
has effectively been subtracted. We start with the basic 
canceling problem and then investigate the structure of the 

processor in the model-based framework. It is shown that 
the joint processor can be designed under a wide set of 
operating conditions with the target known and unknown.

II. OPTIMAL NOISE CANCELLING

In this section we briefly develop the optimal noise
canceller for stationary processes and then extend it to the 
non-stationary case by embedding it into a Gauss-Markov 
framework [6,7]. The basic structure of the noise canceller 
is shown in Fig. 1 where we see that the process is 
characterized by a space-time signal at the thl -sensor of an 
L-element array in additive white noise as

( ; ) ( ; ) ( ; ); 1, ,p x t s x t x t Lη= + =l l l l L ,            (1)
for ,  ,  ,p s η the respective measurement, signal and noise 
at position x and time t . We also assume that there exists a 
reference signal, ( ; )r x tl , correlated to the noise which can 
be characterized by an invertible impulse response, 

( ; )H x tη l , that is,

( ; ) ( ; ) ( ; )r x t H x t x tη η= ∗l l l  (2)
Since it is assumed invertible, we can write the primary 
canceller result [5] that

( ; ) ( ; ) ( ; )x t H x t r x tη = ∗l l l  (3)

for  1( ; ) : ( ; )H x t H x tη
−=l l . The optimal noise canceling 

problem (in terms of this model) is:

GIVEN the set of discrete space-time sensor 
measurements, { }( ; )p x tl in additive noise, 

( ; )x tη l , and reference measurements, { }( ; )r x tl

correlated to the noise ( ; )x tη l for 1, , tt N= L ; 
FIND the best (minimum error variance) estimate 
of the noise, ˆ( ; )x tη l , (or equivalently ˆ ( ; )H x tl ) 
such that the cancelled output, ( ; )z x tl , is optimal.

The solution to this problem is well-known [6-9] and leads 
to the optimal canceling (Wiener) filter given by

1
opt R rr yr

−=H r  (4)
in the stationary case or the adaptive least-mean squared 
(LMS) solution in the non-stationary case [5,6].  Note that 
the purpose of the canceling filter is to “shape” the 
reference signal such that it best approximates ( ; )x tη , the 
contaminating noise for removal. Thus, we have that the 
cancelled output is



[ ]ˆ ˆ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )
ˆ= ( ; ) ( ; ) ( ; ) ( ; ) ( ; )

z x t p x t x t s x t x t x t

s x t x t H x t r x t s x t

η η η

η

= − = + −

 + − ∗ ≈ 

l l l l l l

l l l l l

 (5)
Clearly, when η̂ η→ , z s→ , the desired result is 
obtained. 

With this motivation in mind, we construct a Gauss-
Markov representation of the canceller that will be used in 
solving the joint problem. Note that this approach is 
equivalent to compensating for colored noise [6-8]. 
Expanding over the L-elements and using the state-space 
representation, it is easy to show that the noise canceller 
can be represented (in general) by the Gauss-Markov ship 
noise model as (see Fig. 1)

( ) ( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t A t t B t r t t

t C t t t

t t t t

ξ ξ ξ

ξ ξ

= − − + − − + −

= +

= + +

ξ ξ w

η ξ v

p s η ν

, (6)

with 1R Nξ ×
∈ξ the colored noise state vector and r the 

known scalar reference noise (input) where the additive 
zero-mean, white gaussian noise sources have respective 
covariances, w w v vand R R

ξ ξ ξ ξ
. Here  1, , , L×∈p s η ν C are 

the respective pressure-field measurement, signal, colored 
and broadband measurement noise with 

))(,0(~ tRNv vv .
1,  ,  N N N L NA R B R C Rξ ξ ξ ξ

ξ ξ ξ
× × ×

∈ ∈ ∈ are the system, 
input and measurement matrices corresponding to the ship 
noise model parameters. Note also that the spatial 
dimension is now incorporated in the dimensions of the 
vector-matrices in this model. That is, we have expanded 
over the L-elements in the sensor array,  

;    1, ,x x L→ =l l L which gives 

( ; ) ( ); ( ; ) ( )x t t x t tη ξ→ →η ξl l . Recall that the impulse 
response of the state-space model is

( , ) ( ) ( , ) ( ) for ( , ) ( )H t k C t t k B k t k A t kξ ξ ξ ξ ξ ξ= Φ Φ = − (7)
which reduces to 

( , )    for    t kH t k C A B t kξ ξ ξ ξ
−= > ,  (8)

in the time invariant case. So we see that ship noise can be 
completely captured by a Gauss-Markov representation in 
both stationary and nonstationary cases.

