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Path Integral Monte Carlo (PIMC) can reproduce the results of simple analytical
calculations in which a single quantum particle is used to represent positronium
within an idealized, spherical pore. Our calculations improve on this approach by
explicitly treating the positronium as a two-particle e− , e+ system interacting via
the Coulomb interaction. We study the lifetime and the internal contact density,
κ, which controls the self-annihilation behavior, for positronium in model spherical
pores, as a function of temperature and pore size. We compare the results with
both PIMC and analytical calculations for a single-particle model.
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I. Introduction: Positron annihilation lifetime spectroscopy (PALS), and ACAR,

which measures the momentum distribution of annihilating electrons, are used extensively

in order to determine the nature of voids and defects in insulating materials [1]. In par-

ticular, the low self-annihilation rate, Γ0 = (142 ns)−1 in vacuum, of the spin triplet o-Ps

state, makes it an excellent probe of void spaces in insulators [2]. Of course, analytical or

computational theory is needed in order to convert a lifetime or momentum spectrum into

an estimation of the free volume fraction or distribution of pore spaces [3] . Calculations

which can provide simplified rules for dealing with experimental data sets are desirable. For

example, while everyone realizes that voids in polymeric solids, zeolites, and so on are not

isolated, spherical pores, the Tao-Eldrup model [4] which is based on this idea continues to

be an extremely popular way to understand void sizes in these systems [5]. Corrections to

the Tao-Eldrup prediction, say for non-spherical voids and/or soft walls [6–9], are certainly

useful. Yet a simple and general prediction of pore sizes from lifetime data remains elusive

[10].

Here, we discuss Ps within idealized spherical pores, although it is straightforward

with this method to study Ps solvated in realistic liquids and embedded in solid matrices

[11, 12]. PIMC has been used, for example, to investigate self-trapped Ps states in fluids

[13], and to find free volume within a polymer [14] . While the model of interest in this

paper corresponds only loosely to a real system, the inherent improved physical description

offers new insight into Ps behavior in real systems. Our treatment also enables one to

assess the reliability and range of applicability of existing, less fundamental models of Ps.

In contrast to most previous computational and analytical work, we treat Ps as a two-

particle electron-positron state bound by the Coulomb interaction. This allows us to assess



the accuracy of existing methods that treat Ps as a single quantum particle, and to look

at experimental observables that depend explicitly on the two-particle nature of Ps. A

refinement of our earlier procedure [15] allows us to determine the internal contact density,

κ, which controls the rate of self-annihilation of Ps.

II. Methods and Theory: PIMC is a method for sampling from the canonical

density matrix, ρ̂(β) = exp(−βĤ), for systems of light particles. It thus allows calculation

of thermal averages of observables: < Â > = 1
Q
Trρ̂Â, where Q ≡ Trρ̂. Here, Ĥ is

the Hamiltonian, β the inverse temperature, and Â is an observable of interest. PIMC

methods for simulating light particles are described in detail in several excellent reviews

[16]. In this calculation, e+ and e− are represented as polymeric chains of entities known

as “beads”. The density of positron beads at location r+ is the quantity of interest, and

this is constructed by sampling the thermal density:

ρ(R,R; β) ≡ < R | ρ̂(β) | R > ≈
∫

dR1...dRP−1

P∏
i=1

K0(Ri−1,Ri, ε)KC(Ri−1,Ri, ε) Kext(Ri−1,Ri; ε) (1)

where R represents the six coordinate variables (r+, r−) . P is a discretization variable,

and ε ≡ β/P . Eq. 1 is exact in the limit that P →∞. Above, RP ≡ R.

K0 is the free-particle (kinetic) density matrix:

K0(R,R′; ε) =
( m

2π~2ε

)3

exp(− m

2~2ε
[(r+ − r′+)2 + (r− − r′−)2] ) (2)

The form of K0 is like that of the partition function for two independent, classical, ring

polymers with harmonic bonds [17]. These two “polymers” are coupled by the additional

terms in Eq. 1. KC is the part of the propagator that, when multiplied by K0, produces

the full Coulombic propagator for an isolated pair of charges. KC has been tabulated

numerically by Pollock [18]. The term Kext(R,R′; ε) in Eq. 1 arises from an external

potential; in this case, one provided by the pore walls. For spherical pores with hard walls,

we use either an effective form due to Kalos and Whitlock [20] or, for better accuracy for

the equivalent number of beads, a form derived by Cao and Berne from scattering theory

[21]. For soft walls which would exert a potential Vext(r
+, r−), a local, “primitive” form

can be used: ρext(Ri−1,Ri; ε) ≡ exp(−εVext(r
+
i , r−i )). In a real solid, correlation potentials

will exist between the particles in Ps and the electrons and ions in the solid. An important

effect of interactions with solid electrons is dielectric screening. These dielectric effects,

which are not explicitly included here, are addressed elsewhere[22].



