EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

UCRL-JRNL-214054

Alternative Approach to Nuclear
Data Representation

J. Pruet, D. Brown, B. Beck, D. P. McNabb

July 27, 2005

nuclear instruments and methods b

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Alternative Approach to Nuclear Data
Representation

J. Pruet, D. Brown, B. Beck & D. P. McNabb

Lawrence Livermore National Laboratory, 7000 E. Ave, Livermore, CA

Abstract

This paper considers an approach for representing nuclear data that is qualita-
tively different from the approach currently adopted by the nuclear science com-
munity. Specifically, we examine a representation in which complicated data is de-
scribed through collections of distinct and self contained simple data structures.
This structure-based representation is compared with the ENDF and ENDL for-
mats, which can be roughly characterized as dictionary-based representations. A
pilot data representation for replacing the format currently used at LLNL is pre-
sented. Examples are given as is a discussion of promises and shortcomings associ-
ated with moving from traditional dictionary-based formats to a structure-rich or
class-like representation.

Key words: nuclear reactions:general, nuclear engineering and nuclear power
studies, computer data analysis
PACS: 28., 24., 29.85+c

1 INTRODUCTION

Simulations of nuclear reactors, coherent archival of nuclear knowledge, and
progress in understanding reactions all require a mature nuclear data infras-
tructure. Collating and quantitatively describing nuclear processes in a coher-
ent way is generally non-trivial. For example, ENDF - the nuclear reaction
database and format supporting the reactor community - has taken decades
of work by many outstanding scientists to develop and maintain [1].

The data effort is made difficult by a number of factors. One of these simply
relates to nuclear physics being a rich and complicated subject, with reacting
nuclei exhibiting a great myriad of resonances, breakups, transitions, etc. An-
other complication relates to the specific needs of different nuclear data con-
sumers. For example, the need for including resonance parameters becomes

Preprint submitted to Elsevier Science 7 June 2006

clear when one understands details of multi-group transport simulations and
self-shielding calculations for nuclear reactor studies (e.g. [2]). The last com-
plicating factor relates to the tools used to represent nuclear data. This is the
factor studied here.

In this paper we examine the use of structure-based formats and describe
how these formats could benefit the nuclear data infrastructure. The term
“structure-based” is used here to mean that the format consists of a collection
of separate pieces, each of which represents a different idea or data type. This
can be better understood by comparing structure-based formats with more
traditional formats currently used for nuclear science.

Current nuclear reaction data storage formats consist roughly of a few simple
array-like structures and fixed-formatted character strings. These structures
are arranged into files according to well-defined templates. A dictionary (or
manual) is used to interpret and recover data. As an example, ENDL (the
data format used at LLNL) consist of a sequence of two-line headers followed
by an appropriately sized matrix of data [4]. The 11th and 12th columns in
the first row of a header contain a number representing the kind of reaction
described by the data. Looking in the ENDL manual, we see that a “ 77
in these columns means that the reaction involves an outgoing photon. As
another example, materials in ENDF are specified by a “MAT” number. To
understand which material a particular MAT number represents, one refers to
the ENDF manual:

“...MAT number for isotopes of an element are assigned on the basis of in-
creasing mass in steps of three, allowing for the ground and two meta-stable
states ... the lightest stable isotope is assigned the MAT number ZZ25.... For
the special case of elements from Es to Lw MAT numbers 99xx are assigned...”

To determine which isotope a MAT number refers to, one needs the table of
isotopes and some simple calculations.

The examples above for ENDL and ENDF underscore the remarkable com-
pactness and efficiency of current nuclear formats. Most of the burden of in-
terpretation rests with the dictionary (or manual) rather than with the data
file itself. Representing several isomers of every isotope with a single 4 digit
number makes very efficient use of memory. This efficiency was essential in
the first days of the data infrastructure effort, when punch cards were used.
Also, FORTRAN and other languages of the period made implementation of
classes or deeply nested structures tedious. This necessitated a limited variety
of data structures.

But the storage efficiency and paucity of structures characterizing current
nuclear formats comes at a heavy cost. Since the syntax and basic elements
comprising these formats are so limited, extension can be ad-hoc and difficult.

