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Abstract

A distributed memory message-passing parallel implementation of a finite-volume
discretization of the primitive equations in the Community Atmosphere Model 3.0
is presented. These three-dimensional equations can be decoupled into a set of two-
dimensional equations by the introduction of a floating vertical coordinate, resulting
in considerable potential parallelism. Subsequent analysis of the data dependencies
— in particular those arising from the polar singularity of the latitude-longitude
coordinate system — suggests that two separate domain decompositions should be
employed, each tailored for a different part of the model. The implementation re-
quires that data be periodically redistributed between these two decompositions.
Furthermore, data from nearest neighbors are kept in halo regions, which are up-
dated between iterations. These data movements are optimized through one-sided
communication primitives and multithreading. The resulting algorithm is shown to
scale to very large machine configurations, even for relatively coarse resolutions.

Key words: Atmospheric Dynamics, Primitive Equations, Finite-Volume Methods,
Parallel Computing
PACS: 92.60.Bh

1 Introduction

Atmospheric general circulation models (AGCMs) are key tools for weather
prediction and climate research. They also require large computing resources:
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even the largest current supercomputers cannot keep pace with the desired in-
creases in the resolution of these models. AGCMs consist, roughly speaking, of
the dynamics, which calculates the atmospheric flow, and the physics, in which
parameterizations for subgrid phenomena such as long- and short-wave radia-
tion, moist processes, and gravity wave drag, are approximated. The physical
parameterizations will not be discussed further here. We concentrate on the
finite-volume (FV) solver of the dynamics (the dynamical core) which requires
a substantial fraction of the overall computational time of the Community
Atmosphere Model (CAM 3.0, part of the Community Climate System Model
[2]).

The mathematical formulation of the primitive equations is presented in Sec.
2, and the finite-volume discretization in Sec. 3. An analysis of the data de-
pendencies of the scheme and their implications for the domain decomposition
on parallel computers are given in Sec. 4. In Sec. 5, an overview of the parallel
implementation is presented. Results are presented in Sec. 6, where it is seen
that the approach scales well to very large machine configurations. Additional
conclusions and future directions are presented in Sec. 7.

2 Mathematical Formulation

We consider an atmosphere in hydrostatic balance:

1

ρ

∂p

∂z
= −g, (1)

where ρ is the density, p the pressure, and g the force per unit mass due
to gravity. This physically justified assumption is part of the primitive equa-
tions describing atmospheric motion, of which the conservation of mass and
momentum are the most relevant here:

∂ρ

∂t
=−~∇3 · (ρ~v), (2)

d~v

dt
=−1

ρ
~∇3p− ~∇3Φ + ~F − 2~Ω× ~v, (3)

where Φ is the geopotential, ~F is the frictional force (which will not be con-

sidered further in this work), and ~Ω is the earth’s angular velocity. We use
~∇3 to explicitly designate the three-dimensional gradient operator to avoid
confusion with the horizontal gradient which will be used subsequently. The
full set of the primitive equations can be found in [6]. In this work, only the
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horizontal wind components will be considered. In this case, the Coriolis term
2~Ω × ~v is replaced by its horizontal component, f ≈ 2Ω sin θ, where θ is the
latitude.

In place of z, a general vertical coordinate ζ can be introduced if a bijective
transformation exists:

z ←→︸ ︷︷ ︸
T ,T −1

ζ. (4)

That is to say, ζ is a monotone function of z. There are a number of sensi-
ble choices for ζ (see [6]), for example, ζ can represent isentropic or terrain-
following coordinates. The gradient of a scalar quantity Q(x, y, ζ) can be writ-
ten as,

~∇ζQ = ~∇zQ +
∂Q

∂ζ

∂ζ

∂z
~∇ζz, (5)

where the subscript of ~∇ indicates which horizontal surface, ζ or z, remains
constant in the vertical. In order to formulate Eq. (2) in ζ, a pseudo-density
π can be defined,

π = −∂Φ

∂ζ
ρ. (6)