The annihilation rate (inverse lifetime) of Ps in a solid can be written as [23]

Γ = κΓ0 + Γp.o., (3)

with the self-annihilation rate, κΓ0, and the pick-off annihilation rate, Γp.o., operating in

parallel. (Γ0 is the self-annihilation rate in vacuum.) In order to facilitate comparison with

other studies, a pick-off at a rate of 2ns−1 (the spin-averaged rate of annihilation of free Ps)

is assumed to exist when a positron lies within a shell of thickness ∆ on the pore surface,

in which electronic density is posited to reside. Thus, lifetime, τ will be calculated (in ns)

as

τ−1 ≡ Γ = κΓ0 + 2

∫ r=Rc

r=Rc−∆

n+(r)d3r, (4)

where n+(r) is the positron density at location r, and the pore radius is denoted as Rc. In

order to compare with a single-particle model of Ps within spherical pores, we assign thermal

weights and sum the appropriate spherical Bessel function contributions for a sphere of

given size and temperature and calculate the single-particle probability distribution:

PSPIB(r) = N
∑
l,n

(2l + 1)(jl(αl,nr/Rc))
2r2exp(−βEl,n) (5)

where αln is the nth zero of jl, El,n =
α2

l,n

2mR2
c

in atomic units, and N is a normalization. (The

mass, m, will frequently be taken as m = 2 when we compare results using PSPIB with the

two-particle PIMC calculation, in which e+ and e− each have mass m = 1.) To find the

Ps lifetime using this model, PSPIB would be integrated over the region of width ∆ in the

manner of n+ in Eq. 4[24]. This integration can be done analytically using the equality

[25]: ∫ Rc

Rc−∆

r2(jl(λr))2dr =
π

4λ
[r2{(Jl+1/2(λr))2 − Jl−1/2(λr)Jl+3/2(λr)}]Rc

Rc−∆ (6)

A small amount of simplification arises from the fact that Jl+1/2(λRc) = 0 in the case

that λ = αl,n/Rc, in accord with the terms of Eq. 5. An analogous calculation was done

previously for cubic voids [26].

The internal contact density, κ, appearing in Eqs. 3 and 4 is the factor by which the

square of the Ps orbital, φ(r+, r−), in a material differs from its vacuum value for coincident

particles. Thus,

κ = 8πa3
0

∫
|φ(r+, r−)|2 δ(r+ − r−)d3r+d3r− . (7)

Changes in κ can alter the lifetime of the shorter-lived singlet state p-Ps; a high-resolution



spectrometer is required to see this effect. Normally for o-Ps, the second term of Eq. 3 is

dominant. However, an applied magnetic field (“magnetic quenching”) allows one to de-

duce κ in both PALS and ACAR experiments. Both dielectric screening and polarization

should reduce κ from unity. Indeed, experiments find values from κ ≈ 1 (some silaceous

zeolites, polymers, and noble fluids) to κ < 0.1 (some ionic crystals) [23]. Ironically, the

prevalent spherical “particle-in-a-spherical-box” (PIB) model [4], widely used to interpret

data on micropores in molecular solids, would result in an increase in κ due to spherical

confinement [28, 29]. Competition between effects of compression (spherical or asymmetri-

cal) and dilation of the Ps orbital, and their net effect on κ, are calculable with our PIMC

method. Explicit interactions with solid electrons and ions will affect both κ and the self-

annihilation rate. In keeping with the approximation used for the potential, these effects

will be ignored except to the extent that they are represented by the empirical choice of

shell thickness, ∆. In another work screening effects have been included by treating the

pore as a cavity in a uniform dielectric material [22].