For example, it isn’t clear how to add a fourth isomeric state to targets in
ENDEF. As another example, to represent fission fragment distributions in
ENDL one uses Z=99, A=120. With enough extensions a format like ENDL
eventually devolves into a list of exceptions. Also, it can be difficult to add
support for complicated new data types. Our current effort, for example, was
motivated by the need to include covariance data and uncertainty data that
seem difficult to represent in ENDL.

An alternative approach to representing nuclear data is one that might be
characterized as a structure- or class-based representation. In this approach
one first defines a set of simple and general data structures. These will include
things like representations of nuclei, levels, vectors, matrix-like objects, and
so on. Associations between these structure are used to describe more com-
plicated things like reaction channels. This representation is different from
traditional approaches. In ENDL or ENDF, new data types are typically ac-
commodated by adding a new number or word in the data file, along with a
corresponding dictionary or manual entry. For example, previously unassigned
MAT numbers were designated to represent molecules involved in the coherent
scattering of low energy neutrons.

Structure-based representations have a number of advantages over traditional
formats. By stacking the building blocks comprising the representation very
complicated quantities can be expressed in a straightforward way. As a simple
example, one could have a matrix whose elements are themselves arbitrary
data structures. The first element might itself be a matrix, the second a sim-
ple number, the third an array of arrays, Also, the basic data structures
(or basis structures) can be built to mirror physics. If one needs to describe
reactions involving molecules a structure describing molecules is devised. This
might contain an account of the atomic constituents of the molecule, informa-
tion about vibrational modes and the molecule’s mass.

Details of how structure-based nuclear data representations can be designed
and implemented are discussed in the rest of this paper. The main goal of
this presentation is to give an alternative view of an important longstanding
effort and also to add to discussions about the future course of the data in-
frastructure. To make this discussion concrete we will present examples from
the new nuclear reaction data format that is being tested and implemented at
Livermore. The ENDL format has served the Lab’s needs well for four decades.
However, and largely because of recent interest in quantifying uncertainties in
large-scale engineering simulations, it was judged that a richer representation
was needed.

2 Basis structures

In the representations discussed here basis structures comprise the alphabet
used to express data. Format designers have the job of carefully choosing and
designing these structures. Fortunately, essentially all of the hard work has
already been done. We don’t have to invent the idea of a matrix, or a particle,
or a Legendre-expansion representing an angular distribution. Instead we are
left with the more mundane job of transcribing these ideas into a form useful
for data representation.

In designing LLNL’s new format we attempted to design structures that nat-
urally mirror concepts commonly used in nuclear physics. For example, there
are descriptions of particles, nuclei, levels, reaction channels, arrays and func-
tions. Though our specific definitions will undergo revision, it seems likely that
any structure-based approach will need some account of these common ideas.

2.1 Designing Basis Structures

It might be useful at the outset to give a rough idea of how one goes about con-
structing basis structures from scratch. First of all, it seems that any nuclear
data format will make use of the familiar mathematical constructs - numbers,
arrays, matrices, and so on. Representing a simple number doesn’t take much
work, though some convention about how they are written is needed. An array
is less trivial. One of the simplest ideas is that an array is a list of other data
structures. In schematic notation we could write

array
list of other data structures
length (an integer)

Matrices could then be constructed as arrays containing other arrays. More
generally, since the array defined here can hold any kind of data structure,
it can be used whenever one needs to represent a collection of objects. For
example, we might choose to represent the excitation spectrum of a nucleus
as an ordered array of level structures. The array structure used in LLNL’s
new format is similar to that defined above, but has additional support for
indexing and for relating array elements to externally defined quantities.

To illustrate how concepts from physics can be represented, consider a struc-
ture describing nuclei. A simple first pass at a structure describing a nucleus
is

nucleus

proton and atomic numbers (integers)
mass
excitation state

Here we would still have to define a structure describing mass and a structure
describing the nuclear excitation state. The structure for mass might simply
specify a number and its associated units. The structure describing an ex-
citation state needs more thought. In LLNL’s new format, for example, the
excitation state can be a a particular level, or a thermal excitation spectrum,
or an arbitrary collection of levels with fractional populations.

