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Abstract

Solution of fluid dynamics problems on overlapping grids will be discussed. An overlapping grid consists of a set
of structured component grids that cover a domain and overlap where they meet. Overlapping grids provide an
effective approach for developing efficient and accurate approximations for complex, possibly moving geometry.
Topics to be addressed include the reactive Euler equations, the incompressible Navier-Stokes equations and
elliptic equations solved with a multigrid algorithm. Recent developments coupling moving grids and adaptive

mesh refinement and preliminary parallel results will also be presented.
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1. Introduction

The are many interesting problems that involve
the solution of fluid dynamics problems on domains
that evolve in time. Examples include the motion of
valves in a car engine and the movement of embed-
ded particles in a flow. The numerical solution of
these problems is difficult since the discrete equa-
tions being solved change as the domain evolves.
The problems can be especially hard when there
are fine scale features in the flow such as shocks
and detonations.

Email address: henshaw1@llnl.gov (William D.
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No. W-7405-Eng-48.
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In this paper an approach will be described
that uses composite overlapping grids to resolve
complex geometry, moving component grids to
track dynamically evolving surfaces and block
structured adaptive mesh refinement (AMR) to
efficiently resolve fine scale features.

The numerical method uses composite overlap-
ping grids to represent the problem domain as
a collection of structured curvilinear grids. This
method, as discussed in Chesshire and Henshaw
[1], allows complex domains to be represented
with smooth grids that can be aligned with the
boundaries. The use of smooth grids is particu-
larly attractive for problems where the solution is
sensitive to any grid induced numerical artifacts.
This approach can also take advantage of the
large regions typically covered by Cartesian grids.
These Cartesian grids can be treated with efficient

28 July 2005



b

o1 /

i9 = No

i =0

i1 =0 i1 = N1

® o interpolation
O unused
A A ghost point

physical boundary
be(2,2)
Y
A
be(1,1) be(1,2) be(2,1)

Fig. 1. The top view shows an overlapping grid consisting of two structured curvilinear component grids. The bottom
views show the component grids in the unit square parameter space. Grid points are classified as discretization points,
interpolation points or unused points. Ghost points are used to apply boundary conditions.

approximations leading to fast methods with low
memory usage. Overlapping grids have been used
successfully for the numerical solution of a variety
of problems involving inviscid and viscous flows,
see the references in [2,3] for example. The use
of adaptive mesh refinement in combination with
overlapping grids has been considered by Bris-
lawn, Brown, Chesshire and Saltzman[4], Boden
and Toro[5], and Meakin[6].

Figure 1 shows a simple overlapping grid consist-
ing of two component grids, an annular grid and
a background Cartesian grid. The top view shows
the overlapping grid while the bottom view shows
each grid in parameter space. In this example the
annular grid cuts a hole in the Cartesian grid so
that the latter grid has a number of unused points
that are marked as open circles. The other points
on the component grid are marked as discretiza-
tion points (where the PDE or boundary condi-

tions are discretized) and interpolation points. So-
lution values at interpolation points are generally
determined by a tensor-product Lagrange inter-
polant in the parameter space of the donor grid.
Ghost points are used to simplify the discretiza-
tion of boundary conditions. In a moving grid com-
putation one or more of the component grids will
move, following the boundaries that move. As the
grids move the overlapping connectivity informa-
tion, such as the location of interpolation points,
will be recomputed. In our work the grid genera-
tion is performed by the Ogen grid generator which
has a specialized algorithm to treat moving grid
problems efficiently. When adaptive mesh refine-
ment is used on an overlapping grid, a hierarchy of
refinement grids is added to the parameter space
of each component grid. The locations of these re-
finement patches are determined by an appropri-
ate error estimate. The software that we develop,
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Fig. 3. In comparison to Krylov solvers the Ogmg multigrid
solver is an order of magnitude faster and uses an order of
magnitude less storage. These results are for the solution
of a two-dimensional Poisson problem, for a cylinder in
a square domain, using an overlapping grid with about 1
million grid points.

collectively known as the Overture framework, is
freely available in source form [7].