We assume that the signal can be characterized by a weak
target in the far-field of the array given by

( )sin ( )( )( ) o o o oo o i t k x vti t
o os t e e ω θωα α − +− ⋅= =k x ,       (9)

for the source parameters: ,  ,  ,  ,  o o o o ok xα ω θ that are the 
respective amplitude, temporal frequency, wavenumber, 
bearing angle and initial sensor location. Since the array is 
being towed, we include the tow speed, v , as well. We can 
simplify this model by defining the following terms,

( )r t

( )ts

( )B tξ

( )A tξ

1z− I

( )tξw ( )tξv

( )tη( )tξ

( )tv

( )tp

GAUSS-MARKOV SHIP NOISE MODEL
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Fig. 1. Gauss-Markov ship noise model.

( )sin( ) ( ) o oi t
os t t e β θα −= ,                                             (10)

for ( )o( ) :  and ( ) :oi t
o o o ot e t k x vtωα α β= = + . Note that the 

statistics are not restricted to be stationary, so we can 
accommodate the nonstationarities (transients, etc.) that 
occur naturally in the ocean environment [9].

Using the Gauss-Markov representation of the noise, we 
can re-define the optimal cancellation problem as:

GIVEN a set of discrete noisy pressure-field and 
reference measurements, { }( ),  ( ) , 1, 2, , tt r t t N=p L in 
additive noise and the Gauss-Markov model of Eq. (6), 
FIND the best (minimum variance) estimate of the ship
noise, ˆ ( | )t tη , such that the canceller output, 

ˆ( ) ( ) ( | ) ( )p t t t t t= − ≈ε p η s is optimal.

The recursive solution to this problem is given by the MBP 
(Kalman filter) and shown in Table I (see [6] for details). 
Under the gaussian assumptions, this provides an optimal 
estimator for the noise cancellation problem with known 
signal; however, we must account for the more realistic 
case of an unknown far-field signal. Next we formulate the 
underlying joint estimation problem.

III. ADAPTIVE MODEL-BASED NOISE CANCELLING

In section we use the models developed in the previous 
section to develop the adaptive model-based processor 
(AMBP) for solving the joint cancellation/signal 
enhancement problem. We show that by augmenting the 
cancelling filter into the pressure-field representation that 
the cancelling operation inherently performs the noise 
cancellation as part of the usual filtering operation. 
Adaptivity follows by jointly estimating the target and 
cancelling filter parameters.



TABLE I
OPTIMUM NOISE CANCELLATION

η

NOISE ESTIMATOR
ˆ ˆ( | 1) ( 1) ( 1) ( 1) ( 1) [Prediction]
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where ( | 1), ( | 1) are state error and covariance.
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t t P t tξξ
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− −

ε p p p η s

ξ% %

Since ( )ts is assumed to be a far-field source, we have that 

at the thl -sensor, ( )sin( ) ( ) i ts t t e β θα −= l
l l . Now 

expanding over the L -sensor array, we obtain the signal 
vector

( )

( )

11 sin( ) sin
1

( )sin sin

( )
( ) =  

( ) L L

ik x vtik t i t

ik t ik x vti t
L

t e e e
t

t e e e

θβ θ ω

β θ θω

α α

α α

− +−

− − +

  
  

=   
  
    

s M M ,  (11)

For signal enhancement we begin by defining the signal 
vector in terms of its unknown parameters, ( ; )t Θs , (for a 
single target), : [ |  | ]α ω θ ′=Θ . In this case we assume that 
the unknown parameters in the signal model, Θ , are 
characterized as piecewise constant ( =Θ 0& ) with a discrete 
Gauss-Markov model given by