Note that the nucleus structure described above only describes a nucleus in
a particular state. It would not be appropriate for describing the excitation
spectra characterizing the nucleus, the pattern of electromagnetic resonances
exhibited by the nucleus, or other characteristics that seem better left to
a structure database like that provided in ENSDF [3]. Carrying all of that
information in a reaction database seems unnecessary and cumbersome. In
fact, it may even be desirable to omit the specification of the nuclear mass,
since when 7 and A are specified it is easy enough to find the mass in a table.
But with a minimal specification for the nucleus we would face the problem of
resolving references to external data sets. In section 6 we discuss how structure
based formats could solve this problem and at the same time help to bridge
disparate data efforts.

3 Representing reactions

Description of reactions lies at the heart of a nuclear reaction data format.
With a well designed account of reactions a huge variety of processes can
be represented. To illustrate some of the potential power and elegance of
structure-based formats, we present here a description of the reaction struc-
ture used in LLNL’s new format.

It would be quite difficult to design a structure describing reactions in one fell
swoop. The task is manageable, though, when we break up the description
of a reaction in terms of a collection of smaller logically distinct structures.
For simplicity we’ll take a top-down view (rather than first describe the most
elementary structures). A natural description of reactions that might come
from reading [5] is

reaction
incoming channel
outgoing channel

Here the incoming channel specifies the state of the system before interactions
occur. As it currently stands the outgoing channel specifies of the asymptotic
state of the reacting system as well as any needed information about interme-
diate states. A possibly attractive alternative would be to specify intermediate
evolution on a par with the specification for the initial and final states.

Specifying the incoming channel or the outgoing channel for an exclusive re-
action involves describing a collection of bodies (particles, nuclei, etc.), each
of which may or may not be in well-specified states. To do this we introduce

body account
body (nucleus or molecule or ...)
multiplicity
ambient

Here body is any structure that might describe a target or projectile. This
description of the body account has some advantages. First, it reuses the
structures already contained in the format. Second, the body account (and
by extension the channel elements) can be as rich as, e.g., the description
of nuclei. For example, the nucleus structure presented in section 2.1 and
used in LLNL’s new format can represent nuclei in any excited states. This
automatically allows representation of reactions involving excited target or
product nuclei. The ambient element above specifies the temperature, density
or other thermodynamic conditions describing the environment in which the
body is immersed. When this element is used it is assumed that the body is
in equilibrium with its surroundings.

The multiplicity element is used to specify constraints on the number of
each type of particle involved in the reaction. A simple structure for this is

multiplicity
number (an integer)
qualifier (one of greaterThan, lessThan, equal, or any)

As an example, to represent a reaction with a single neutron in the incoming
channel one would use number=1, qualifier=equal. The real value of a flexi-
ble specification for the multiplicity comes when describing outgoing channels.
To represent a reaction in which more than five particles occur in the final
state one would use number=5, qualifier=greaterThan. Or, to represent a
reaction which is exclusive on a given particle one would use qualifier=any.

Our current specification for the incoming channel is simply

incoming channel
body accounts

The specification for outgoing channels includes more information

outgoing channel
body accounts
intermediate states
Q value
reaction data

The Q value structure is just a number with associated units. Because the
g-value characterizing a reaction is simply determined once the incoming and
outgoing channels are specified it is in some sense redundant. One might make
the case that the Q value should be omitted here, in much the same way
that the nuclear mass might be omitted from the specification of a nucleus
(see section 6). Pointwise or functional data characterizing the reaction is
described by reaction data structure. This structure makes heavy use of the
mathematical constructs described by the format. For the present purposes
we will emphasize the configuration and evolution of particles in the reaction.

Intermediate states of a reaction are described in roughly the same way as
initial and final states of the reaction. Here, though, some extra information
about order and timescale are needed. Our current structure is

intermediate state
body accounts
step number (an integer)
reaction data
lifetime (number with associated units)
decay type (hadronic, direct nuclear, preequilibrium, compound
nuclear, fission, electromagnetic or weak)

The step number’s are used to convey that the reaction evolved through an
ordered series of intermediate states. The lifetime can be used to indicate the
length of time over which the intermediate state persists. The decay type
describes the decay mode of the intermediate state and is one of a handful of
basic decay modes (weak, compound nuclear, ...).