By making use of Eq. (1), it follows that π = ∂p/∂ζ. The mass continuity and
horizontal momentum equations in ζ coordinates become,

dπ

dt
+ π~∇ζ · ~vH + π

∂ζ̇

∂ζ
= 0, (7)

d~vH

dt
+

1

ρ
~∇ζp + ~∇ζΦ− ~F + f~k × ~vH = 0, (8)

where ζ̇ is the time derivative of ζ. By making use of the relationship,

dπ

dt
=

∂π

∂t
+ ~vH · ~∇ζπ + ζ̇

∂π

∂ζ
, (9)

it follows that the conservation of total air mass and the mass of an arbitrary
set of tracers (such as water vapor) can then be succinctly formulated,

∂π

∂t
+ ~∇ζ · (~vπ) = 0, (10)
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∂πqi

∂t
+ ~∇ζ · (~vπqi) = 0, (11)

where qi is the mixing ratio of the tracer (i). In a Lagrangian frame — in

which a control volume glides between constant ζ surfaces — the operator ~∇ζ

is two-dimensional.

Additionally, if potential temperature is taken as the thermodynamic variable,

Θ = T

(
pref
p

)R/cp

, (12)

where T is the temperature, pref = 1000 hPa is a reference pressure, R is the
gas constant for dry air, and cp is the specific heat of dry air at a constant
pressure, it follows that,

∂πΘ

∂t
+ ~∇ζ · (~vπΘ) = 0. (13)

In the absence of friction ~F , Eq. (8) can be written in latitude-longitude
coordinates in its vector-invariant form with spherical coordinates [1]:

∂u

∂t
= ηv − 1

Re cos θ

[
∂

∂λ
(κ + Φ− νD) +

1

ρ

∂p

∂λ

]
− dζ

dt

∂u

∂ζ
, (14)

∂v

∂t
=−ηu− 1

Re

[
∂

∂θ
(κ + Φ− νD) +

1

ρ

∂p

∂θ

]
− dζ

dt

∂v

∂ζ
, (15)

where Re is the earth’s radius, η = 2Ω sin θ +
[

∂
∂λ

v − ∂
∂θ

(u cos θ)
]
/Re cos θ is

the absolute vorticity, κ = (u2+v2)/2 is the kinetic energy, D is the divergence
and ν is a coefficient which takes subgrid processes into account.

3 Finite-Volume Discretization

A finite-volume approach was proposed in [10] in which the cell-averaged val-
ues of a physical quantity Q̄ are defined as,

Q̄i,j =
1

Ai,j

λi+∆λ/2∫
λi−∆λ/2

θj+∆θ/2∫
θj−∆θ/2

Q(t; λ, θ)dθ dλ, (16)
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and can be updated by the upwind integral,

Q̄n+1
i,j = Q̄n

i,j −
1

Ai,j

t+∆t∫
t

∮
Q(τ ; λ, θ)~v · ~n dl dτ. (17)

Ai,j is the area of finite volume (i, j). In this work, we consider only constant
interval lengths ∆λ and ∆θ and thus, Ai,j = R2

e∆θ∆λ cos θj.

A number of numerical approximations for Eq. (17) were proposed in [10].
The main discretization scheme split the 2-D flux integral into two orthogonal
flux-form transport operators:

F (u∗, ∆t, Q̄) =− ∆t

Re∆λ cos θ
δλ[X (u∗, ∆t; Q)], (18)

G(v∗, ∆t, Q̄) =− ∆t

Re∆θ
δθ[Y(v∗, ∆t; Q)], (19)

where δ is a difference operator on the argument values taken at neighboring
gridpoints, and (u∗, v∗) is an approximation of time-averaged values of ~v across
a cell walls. X and Y are the time-accumulated flux operators,

X (u, ∆t; Q) =

t+∆t∫
t

uQdτ, (20)

Y(v, ∆t; Q) =

t+∆t∫
t

vQdτ. (21)