III. Results for micropores: Table I shows the calculated lifetime τ ≈ Γ−1
p.o.,

for o-Ps in a small, spherical pore (infinite potential well). Lifetime is found from Eq. 4

with ∆ = 3.13 au. A temperature of 0.01 au (β = 100) was chosen for swift convergence

for pore radii Rc < 10.0 . This is sufficiently low that the system is approximately in its

ground state. Values of β = 200, 300 were used for pores with Rc = 10.0, 12.0 respectively.

Several million MC passes (several thousand uncorrelated configurations) were used. Bead

numbers P = 600, 800 and 1200 were used for β = 100, 200 and 300, respectively. The

ratio P/β must be sufficiently large in order to correctly calculate the internal structure of

Ps.

Single-particle PIMC simulations in micropores reproduce the analytical, ground-

state single-PIB results precisely, verifying the accuracy of our implementation. Table I

shows that the two-particle model gives smaller rates/longer lifetimes [15]. Fig. 1 plots the

ground-state single-PIB result for the probability of e+ to lie within ∆ of the pore wall [4]:

P∆ =

∫ r=Rc

r=Rc−∆

n+(r)d3r ≡ (1− Rc −∆

Rc

+
1

2π
sin(

2π(Rc −∆)

Rc

) ) . (8)

Fig. 1 also shows two-particle simulation data at a number of pore radii. The results

indicate that single- and two-particle models predict very different pore radii for a given

lifetime value. For example, the two-particle simulation assigns a pore radius of 10.0 au

to a Ps experiment with a lifetime of 4.7 ns. However, Eq. 8 would predict that this

lifetime corresponds to a radius which is fully 20% larger, 12.0 au. Mesopore calculations

(below) show even more dramatic discrepancies between lifetimes predicted by the one-

and two-particle models.

Another way to look at this disagreement is to consider the value ∆ = 3.13 au which



arises from a one-parameter fit of the Tao-Eldrup model to experimental annihilation data,

both lifetime and ACAR, in solids. (A slightly larger value of ∆ = 3.5 au is fit to certain

liquid-bubble systems, and is also said to be a better fit to certain systems with pores of

extreme sizes [7].) The fit presumes that cavity volumes are known by other means (e.g.

porosimetry or crystal structure), that cavities are spherical, and the only free parameter

of the model is the thickness of the electronic layer. Suppose that we attempted such a fit

for the two-particle model. For each known value Rc, suppose we were told that experiment

yielded τSPIB(Rc) as in listed Table I . What thickness would we attribute to the electronic

layer based on our two-particle calculation? (In other words, what value of ∆ would make

the calculated τ equal to the SPIB value?) We would derive the values seen in Table II.

There is a systematic (with cavity size) variation seen in these predicted values. This is

another way to gauge the disagreement between the one- and two-particle models of Ps in

a cavity.

Additionally, one might compare these results with the modification of the size of ∆

necessary in order for Ref. [26] to reconcile rectangular with spherical pore model results.

In that work, ∆ was assigned a value of 3.40 a.u. for use in cubic pores. Table II suggests

that here a revision in the electronic layer thickness of comparable size is necessary. Unlike

the revision in Ref. [26] which worked for a large range of pore sizes, our revised ∆ is

a function of Rc for small pores. Data on mesopores will be considered in the following

section.

For a given spherical pore size, one expects the lifetime to decrease with tempera-

ture as higher angular momentum states, which have more weight near the pore wall, are

occupied. For example, the Fig. 2b shows the radial distribution function PSPIB within an

Rc = 6 au micropore for β = 10, 30 and 100 au. Data from a single-chain PIMC simulation

with m = 2 and Eq. 5 are in excellent agreement with this figure, which includes all terms

in Eq. 5 which contribute with a weight of at least 0.1% when compared with the leading

term. (This amounts to, for Rc = 6, summing ten states for β = 10; and fewer for larger

β, with only one state required for β greater than approximately 50 au) The distributions

of e+ density for the two-particle model of Ps are shown in Fig. 2a. Some differences

are notable: Though temperature decreases lifetime, the effect is less pronounced for the 2-

particle calculation, since the 2-chain distributions are less strongly weighted at larger radii

than are SPIB distributions, leading to longer lifetimes: 0.84 ns (vs. 0.66 ns for SPIB),

1.05 (vs. 0.82) and 1.07 (vs. 0.91) ns for β = 10, 30 and 100 respectively. For β = 10

and 30 the SPIB radial density seems to change more dramatically than does the density

of the e+ of Ps. Nevertheless, the trend is clear. Interestingly, the centroid of the e+ and

e− chains has a distribution which moves out more noticeably in radius with temperature

(Fig. 2c) [27]. The centroid is the PIMC degree of freedom most-closely associated with

a classical particle. Hence, in the high-temperature and/or large-cavity limit, we expect

the centroid and the single-bead distributions to become more similar. The data of Fig. 2,

however, embodies cases where the distributions are quite different. The e+ energy states



are manifestly quantized, with a small number of low-lying states contributing.