Note that a reaction data element is included in the definition of the inter-
mediate state. This is done so that detailed information about the intermediate
state can be conveyed. As an example, suppose that one wants to describe the
spectrum of the first neutron emitted in an (n,2n) reaction. In this case the
intermediate state would consist of a single neutron, a nucleus with the same
Z and A as that in the incoming channel, and reaction data describing the
spectrum of the emitted neutron. The final state described in the outgoing
channel element would contain two neutrons and the (n,2n) daughter of the
nucleus in the incoming channel.

Overall, then, a reaction in the new format is viewed as consisting of an or-
dered series of snapshots describing the state of bodies in the system. The
first snapshot describes the incoming channel. Subsequent snapshots describe
intermediate states of the system that persist over timescales given by a life-
time or decay type (or both). The final state of the system and reaction data
characterizing this state are described in the outgoing channel.

In Appendix I we present an example of the reaction structure used to describe
delayed neutron emission following fission of 2*3U. Though it is hard to parse
by eye, a few things are evident. First, distinct structures are assembled to
describe this reaction. The meaning of the structures is more-or-less evident.
Also, it is clear how to change the content of the structures used to describe this
particular reaction to instead account for a rich variety of other reactions. For
example, to describe an excited state target we would change the specification
of the level in the incoming channel. Or, to describe prompt fission neutron
emission we would omit the intermediate state.

An example in Appendix II shows how, with some modifications, structures
from LLNL’s new format could be combined to represent relativistic heavy
ion collisions. Heavy ion collisions are different from the nuclear processes
important in reactors in many ways. However the basic elements - channels,
reaction data, etc. - used to describe both types of processes are quite similar.
It is still the case, though, that designing a faithful account of heavy ion
collisions would take a directed effort.

4 Writing and expressing data

There are two parts to defining a new format. One concerns the basic data
structures used to represent the data. The other part of defining a new format
is defining the overall syntax of the format. It is not very difficult to invent
a system for expressing the kinds of structures we present. For example, one
could simply write code in C describing the contents of different structures.
ASCII text of the C code would then serve as stored data. However, more
mature solutions exist. Among these is XML (extensible markup language), a
convention for describing data stored in tree-like structures. One of the first
published studies examining the use of modern markup languages for nuclear
data representation was presented in [7].

We are currently using XML because it is widely supported, with several
options for open source parsers, checkers, etc. In the short run, this means
that we don’t have to write our own parsing codes. In the long run, the open
source nature of the XML tools ensures that we have control of the source
code of all the XML tools that we need. It is also not so hard to write our

own parsers. For these reasons concerns about the longevity of XML are not
well founded.

Briefly, XML documents consist of a sequence of nested elements. The begin-
ning of an element described represented by a tag x is denoted by “<x>”. The
end of the same element is denoted by “</x>”. Simple elements that contain
no nested elements can also be denoted “<x/>.” Elements can contain other
elements. For example, one way to represent a particle is

<particle>
<particleName> neutron </particleName>
</particle>

Elements can also contain attributes, which describe simple characteristics
of the element. Another way to express the particle described above using
attributes is

<particle particleName='"neutron'">
</particle>

Or equivalently (and more compactly): <particle particleName="neutron"/>.

Simple data types (strings, integers, etc.), such as particleName above, can
receive their own elements or be described as attributes. For definiteness, we
adopted the convention that all simple data types are described as attributes.
Complicated data types always need their own elements.

This is about all one needs to know about XML as far as specification of
this new format is concerned. A thorough introduction to XML is left to
one of several good introductory books [8]. It should be said that a huge
focus of these books relates to web presentation. This is not so important
for our purposes. Most books also contain some description of common XML
programming tools. Among these are programs that convert one XML file into
another, that search files for particular nodes, and so on. Again, these are not
so important for our purposes and tend to be initially confusing.

5 Parsing and Representing Data in Computer Codes

Data written in a structure-based format is parsed and represented quite dif-
ferently from data written in dictionary-interpreted formats. To illustrate this,
let’s consider the data problem from a different perspective. Suppose that a
programmer with no idea about how a format is designed wants to write com-
puter code that will represent reactions. Though there are other choices, we’ll
assume that a class “reaction” is constructed to do this. The first job of our

programmer is to decide what kinds of information about reactions she wants
to include. In pseudo-code she might decide on

class reaction:
reaction name
reaction data
incident particle
reaction timescale

To populate this class, e.g. from an ENDL file, the programmer would read
the ENDL manual and translate entries in ENDL files to members of the
particle class. This translation is difficult and not one to one. For example,
our programmer might have to translate ENDL’s “yi=01" into “neutron”.
Worse still, the reaction class above neglects to define the reaction target, and
ENDL’s definition of a reaction carries no notion of the timescale over which
the reaction is occurring. Part of the trouble here is that the programmer had
in mind a much different idea about reactions than the format designers. This
mismatch arises because ENDL does not have a mechanism for relating the
detailed intent of its designers. In other words, there is no explicit account of
the base concepts used.