For the reconstruction of Q from Q̄, the Piecewise Parabolic Method [3] is
generally used. The PPM method imposes a monotonicity constraint on the
1-D discrete solution, though it does not ensure monotonicity in the overall
2-D solution. In [8] a Lagrangian frame was suggested in which ζ remains
constant for some period of time after which it is remapped to a fixed vertical
coordinate. In the Lagrangian frame, Eqs. (10), (11), (14) and (15) can be
decoupled into a set of two-dimensional equations. An explicit, oscillation-free
finite-volume method to determine the time evolution of the prognostic vari-
ables — the pressure change per vertical level ∆p, the potential temperature
Θ, the velocity u, v and the tracer mixing ratios qi — was formulated in [7].
For example, the time step increments for the velocities are,

∆u = ∆t
[
Y(v∗, ∆t; ηλ)− 1

Re∆λ cos θ
δλ(κ

∗ + Φ∗ − νD∗) + P̂λ

]
, (22)
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∆v =−∆t
[
X (u∗, ∆t; ηθ) +

1

Re∆θ
δθ(κ

∗ + Φ∗ − νD∗)− P̂λ

]
, (23)

where X (ηθ) and Y(ηλ) are time-accumulated fluxes of ηθ and ηλ as per Eqs.
(20) and (21) using an intermediate velocity u∗ and v∗; D∗ is an approximation
for the divergence at the cell corners, and P̂λ, P̂θ are the cell mean zonal and
meridional pressure gradient terms. In addition to this overall time step, there
is a ∆t/2 predictor step to determine u∗, v∗ and κ∗ on the grid with an offset
of ∆λ/2 and ∆θ/2. Thus, this method is referred to as a two-grid and two-
time-step method.

4 Data Dependency Analysis

The neighborhood of points needed for one iteration of Eqs. (18) and (19)
is determined by the spatial accuracy order of the algorithm, ∆t, and the
geographical separation of the grid points, as dictated by the dimensionless
Courant numbers:

Cλ =
u∆t

Re∆λ cos θ
, Cθ =

v∆t

Re∆θ
. (24)

In latitude θ, the geographical separation is constant. Therefore, if ∆t is cho-
sen appropriately, and the wind speeds, u and v, remain in an atmospherically
realistic range, only the accuracy order of the transport algorithm is signif-
icant. Thus there are limited north-south neighbor dependencies (1, 2, or 3
lines of latitude) on each level.

A similar statement for the horizontal transport calculation in λ is, on the
other hand, not possible. In order to accommodate the ‘pole problem’ of
converging meridians near the pole, a quasi-Lagrangian approach [9] is em-
ployed. 1 This approach varies slightly from the classical semi-Lagrangian for-
mulation, which determines where a departure point arrives after being ad-
vected for a time ∆t. Instead, this formulation determines how the mass in the
departure cell is distributed after a time step ∆t. This formulation is crucial
because it ensures that mass is conserved, while the classical formulation does
not.

For the quasi-Lagrangian approach in [9], any given longitudinal Courant num-
ber Cλ

i−1/2 at the edge between cells (i − 1) and (i) can be greater than one,

1 This approach for longitudinal flow should not be confused with the floating
Lagrangian coordinate discussed earlier, which is purely vertical and ensures that
the problem decouples into a set of 2-D problems.
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and thus written as,

Cλ
i−1/2 = Ki−1/2 + ci−1/2, (25)

where Ki−1/2 is the integer part of Cλ
i−1/2 and ci−1/2 = mod(Cλ

i−1/2, Ki−1/2) is
the fractional Courant number. Similarly, the flux at the left edge of the cell
is decomposed into two parts:

Xi−1/2 = (integer flux)i−1/2 + (fractional flux)i−1/2. (26)

While the details of this algorithm are not important here, the upshot is
that the method has dependencies on grid points which are at geographical
distances dictated by the departure cell for a given ∆t. Near the poles, this set
goes well beyond the immediate east-west neighbors. These data dependencies
are illustrated in Fig. 1.

Fig. 1. The diagram at left depicts the different algorithms used for transport of
vorticity near the poles in the finite-volume scheme. An Eulerian algorithm is used
in the latitudinal direction, while a quasi-Lagrangian is used in the longitudinal
direction. The departure cell in the quasi-Lagrangian algorithm can be many cells
away from the target. This gives rise to data dependencies (right) which are fixed
in latitude (i.e. nearest north-south neighbors independent of latitude, given here
for −60oS), while the west-east data dependencies (here for the prime meridian)
are a function of latitude. This is only an approximate illustration; the precise data
dependencies are also a function of the wind variables and will change between time
steps.

