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We review the technical challenges associated with the 
production and use of various coal chars in a direct carbon 
conversion fuel cell.  Existing chemical and physical de-
ashing processes remove material below levels impacting 
performance at minimal cost. At equilibrium, sulfur 
entrained is rejected from the melt as COS in the offgas.   
 
A carbon fuel cell reacts elemental carbon and 
atmospheric oxygen in a molten carbonate electrolyte 
according to the reaction C + O2 = CO2 (E° = 1.02 V, 
750° C). Fuel cells with anodes of atomically disordered 
“turbostratic” carbon have been operated at 0.8 V and 1 
kA/m2 with essentially pure CO2 product gas—indicating 
potential for conversion of fossil fuel chars at 80% of the 
HHV of carbon.1  
 
The use of coal or petroleum-coke chars in such fuel cells 
may gives rise to problems of electrolyte fouling resulting 
from entrainment of inorganic material (“ash” and sulfur) 
with the anode.  Weaver found that ash at levels up to 
10% had no perceptible effect on cell voltages.2  For a 
typical salt loading (Wel ~ 2.3 g/cm2), current density (i = 
0.1 A/cm2), and mass fraction of ash f, the time Tc to 
reach this critical concentration (fc = 0.10) is given by: 
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Mc is the atomic weight of carbon and F is the Faraday 
constant. This criterion suggests a useful life of the melt 
of Tc (days) ~ 0.86/f. Thus for the mechanically cleaned 
coal granules with 0.17-1 % ash, the critical time Tc is 
506 to 86 days. For the solvent-extracted sources of fuel 
having < 0.05% ash, equation (1) leads to a time to 
exhaust the melt approaching 5 years—roughly the life 
expected for any high temperature cell.  
 
We examined the energy balances and costs associated 
with deep chemical cleaning of bituminous coal by 
several pilot processes that now reduce ash levels below 
0.2% at costs of $3/GJ. The costs and residual ash are 
given in Table 1.  

 
Table 4. Costs of extracting the carbon anode from coal  
Process/ 
Developer 

Yield, 
% 

Ash, 
% 

S, 
% 

Fuel Cost 
 

U. Ky. 
Mechanical 
separation 3 

90 <1 1-2 $60/ton 
 

Bayer leaching; 
UCC Energy, Ltd. 
Pty.4  

-- 0.17-
0.27 

0.4
2 

$3.0-3.3 
/GJ 

 
NEDO process5 60% <0.02 -- ~ $2/GJ 
Solvent, U. 
Kentucky6  40-70 0.01-

0.06 0.5 -- 

WVU-NMP 
solvent7 40-50 0.04-

0.3 1.0 $140/tonb, 
 

b Calcined extract.  
 
Cleaned coal will retain a few percent of bound sulfur and 
some residual pyrite.  Thermodynamic equilibrium 
calculations (FACT 2.18) indicate that sulfur is stable in 
the C/CO2/Na2CO3 system at 750 °C only as sulfide ion in 
the condensed phase in equilibrium with gaseous COS 
 2CO2 + Na2S = COS + Na2CO3            (2) 
The equilibrium relation is: 
 [COS]/[CO2]2 =  K750°C = 0.0225 atm-1 (3) 
Reaction of one mole of carbon produces 3 moles of CO2: 
 C + 2CO3

2- = 3CO2 + 4e-   (4) 
At equilibrium, 0.0675 moles of sulfur may be removed 
as COS per mole of carbon reacted, corresponding to the 
removal of all sulfur up to a weight percent of 18%-wt.  
 
Were the sulfide to migrate to the cathode, it would be 
oxidized to the sulfate ion.  Solution of the flux equation 
for the system (Na,K)2CO3, (Na,K)2S, (Na,K)2SO4 allows 
us to estimate the rate of transport of sulfide and the 
steady state concentration profiles of sulfide and sulfate 
ions within the separator. Regardless of the fate and 
transport of sulfur entrained with coal, the corrosiveness 
of reduced sulfur for most metals severely limits materials 
of construction and current collection.  
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