Structure-based formats solve problems associated with writing programs to
represent data in a simple way: the format itself defines the containers or
classes used to hold data. For example, by looking in section 3, one sees that
designers of our current format had in mind a reaction class defined as an in-
coming channel and an outgoing channel. In fact, there is such a close mapping
between structure-based formats and their class counterparts that class repre-
sentation of data can be generated automatically from the format specification.
This was tremendously useful during development of the basis structures. Our
format went through dozens of major substantial revisions, but regenerating
processing codes for the format only took seconds for each revision. By con-
trast, generating a parsing code for a context sensitive dictionary-interpreted
format is time consuming and requires human attention to changes in dictio-
nary entries.

Translating data between structure-based and traditional formats requires
making explicit the concepts used in the dictionary-based format. Because
nuclear physics has a well-developed conceptual foundation this is not so hard
as it might first seem. In fact, the process of understanding the original intent
of ENDL’s designers taught us a lot about the kinds of structures needed in a
robust representation. Once an initial set of basis structures had been decided
on, faithful translation routines only took a few days to write. A similar ac-
complishment for ENDF, which expresses a much greater variety of processes,
would take more effort and could require a sizeable collaboration between dif-
ferent data groups. The effort to translate data back into traditional formats

10

is essential if data written in the new format is to be useful. It would take
several years at least for processing and application codes to be re-written.

Though there is nothing very sophisticated or tricky about processing data
written in structure-based formats, it should be said that some languages
are relatively unsuited for the task. FORTRAN 77, and to a lesser extent
FORTRAN 90, are among these. If one must parse data with FORTRAN 77,
a dictionary interpreted format and string parsing are likely the best choices.

6 Bridging disparate data efforts with structure-based formats

Understanding data describing nuclear reactions typically requires the use
of ancillary information not properly part of the reaction description. Such
information might include the masses and lifetimes of elementary particles,
branching ratios for different decays, or nuclear structure information. As an
example, consider an (n,n’) reaction that leaves the daughter nucleus in a
definite excited state. To understand kinematics of this reaction one needs
masses for the target and incident neutron, as well as the excitation energy
of the daughter. One solution for this is to include needed information in the
same file describing reaction data. ENDL does this. The mass and lifetime of
239Py, for example, are stored in at least 150 separate places in LLNL’s current
database. This kind of redundancy is inefficient and in some cases undesirable.

Keeping separate databases dedicated to different aspects or applications of
nuclear physics is a potentially better approach. The trouble with this, though,
is that users of one data set have to resolve references to external data sets
and also have to know the meaning of entries in each data set. Structure-
based formats offer a powerful solution to this problem by providing a common
central repository of basis structures.

To illustrate this, consider the description of a simple particle like the neutron.
For most applications it suffices to relate only the particle’s name. Once this is
specified the magnetic moment, lifetime, and other characteristics are implied.
In this sense the particle name serves as a minimal representation, or iden-
tifier, of a larger object. Accessing and interpreting information held in the
larger object becomes trivial if different data efforts use the same set of basis
structures. For example, ENSDF archivists might be authorities on properties
of the neutron and so would use a very thorough particle description:

particle
name
mass
lifetime

11

spin

spin projection
parity

constituent quarks,

As reaction data archivists we may need all of this information, so we adopt
the same rich particle structure. However, we don’t expect to be the definitive
source for the neutron lifetime, and a description of the quarks comprising
the neutron is generally not needed for our applications. For this reason we
would carry only the particle name in our data sets, and defer to [3] or the [6]
for needed ancillary information. By using a subset of an agreed upon struc-
ture we solve the problem of accessing ancillary information. If more detailed
particle information is needed to describe a reaction, we are free to include
more elements from the complete structure. For example, to describe emission
of polarized neutrons the spin projection element would be used. A less
trivial example relates to the (n,n’) example mentioned above. With a good
nuclear structure database we could omit explicit specification of the excita-
tion energy and use an integer excitation number as a minimal representation
of a given excited state.