As most atmospheric models, CAM is implemented on state-of-the-art dis-
tributed memory parallel supercomputers. The successful parallelization of
the FV dynamical core is determined to a large extent by the required data
traffic between processors. It is therefore imperative to locate the data on the
processors in a way which minimizes inter-processor communication. Judged
from this standpoint alone, the ideal data layout, or domain decomposition,
would appear to be a set of latitude slabs, or decomposition elements (DEs), as
illustrated in Fig. 2. Any given latitude resides in only one DE, avoiding the
issues associated with the quasi-Lagrangian scheme for east-west transport.
Furthermore, any given vertical profile is also in one DE, important for the
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vertical integrations (such as the solution of the hydrostatic equation) and all
of the physical parameterizations in CAM.

Fig. 2. The 1-D algorithm decomposes the latitude-longitude-level domain into a
set of latitude slabs. Each slab has a north and south halo region, which covers
the latitudinal data dependencies. These halo regions are filled (‘halo exchange’) in
a communication phase which can be overlapped with unrelated calculations. The
calculation on haloed arrays can then take place subsequently without further com-
munication.

The 1-D decomposition was successfully used in CAM and other applications
of the FV dynamical core. Unfortunately, with growing computer size, the
inherent parallelism is no longer sufficient for very large multi-processor ma-
chines. For such machines it is necessary to decompose the data in a second
dimension. But which dimension is ideal? Cutting in longitude creates exces-
sive inter-processor dependencies near the pole, while distributing the vertical
components creates extensive communication for vertical integrations and in
the physical parameterizations.

We have chosen a technique with two alternate domain decompositions. The
domain is decomposed by latitude and level (lat-lev) to calculate updates (22)
and (23) in the Lagrangian frame. For the remainder of the dynamical core
and in all of the physical parameterizations, the domain is decomposed in lat-
itude and longitude (lat-lon). The use of two domain decompositions requires
the constituent arrays to be redistributed or transposed from lat-lev to lat-lon
space before the vertical calculations and back thereafter. Transposed-based
methods, although expensive in terms of communication, have proven to be
scalable [5] in the parallelization of a spectral model. A lat-lev decomposition
has been illustrated as viable [15] in another spectral model. We have imple-
mented the proposed technique, putting much emphasis on a highly optimized
transpose operation.

5 Parallel Implementation

The 2-D domain decomposition is extensively discussed in [11]. Only the key
points will be treated here.
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The FV dynamical core consists of a component (referred to hereafter as
cd core) which operates on L independent levels in the vertically Lagrangian
frame to essentially solve Eqns. (10), (11), (13), (14), and (15), and a remap-
ping algorithm (hereafter te map) which consists of the vertical remapping
[7] from the Lagrangian frame back to the original vertical coordinate. It is
also necessary to solve the hydrostatic equation (geopk) at each step, which
is inherently a vertical integration. Finally, tracers are advected horizontally
in trac2d. All of these components were first parallelized with the OpenMP
shared memory multitasking paradigm [4], and obtained respectable perfor-
mance on up to 16-32 CPUs on an SGI Origin 2000 [14].

The initial FV dynamical core implementation utilized two-sided communi-
cation — the only type supported by the MPI-1 standard [12] — namely
MPI Isend and MPI Irecv primitives. Furthermore it utilized both a send
buffer into which the data to be transfered are packed, and a receive buffer,
from which the data are unpacked. An optimization to this defined MPI de-
rived datatypes for the send and receive descriptors, circumventing the user
buffers.

The code was then upgraded to use the enhanced MPI-2 standard which of-
fers one-sided communication through the MPI Put and MPI Get primitives.
One-sided communication requires MPI-2 windows to define the segments of
memory that receive remote data. These windows can utilize the MPI de-
rived datatypes described previously. Several communication approaches us-
ing MPI-2 were implemented, among them a straightforward scheme (Method
A) utilizing both a send and receive buffer, and an optimized scheme (Method
B), needing only a receive buffer. Other methods utilizing both MPI-2 and
derived datatypes were also implemented. Unfortunately, this combination of
functionality is not currently supported on the SGI Origin 3800 target plat-
form.