The orientation of the Ps atom near a solid surface is likely to be important in

determining the details of the pick-off lifetime. One might guess that the Ps atom would

orient preferentially near a surface so as to minimize its free energy. In Fig. 3 one sees that

in this hard, spherical cavity, the relative coordinate vector, r+− ≡ r+ − r− is indeed more

likely to be perpendicular to the cavity wall when atom is in close proximity to the wall. In

this figure, we plot < cos2θ >, where θ is the angle between r+− and the radial direction,

defined by the unit vector from the center-of-mass of a pair of Ps beads, (r+ + r−)/2, to the

pore’s center. In the small cavity of Fig. 3, it is only quite near the center that < cos2θ >

takes on its isotropic value of 1/3. It drops precipitously to zero in the region of interest,

within ∆ of the pore wall. (Data become very noisy at the endpoints, owing to the small

number of observations of Ps at these locations.) This drop is seen in mesopores as well

(Section IV). A perceptible dependence on temperature can be seen in Fig. 3; with the

highest temperature, β = 10, corresponding to more restriction of the orientation of Ps at

intermediate cavity radii. This is, perhaps, due to the expansion of the Ps orbital with

temperature. The e+ and e− have an expected separation which is roughly 10% larger at

β = 10 than at β = 30 or 100. (These expected separations are, nevertheless, all somewhat

smaller than the free-Ps ground-state value of 3 au.) This larger Ps atom is more poorly

accommodated in a tiny pore, and the e+, e− pair is more strongly inhibited from orienting

“end-on” to the pore wall.

PIMC allows a calculation of the internal state of Ps, hence the internal contact

density, κ, as in Eq. 7. Although a hydrogen atom in the center of a hard spherical cavity

can be solved exactly [28, 29], the case of electron and positron wavefunctions vanishing

on a sphere is a different problem that does not seem amenable to analytic solution. In

a small cavity, the e+ and e− wavefunctions are compressed, resulting in a higher contact

potential than in an unconstrained system, thereby increasing the self-annihilation rate.

Table I shows computed values of κ(Rc), affirming the idea [28] that only tiny pore radii

will increase κ significantly. Yet, for example, the confinement of a spherical bubble of

radius Rc = 8 au (typical in a molecular liquid) increases κ by 10%. This is meaningful,

given that the net experimental change tends to be a reduction of 20% or less in many

liquids and solids of interest [8, 23].

IV. Results for mesopores: One must incorporate thermal effects in order to

study mesopores [7, 26] for application to, for example, thin films. This is because larger

pores have their energy spectrum scaled downward to lower energies. Fig. 4 shows lifetimes

from Eq. 3 for a SPIB of Eq. 5 for pores that extend into the mesopore range. This figure

shows lifetimes as a function of radius at two different temperatures. A single m = 2

particle is simulated via PIMC (diamonds) to confirm agreement with Eq. 5. Two-particle

PIMC results (circles and crosses in Fig. 4), for β = 150 and 300 are also shown. Fig.

5 shows the radial distribution function, P (r), as compared with PSPIB for R = 30 au

data; integration over the outermost ∆ = 3.13 au of this figure produced the corresponding



data points in Fig. 4. As in the case of micropores, the e+ of Ps avoids the wall as

compared with a calculation involving the single particle with m = 2. This results in a

higher value of τ for the two-particle model. As expected, higher temperature (lower β)

results in a trend of reduced lifetime for both one- and two-particle models. (Eventually, as

Rc grows, all lifetimes must reach the asymptotic value of 142ns.) The difference between

single-particle and two-particle results is significantly larger for mesopores than for the

micropores discussed in Section III. For a pore radius of 40 au, the lifetimes for the two

models in Fig. 4 differ by a factor of two or more. Similarly, the pore radius corresponding

to a lifetime of 40 ns is about twice as large for the single-particle model as it is for the

two-particle simulation.