( ) ( 1) ( 1)t t t tΘ= − + ∆ −Θ Θ w ,                                 (12)

where ),0(~
ΘΘΘ wwRNw and t∆ is the sampling 

interval. This parameter vector is then augmented with the 
cancelling filter by defining the new state vector as 

( ) 1( ) : [ ( ) | ( )] R N Nt t t ξ Θ+ ×′= ∈x ξ Θ .  The augmented model 
requires more analysis before we develop the MBP 
solution. Consider the augmented state-space model first 
as:

( 1) 0 ( 1)( ) ( 1)
( 1)

( ) ( 1)0 0

( 1)
  

( 1)

A t B tt t
r t

t t

t

t t

ξ ξ

ξ

Θ

− −   −   
= + −      −      

− 
+  

∆ − 

ξ ξ
Θ ΘI

w

w

. (13)

Here we note that the cancelling filter and parameters are 
decoupled in the state-space and can therefore be written 
directly as

( ) ( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( 1) ( 1)

t A t t B t r t t

t t t t
ξ ξ ξ

Θ

= − − + − − + −

= − + ∆ −

ξ ξ w

Θ Θ w
 (14)

Next we note that the pressure-field measurement is the 
superposition of three distinct components: far-field signal, 
ship generated noise and instrumentation noise given by

{ {
ship noise measurement noisesignal

( ) ( ; )       ( ) ( )t t t t= + +p s Θ η v
123

 (15)

First we note from Eq. (6) that the output of the decoupled 
cancelling filter remains ( see Eq. (6) )

( ) ( ) ( ) ( )t C t t tξ ξ= +η ξ v .
Therefore, substituting into Eq. (15) and accounting for the 
augmented state vector, we obtain

( )
( ) ( ) |  0 ( ; ) ( ) + ( )

( )
t

t C t t t t
tξ ξ

  = + +    

ξ
p s Θ v v

Θ
 (16)

Since the far-field signal is a nonlinear function of the 
parameters (augmented states), that is, at the thl sensor, 

2 3( ( ) sin( )
1( ; ) ( ) i t k x vti ts t t e eβα Θ − + Θ−= = ΘΘ ll

l l for the 
single target case, then the pressure-field across the array is 
also a nonlinear function, that is,

[ ] ( )
( )

( ) ( ), ( ) ( ) ; ( ) ( ) ( )

= ; ( ) ( ) ( ) ( ) +  ( )

t t t t t t t t

t t C t t t tξ ξ

= + = + +  
+ +

p c ξ Θ v s Θ η v

s Θ ξ v v
 (17)

Therefore, we have the following approximate model given 
by the underlying augmented Gauss-Markov representation 
as:
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 Θ 
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w
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s M

 (18)

The basic joint cancelling/signal enhancement problem can 
now be stated in terms of this augmented Gauss-Markov 
representation as:

GIVEN a set of discrete noisy pressure-field and 
reference measurements, { }( ),  ( ) , 1, 2, , tt r t t N=p L

and the Gauss-Markov model of Eq. (18), FIND the 
best  (minimum variance) estimate of the augmented
state   (ship noise+signal), ˆ ( | )t tx , or equivalently, 
ˆ( ; )t Θs and ˆ ( | )t tη , such that the canceller output, 

ˆ( ) ( ) ( | )p t t t t= −ε p η is optimal.

We have a linear decoupled state-space, but (unfortunately) 
a nonlinear measurement system requiring a nonlinear 
processor. This problem can be solved by a parametrically 
adaptive MBP using the recursive extended Kalman filter 
(EKF) given in Table II for the augmented system 
algorithm.

If we decompose the state vector and perform the 
partitioned operations, then we see immediately that the 
canceling filter and signal parameters are estimated 
“jointly” along with the enhanced signal and noise 
estimates as shown in Table III.