In addition, the possibility is available on some platforms to multithread the
one-sided communication. This can be done in different ways. First, a large
block to be sent from a given DE to another is broken into a set of smaller
blocks; the delivery of this set with MPI Put is multithreaded. The second pos-
sibility is to multithread the delivery of all blocks from one DE with MPI Put

over the set of DE targets.

The geopk calculation is a vertical integration within the dynamics calcula-
tion taking place at a point where the 2-D domain decomposition is lat-lev.
The original approach was to transpose the necessary arrays before and after
this operation. As an additional optimization, a parallel algorithm which con-
structs and sends partial sums ‘upward’ was developed. This method does not
require a transpose — it only requires the communication of the partial sum to
all ‘higher’ subdomains. The partial sum method gives round-off differences
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in the results with different DE configurations, due to the varying order of
additions. A quadruple precision mode for debugging 2 purposes is available
to ensure bit-wise reproducibility over all possible parallel configurations.

6 Results

The FV dynamical core was tested at both 0.5o×0.625o and 1o×1.25o horizon-
tal resolutions, containing 576 x 361 and 288 x 181 grid points, respectively.
26 vertical levels were used for both resolutions. The target platforms were the
SGI Origin 3800 Chapman (at NASA GSFC) with 1024 CPUs @ 600 MHz,
and an IBM SP Seaborg (at DOE NERSC) with 380 Nighthawk nodes, each
with 16 CPUs @ 375 MHz.

The 1-D decomposition was extensively evaluated with various numbers of
latitude slabs and OpenMP threads per slab, using different communication
primitives. Tab. 1 gives an overview of the timing results for the entire FV dy-
namical core in CAM for MPI-1 with intermediate buffers, MPI-1 with derived
datatypes, and MPI-2 method A. The benefits of MPI-2 multithreaded com-
munication are alluded to already in this comparison. Closer investigation of
the communication timings indicates excellent speedup in the halo exchange.
These results are in line with those found in [13].

Fig. 3. The performance of the overall CAM application on both a 32 and 2944 CPU
configuration (IBM SP ‘Seaborg’) is broken down by components. The main dynam-
ics component (cd core without geopk), the geopotential calculation (geopk), tracer
advection (trac2d), and Lagrangian remapping (te map) all scale better than aver-
age. The land-surface model has the poorest scaling due to insufficient computational
load; the other pre/post-coupler physics scale better than average, in part thanks to
their communication-free nature. With the targeted optimizations, the transpose and
dyn/phys coupling do not present a performance bottleneck.

2 Quadruple precision implies the communication of twice as much data, and is
therefore not used for optimized benchmarking and production runs.
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Table 1
The FV dynamical core (1-D decomposition) timings are given for a one-day CAM
simulation at 1o × 1.25o × 26L, run on configurations with 9, 18, 36, 45 DEs, each
running with 1, 4 or 9 OpenMP threads, on an SGI Origin 3800 (‘Chapman’). The
MPI-1 methods using send and receive intermediate buffers or derived datatypes,
are compared with MPI-2 Method A. The results indicate overheads for using MPI-
2 one-sided communication with 1 thread, but better scalability for 4 and 9 threads
than MPI-1. The OpenMP multithread performance of individual computation-only
components is not affected by the communication paradigm. The increase in MPI-2
performance is thus attributable to the multithreading in the halo exchange commu-
nication.

MPI-1 MPI-2

DEs / Buffers Types Method A

Threads (s.) (s.) (s.)