2. Multigrid

A fast multigrid algorithm has been devised for
solving elliptic boundary value problems on over-
lapping grids [3]. This method can be used to solve
the implicit time-stepping equations and pres-
sure equation in an incompressible Navier-Stokes
solver, for example. In moving grid applications it
is particularly important that the elliptic equation
solver have a low startup cost since the equations
will be changing at each time step. The Ogmg
multigrid solver was developed to solve elliptic
boundary value problems, in two and three space
dimensions, of the form

Lu=f
Bu=g

xeN,
x €090,

where L is chosen to be a second-order, linear,
variable-coefficient operator and B is chosen to
define a Dirichlet, Neumann or mixed boundary
condition. The key aspects of the multigrid scheme
for overlapping grids are an automatic coarse

grid generation algorithm, an adaptive smooth-
ing technique for adjusting residuals on different
component grids, and the use of local smoothing
near interpolation boundaries. Other important
features include optimizations for Cartesian com-
ponent grids, the use of over-relaxed Red-Black
smoothers and the generation of coarse grid op-
erators through Galerkin averaging. Numerical
results in two and three dimensions show that very
good multigrid convergence rates can be obtained
for both Dirichlet and Neumann/mixed boundary
conditions.

Figure 2 shows the solution and convergence
rates when solving Poisson’s equation on a region
containing some spheres. The convergence rates
are similar to the text-book convergence rates that
one can obtain on single Cartesian grids.

Figure 3 presents a comparison of the multigrid
solver to some Krylov based solvers for a two-
dimensional problem with about 1 million grid
points. The results show that that the multigrid
solver can be much faster (over 45 times faster in
this case) and also that the multigrid scheme has
a low startup cost. Moreover, the multigrid solver
uses about 10 times less memory in this case.

3. Solution of the reactive Euler Equations

The reactive Euler equations are solved on a do-
main §(t) whose boundaries, 9€2(t) may evolve in
time. In two space dimensions the initial boundary
value problem for the solution u = u(x,t) is

w +F(u); + G(u), =H(u), xe€Q(t),
x € 0Q(t) ,

B(u) =0,
u(x,0) = uo(x),
where
P pu
pU pu2 +p
u=\|pv|, F = pUV )
E u(E + p)
Y puY




Fig. 2. Solution of Poisson’s equation by the multigrid algorithm
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The state of the flow depends on the position x =
(z,y) = (21,22) and the time ¢ and is described
by its density p, velocity v = (u,v), pressure p and
total energy E. The flow is a mixture of m, reacting
species whose mass fractions are given by Y. The
source term models the chemical reactions and is
described by a set of m,. rates of species production
given by R. The total energy is taken to be

_r_

E:
v—1

+ %p (u2 + v2) + pgq,
where ~ is the ratio of specific heats and ¢ repre-
sents the heat energy due to chemical reaction.
These equations are discretized, as part of the
OverBlown solver, with a high-order accurate Go-
dunov scheme coupled to an adaptive Runge-Kutta
time stepper for the stiff source terms that model
the chemistry [2]. Figure 4 shows results of a com-

putation of a detonation diffracting around a cor-
ner. The detonation locally fails in the expansion
region.

The motion of a rigid body B embedded in the
flow is governed by the Newton-Euler equations.
Let M" be the mass of the body, x°(t), and v®(t)
the position and velocity of the center of mass, Z;
the moments of inertia, w; the angular velocities
about the principal axes of inertial, e;, F(t) the re-
sultant force, and G (t) the resultant torque about
x°(t). The Newton-Euler equations are then

dx® b dv®

— = MP— =F°

a0 dt ’
Tiiri — (Tiy1 — Tivo)wit1wise = GY - e;

e'i:wxei i=1,2,3,
where the subscripts on Z; and w; are to be taken
modulo 3in the sense Z; 11 := Z(jmod3)+1- The force
on the body will be a sum of body forces, B?, such
as those arising from buoyancy, plus hydrodynamic
forces on the boundary of the body, exerted by the
fluid stresses,

Fb:Bb+/ T-ndS .
OB
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Fig. 4. Diffraction of a detonation by a corner. The computations were performed with an ignition and growth model and
a JWL equation of state. The density and reaction progress variable are shown. The boundaries of the component base

grids and of the AMR grids are also displayed.

Here the integral is over the surface of the rigid
body, 0B. The torque G? is given by

Gb:/ (r—x%) x T-ndS.
oB

In the case of the Euler-equations, the stress ten-
sor is simply 7 = —pI; the effects of viscosity are
assumed to be negligible.

Figure 5 shows a computation of a shock hitting
a collection of cylinders. The cylinders are rigid
bodies that move due to the hydrodynamic forces.
Adaptive mesh refinement is used in combination
with moving grids. The grids around each cylinder
move at each time step. The refinement grids move
with their underlying base grid. The locations of
all refinement grids are recomputed every few time
steps. More details on this approach will be avail-
able in a forthcoming article.