To formalize the processor further in terms of our ocean 
acoustic problem, let us first investigate the predicted 
measurement in more detail to focus on the actual 
operations performed. We start with the augmented 
representation, which is a nonlinear function due to the 
augmentation of the parameters, that is,

[ ] ( )ˆˆ ˆˆ( | 1) ( | 1) ; ( | 1) ( | 1)

ˆˆ( ; ) ( ) ( | 1)
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 (19)

TABLE II
JOINT MODEL-BASED PROCESSOR

[ ]
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The corresponding innovations for the adaptive processor 
can also be written in terms of its components as

( )
( )( ) ( )

( )
( )

p
ˆˆ ˆ( ) ( ) ( | 1) ( ) ; ( | 1)
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s Θ ξ v v
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%%

 (21)

So we see that the joint parametrically adaptive processor is 
capable of not only providing the optimal cancelling 
solution ( )ˆ ( | 1) ( )t t t− →η η , but also capable of estimating 
the far-field target signal parameters for optimal 
enhancement ( )ˆˆ( ; ) ( )t t→s Θ s .

Using the EKF algorithm it is necessary to provide the 
jacobians for implementation, that is,



TABLE III
JOINT MODEL-BASED CANCELLER/ENHANCER
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completing the development of the parametrically adaptive 
solution to the joint cancellation/signal enhancement 
problem. Next we summarize our results and discuss future 
efforts.

IV. RESULTS

The most dominant type of ship noise evolves from the 
noisy engine, propellers and gears resulting in spectral lines 
(sinusoids) at low frequency along with their harmonics. 
Therefore, we will concentrate on these dominant noise and 
interference sources that directly couple to the towed array 
to demonstrate the capability of the optimum canceller 
coupled to the signal enhancer. We assume the target 
bearing is unknown and construct the adaptive signal 
enhancer while jointly removing the interferences and 
noise.

In our problem we will assume that the ship noise is 
dominated by the engine spectral lines at 10, 20 and 30 Hz; 
therefore, the optimal canceling filter can be captured 
nicely by a 6th-order autoregressive (AR) model [6], [8]. 
The AR model is simply

1
( ) ( 1) ( )

aN

i
i

t a t tη η ε
=

= − +∑  (23)

This model can easily be converted to a Gauss-Markov 
representation as a special case of the observer canonical 
form [6], that is,
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 − 
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L

L
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M M O M M

(24)

For this case we perform a Gauss-Markov simulation using 
the following measurement model (as in Eq. (15))

( ) ( ; )   ( ) ( )t t t t= + +p s Θ η v .

We simulated two planar sources of unit amplitude, 50Hz 
frequency, 7.5m wavelength impinging on an 8-element 
towed array with a sampling interval of dt=0.005 sec for 
measurement noise with a variance of 4vvR = . The arrival 

angles were { }1 2, 45 , 10o oθ θ = − and the canceling filter 
obtained from the canceling algorithm with coefficients: 

{ }1 2 3 4 5 6, , , , , { 1,5.7809, 14.1358,18.7096,
14.1358,5.7809}.
a a a a a a = − −

−

The simulation results are shown in Figs. 2-4 below. In Fig. 
2 we show the true value of the 450 on the top left and its 
estimate on the top right Below are the true (left) and 
estimated (right) values of the signal from hydrophone No. 
1.  Figs. 3 and 4 show the innovations for the first four 
measurements.  Figure 3 is for the case with the noise 
model included and fig. 4 is the case for the noise model 
removed. The degradation in the innovations is clearly seen 
here.
This completes the implementation of the canceller 
demonstrating that it can effectively incorporated into the 
MBP framework while removing its effect and enhancing 
the signal.

 
 



V. SUMMARY

In this paper we have developed a solution to the joint 
cancellation/signal enhancement problem using a model-
based approach [6].  Starting with the optimal noise 
canceller solution we developed the corresponding model-
based solution demonstrating their equivalence for the case 
where the signal is known a priori. Next we developed the 
solution to the joint problem with the signal unknown, but 
parameterized as a far-field target. The solution to this 
problem lead to the parametrically adaptive model-based 
processor implemented with the (nonlinear) extended 
Kalman filter (EKF) algorithm. It was shown how to design 
the processor for this problem.

Future efforts will be aimed at applying this technique to 
both simulated and measured hydrophone data. We plan to 
use the discrete implementation of the EKF available in 
MATLAB [10] with the toolbox SSPACK_PC [11].
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Figure 2. True and estimated values of the first 
bearing angle and the signal on the first 
hydrophone.
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Figure 3. Innovations for the first four signals
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Figure 4. Innovations for the first four signals
With the noise model removed.
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