A common pool of basis structures could find broader uses than those relating
to communication between different data efforts. One obvious possibility re-
lates to the use of nuclear data by those interested in disparate applications.
This is already done with ENDF, which finds use by the reactor community,
homeland security efforts, and many of the national laboratories’ programs. A
more audacious and relatively untested suggestion is that developers of pro-
cessed data and designers of transport codes could refer to the same set of
basis structures used by reaction data archivists.

7 Conclusion

The computational nuclear physics group at LLNL is in the process of design-
ing and implementing a new structure-based data format. An initial format has
been successfully implemented and is now being extensively tested. In addition
to representing all of the data described by ENDL, this format also has the
capability to represent uncertainties, covariances, and some complicated reac-
tions. Structure-based approaches to data representation are characterized by
several useful features. Among these are easy extensibility, nearly automatic
representation by classes within programs, and the ability to represent com-
plicated data in a natural way. Data formats currently used by the nuclear
community can be viewed as consisting of key-dictionary pairs and are rela-
tively weak by these standards. However, dictionary-based formats have the
great advantage of compactly representing complicated data. As well, tradi-

12

tional formats have a long, proven record of utility and are widely supported
in codes. Whether or not these historical advantages will outweigh advantages
of structure-based representations remains to be seen.

It should be emphasized that data formats are only a small part of the larger
machinery needed by the nuclear science community. For large-scale simula-
tion campaigns and archival applications a mature data library is generally
needed. This library contains a well-specified collection of different data sets
that satisfy certain constraints. Typical examples of such constraints might
include the requirement that all reactions contain an account of outgoing par-
ticle spectra, or the sensible demand that there not be two different data sets
describing exactly the same reaction. In addition to enforcing content specifi-
cations, the library also provides mechanism needed for retrieving information.
For example, part of the ENDL format requires that files be stored with par-
ticular names in a particular directory structure. The directory structure and
filenames - which are just keys explaining the type of data stored in the file -
serve as a sort of database.

The structure-based format described here does not serve as a library organi-
zation standard, nor does it specify allowed content of libraries consisting of
different reaction data sets. We have chosen to implement database services
entirely independently. This choice was made in part because of the wide avail-
ability of efficient well-studied database technologies. As well, emphasizing the
logical distinction between a format and a useful collection of data sets used
in applications seems a constructive starting point for designing a new data
representation from the ground up.

A challenge greater than designing consistent library standards relates to
changes in the coding infrastructure supporting engineering applications. Im-
provements in the way nuclear data is represented are not useful if they break
all of the existing application codes. The natural short term solution, which
has been adopted at Livermore, is to maintain translators between structure-
based and traditional data representations. With this none of the processing
or application codes need to be changed. In the longer term it is hoped that
improvements in the data infrastructure will facilitate improvements in the
code infrastructure. In particular, a good transparent structure-based repre-
sentation could bring the job of processing nuclear data within the purview of
well-studied code development and object-based programming methods. This
might be desirable because the nuclear engineering community currently relies
on only one or a very few core codes maintained by a small number of people.

13

References

1]

8]

Cross Section Evaluation Working Group, January 2004, Data Formats and
Procedures for the Fuvaluated Nuclear Data File ENDF-6, BNL-NCS-44945-
01/04-Rev.

Argonne National Laboratory, July 1963, Reactor Physics Constants, United
States Atomic Energy Commission.

Evaluated Nuclear Structure Data Files http://www.nndc.bnl.gov/ensdf.

Howerton, R.J., Dye, R.E. & Perkins, S.T. 1981, “Evaluated Nuclear Data
Library”, LLNL report, UCRL-50400 Vol. 4, Rev. 1.

deShalit, A. & Feshbach, H. 1974, Theoretical Nuclear Physics, John Wiley &
Sons Inc

S. Eidelman et al. 2004, The Review of Particle Properties, Physics Letters B
592, 1

Dunford, C. 2002, in Summary of the 52nd Cross Section Evaluation Working
Group Meeting, 195

Ray, Erik T. 2001, Learning XML, O’Reilly Press

This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

14

nijhuis2
Text Box
This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

A Examples of a reaction described using a structure-based format

For illustration we present here the reaction structure used in LLNL’s new
format to describe delayed neutrons emitted following 2**Ul(n, f).