4. Incompressible Flow

The incompressible Navier-Stokes equations are
solved using the velocity-pressure formulation,

u + (u-V)u+ Vp = vAu
Ap+V-(u-Vu) = ax)V-u

xeN,

with boundary conditions

B(u,p) =0
V-u=0

x €900,

and initial conditions
u(x,0) =up(x) att=0.

The term a(x)V - u is used to damp the dilatation.
The boundary condition V-u = 0 is the additional
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Fig. 5. Computation of a shock hitting a collection of cylinders, the density is shown at two different times. This computation
illustrates the use of moving grids and adaptive mesh refinement. Each cylinder is treated as a rigid body that moves
according to the forces exerted by the fluid. The boundaries of the component base grids and the AMR grids are also shown.
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Fig. 6. Falling cylinders in an incompressible flow. Left: a contour plot of the magnitude of the velocity. Right: A coarsened
version of the overlapping grid. The cylinders have a mass and move under the forces of gravity and the forces exerted by
the viscous fluid. The annular grids are moved at each time step. A Poisson equation for the pressure is solved using the
overlapping grid multigrid solver Ogmg.



pressure boundary condition needed for this formu-
lation to ensure that the dilatation is zero every-
where. The numerical scheme is a split-step for-
mulation. The velocity is advanced first in an ex-
plicit or implicit manner. The pressure is then de-
termined. The scheme has been implemented using
second-order and fourth-order accurate approxi-
mations using a predictor-corrector time stepping
scheme. The discretization of the boundary condi-
tions on no-slip walls is an important element of
the scheme. This solution algorithm is also imple-
mented in the OverBlown code. See [8,9] for fur-
ther details.

Figure 6 shows results of a computation of some
rigid cylinders falling through a channel contain-
ing a viscous fluid. The grids around each cylinder
move at each time step according to the Newton-
Euler equations of motion. The Ogen grid genera-
tor is used to update the overlapping grid connec-
tivity information. The multigrid solver is used to
solve the pressure equation. The Poisson equation
changes at each time step but this equation can be
treated efficiently with the multigrid solver. More
details on the approach used to solve the incom-
pressible equations with moving grids will appear
in a future publication.

5. Parallel computations

In a distributed parallel computing environ-
ment, each component grid-function (representing
the solution variables such as p, u, p, etc.) can
be distributed across one or more processors. The
grid functions are implemented using a parallel
distributed arrays from the P+-+ array class li-
brary[10]. Each P++ array can be independently
distributed across the available processors. The
distributed array consists of a set of serial arrays,
one serial array for each processor. Each serial
array is a multi-dimensional array that can be op-
erated on using array operations. The serial array
can also be passed to a Fortran function, for ex-
ample. The serial arrays contain extra ghost lines
that hold copies of the data from the serial ar-
rays on neighbouring processors. P+—+ is built on
top of the Multiblock PARTT parallel communica-

tion library [11] which is used for ghost boundary
updates and copying blocks of data between ar-
rays with possibly different distributions. Figure 7
presents a section of C++ code showing the use of
P4+ arrays.

A special parallel overlapping grid interpolation
routine has been developed for updating the points
on grids that interpolate from other grids, see Fig-
ure 1. Overlapping grid interpolation is based on a
multi-dimensional tensor product Lagrange inter-
polant. In parallel, the Lagrange formula is eval-
uated on the processor that owns the data in the
stencil (the donor points), the resulting sums are
collected into a message and then sent to the pro-
cessor that owns the interpolation point.

Figure 8 shows some preliminary parallel results
from solving the Euler equations on an overlapping
grid with the parallel version of OverBlown. The
speed-up running on up to 32 processors is shown
for a problem with a fixed number of grid points.
The scaling is quite reasonable. The computations
were performed on a Linux cluster.
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Partitioning_Type partition; // object that defines the parallel distribution

partition.SpecifyInternalGhostBoundaryWidths(1,1);
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myFortranRoutine(*uLocal.getDataPointer(),...);

u.updateGhostBoundaries(); // update ghost boundaries on distributed arrays

Fig. 7. The P++ class library provides parallel multi-dimensional arrays. The class supports array operations with automatic
communication. It is also possible to use Fortran or C kernels to operate on each local serial array.
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Fig. 8. Left: the computation of a shock hitting a cylinder (density). Right: parallel speedup for this problem, keeping the
problem size fixed (4 million grid points), on a linux cluster (Xeon processors).
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