9 / 1 626 545 641

/ 4 193 194 187

/ 9 105 111 98

18 / 1 316 312 300

/ 4 112 111 102

/ 9 77 79 62

36 / 1 159 162 165

4 82 84 66

9 64 67 42

45 / 1 153 142 171

4 75 74 62

9 63 68 40

Fig. 3 compares the timing percentiles of various components of CAM in which
the FV dynamical core is embedded. The figure indicates that the components
scaling the worst and best are part of the physical parameterizations, which
are outside of the dynamical core. Most physical parameterizations scale well
because they are communication-free. However, some parameterizations, like
short-wave radiation, are known to be load imbalanced, making the scaling
worse than one might expect. Load balancing mechanisms [16] have been built
into CAM which partially counteract this problem. The land-surface model
scales by far the worst of all components and is a known bottleneck at very
large processor count. Although it is not communication-bound, the land-
surface model has insufficient computational load per land point in that regime
and consequently consumes a much larger fraction of the overall run time. All
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components of the dynamical core scale reasonably to 2944 CPUs, including
the transpose, which consists entirely of communication. The worst performer
is the geopotential calculation, while the best is the cd core routine (without
geopk).

Fig. 4. The results on the IBM SP with Nighthawk 16-way nodes: the 1o×1.25o×26L
resolution illustrates the scalability of the hybrid-parallel approach on a very large
machine. Even though the resolution of this simulation can be considered low, the
2-D domain decomposition with 1 thread per DE (leftmost curve) allows parallelism
to be exploited up to 200 CPUs, with 4 subdomains in Z (center curve) up to 780
CPUs, and with 7 subdomains (longest curve) up to 1320 CPUs.

Fig. 4 illustrates the overall scalability of the CAM run, in simulated days per
day of wall-clock time. This includes all components illustrated in Fig. 3. Even
for the relatively low resolution of 1o × 1.25o × 26L, the 2-D hybrid-parallel
implementation can exploit parallelism up to a large extent of the machine.

The MPI-2 multithreading capabilities of the code can also provide improved
performance if these facilities are supported by the target platform. Fig. 5
illustrates a non-negligible performance increase for the overall FV dynamical
core. The performance gains for the transpose (Tab. 2) were more modest than
those for the halo exchange, but showed a marked improvement of method B
over both method A and the MPI-1 default. The fact that one-sided commu-
nication is of less benefit to the transpose calculation is under investigation.

The partial sum optimization of geopk mentioned in Sec. 5 also achieved a
notable performance improvement. As indicated in Tab. 3, the partial sum
method (with roundoff error) performs consistently as good or better than
the transpose approach.
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Fig. 5. SGI Origin 3800 results: the wall-clock time for the overall FV dynamical
core (1-day simulation at 1o × 1.25o × 26L resolution) is given as a function of
the number of subdomains (DEs) using a 1-D decomposition. For 4 and 9 threads
per DE (upper and lower pair of curves, respectively), the MPI-1 (upper curve in
pair) and MPI-2 (lower curve in pair) performances are given. MPI-2, which can
take advantage of the multithreading in the communications primitives, can yield
as much as a 20% overall reduction in computation time for 4 threads, and a 33%
reduction for 9 threads.

Table 2
Timings in seconds are given for the overall transpose times in a 1-day 0.5o ×
0.625o × 26L simulation on the SGI Origin 3800 with 4 vertical subdomains and
Nlat bundles of latitudes (i.e., # DEs = 4 x Nlat). MPI-2 multithreading can lead
to higher performance than the best MPI-1 method: MPI-2 method A is comparable
to MPI-1 (using derived datatypes). Method B consistently outperforms both.

MPI-1 MPI-2

Nlat Types Method A Method B

9 113 117 99.5

18 68.8 69.5 60.8

36 46.4 47.4 42.4

7 Conclusions and Future Work

We have presented a scalable parallel implementation of a finite-volume solver
of the primitive equations. This has been fully integrated into the Community
Atmosphere Model, and is available for use in the research community.

13



Table 3
Timings in seconds for the geopotential calculation in geopk: the partial sum method
is as good or better than the transpose method, particularly if multiple threads per
DE are employed.

Threads pe DE

1 4 7

Transpose 59.7 51.2 36.6

Partial sum 60.0 30.1 30.3

Some additional optimizations to this implementation are ongoing. We are
porting the code to the Cray X1, utilizing both vector parallelism and the
SHMEM library for communication. Our primitives for irregular communica-
tion are thus being extended to use SHMEM as an alternative to MPI-2.
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