<reaction>
<incomingChannel>
<bodyAccount>
<multiplicity number=’1’ qualifier=’equal’/>
<particle particleName=’neutron’/>
</bodyAccount>
<bodyAccount>
<multiplicity number=’1’ qualifier=’equal’/>
<nucleus Z=’92’ nucleusName=’Uranium238’ A=’238’>
<excitationState>
<level>
<excitationEnergy units=’MeV’ Val=’0.0’/>
</level>
</excitationState>
</nucleus>
<ambient>
<Temperature units=’MeV’ Val=’2.586e-08’/>
</ambient>
</bodyAccount>
</incomingChannel>
<outgoingChannel>
<qValue units=’MeV’ Val=’180.0°/>
<intermediateState decayType=’weak’ stepNumber=’1’/>
<bodyAccount>
<multiplicity number=’1’ qualifier=’equal’/>
<mixture mixtureName=’fissionFragment’/>
</bodyAccount>
<bodyAccount>
<multiplicity number=’1’ qualifier=’any’/>
<particle particleName=’any’/>
</bodyAccount>
<channelData dataRef=’/nuclearData/i.xml’ quantityName=’nubar’/>
</outgoingChannel>
</reaction>

This is interpreted as saying that the incoming channel consists of a single
238U nucleus and a single neutron. The U is in its ground state in equilibrium
with a thermal bath at temperature k7 = 2.586 - 10 ®MeV. An intermediate
state persists over weak timescale before the final state is reached and before
the delayed neutrons are emitted. The outgoing channel is that resulting from
a fission reaction. Note the use of the fission fragment mixture element in the

15

outgoing channel. This is really just a shorthand for specifying that fission
occurred. A full account of the independent and cumulative yields character-
izing the fragment distribution would appear somewhere else, and would be
cumbersome to include in the channel specification. The any occurring in the
particle name is used to indicate that the process described is inclusive on all
outgoing particles.

Pointwise data describing dependence of the mean number of neutrons emit-
ted as a function of incident neutron energy is contained a separate file (/nu-
clear/i.xml in this example). This file itself contains a structure-based descrip-
tion of the pointwise data. Included in the description are rules for interpolat-
ing on the data, the frame (lab or center of mass) in which different quantities
are described and the specific meaning of described quantities.

B Example of the description of a heavy ion reaction

Here we give an example that outlines how one could use a structure-based
format like ours to represent the collision of two gold nuclei at the Relativistic
Heavy Ion Collider (RHIC). This is meant to illustrate the potential flexibility
of structure-based formats. As it stands though, our format cannot do justice
to the rich variety of processes happening when two heavy nuclei collide at
relativistic velocities.

<reaction>
<incomingChannel centrality=’15%’>
<bodyAccount>
<multiplicity number=’2’ qualifier=’equal’/>
<nucleus Z=’79’ nucleusName=’Aul97’ N=’118’>
<excitationState>
<level>
<excitationEnergy units=’MeV’ Val=’0.0’/>
</level>
</excitationState>
</nucleus>
</bodyAccount>
</incomingChannel>
<outgoingChannel reactionName=’inclusive’>
<channelData dataRef=’/rhicData/pip_spec.xml’ quantityName=’trans_mom_dist’>
<particle particleName=’pi+’>
</channelData>
<channelData dataRef=’/rhicData/pipi_hbt.xml’ quantityName=’two_part_corr’>
<particle particleName=’pi-’>
<particle particleName=’pi-’>

16

</channelData>

<channelData dataRef=’/rhicData/p_flow.xml’ quantityName=’flow’>
<particle particleName=’proton’>

</channelData>

</outgoingChannel>
</reaction>

At RHIC energies, one can no longer specify distinct channels. Rather, all
“channels” are really inclusive in that the encapsulate whole classes of chan-
nels. In this example, we specify which class by stating the centrality of the
collision: we consider the 15% most central collisions. Because it is imprac-
tical to use the outgoingChannel element to specify the outgoing particles
explicitly, we embed particle elements inside each channelData element to
denote which particles are described by which channel data. The actual data
tables are stored in some external file as in the previous example.

17