Since the disagreement between the one- and two-particle models can be quite dra-

matic, it begs the question of how the Tao-Eldrup SPIB model has done so well at predicting

lifetimes in both micro- and mesoporous materials. This model, whose single parameter

∆ has been fit for various applications somewhere in the range of 3.0Å − 3.5 au has pro-

duced good agreement for pore sizes with other techniques like BET (gas adsorption) or

ACAR (measurement of the transverse momentum of the annihilation radiation). How is

this possible? Surely, part of the answer lies in the fact that when Eq. 8 holds, which at

room temperature is for pores diameters up to the rough order of magnitude of 40 au, the

disagreement between the models is minimal. For Rc = 20, a calculation with P = 5000 at

β = 1060, corresponding to a temperature of T = 298K, yields τ = 21.1 ns, as compared

with the SPIB result of τ = 18.2 ns. The pore radius would be found from the 2-particle

calculation as 21.2 au; which corrects the SPIB estimate by only 5%, or less than 1Å. An-

other part of the answer lies in the fact that pore spaces and defects in solids are not simple

spheres. (Indeed, Consolati [6] finds pore volume estimates that vary by a factor of more

than 3 for different, highly regular hole models.) Moreover, pore walls are not idealized

hard surfaces. It may very well be that a hard, smooth wall is a most “unforgiving” case

in which to compare one- and two-particle results. Penetrable walls with finite penetration

depths will yield quantitatively different results for e+ distributions and lifetimes [8], and

actual molecular pore surfaces are another case entirely. These issues were recognized from

the time that free-volume models such as Tao-Eldrup were introduced, many decades ago

[28]. Calculations of greater complexity, including our current one, do not negate the his-

torical utility of the Tao-Eldrup model. They, rather, guide inquiry as to how well a certain

model might work for a particular application; and provide alternatives as appropriate.

Table II, which lists values of ∆(Rc) which enforce agreement between SPIB and

two-particle models, is plotted and extended into the mesopore range in Figure 6. For

the case of larger pores, lifetime was calculated at T = 1053K, corresponding to β = 300.

While this insures ground state behavior for pores of radius Rc = 10 au and less, a mixture

of excited states contributes to the state of Ps in larger pores. One can see that the effective

value of ∆ needed to have agreement between the models continues to rise with pore size.

One expects ∆(Rc) to approach an asymptotic value for large Rc. From the figure, it



appears that the asymptote will be somewhat larger than ∆ = 4.1 au for T = 1053K, and

it is unknown whether it has a strong temperature dependence. (Preliminary data at other

temperatures suggest that it does not.) This asymptote represents a sizeable departure

from the range of ∆ = 3.0− 3.5 au used for a range of materials in SPIB models.

Fig. 7 shows the orientational order parameter, < cos2θ >, as defined in Fig. 3, for

mesopores with Rc = 20 and 30. The parameter is plotted as a function of distance from

the pore wall. One can see that the shape of the dropoff does not seem to depend on the

size of the mesopore. Nor does it depend obviously on the temperature, in the range that

we have studied (from room temperature to ten times room temperature). In all cases,

the orientational order parameter falls to less than 95% of its isotropic value when the

Ps atom is centered at a distance of ∆ = 3.13 au from the pore wall. Its average value

within the entire region of width ∆ is very approximately 3/4 of its isotropic value for all

temperatures and both pore sizes studied. The orientation of Ps in a cavity with bulk

electrostatic effects included has been reported upon elsewhere[22].

V. Conclusions: A PIMC model of Ps with a composite structure was studied,

and compared with a single-particle-in-a-box model. In these studies, Ps was trapped

in hard, spherical pores. The physics is rather different for the two models. The former

makes different lifetime predictions, and captures subtle effects that the latter cannot. We

have investigated both micropores and moderately-sized mesopores. The contact correla-

tion function, κ, was found to increase monotonically in pores of radius 12 au and less.

Temperature was found to enhance annihilation rate; and at high temperatures, predic-

tions from the two models could be dramatically different. The e+, e− pair tended to turn

“side-on” to the pore wall, when its center-of-mass was in close proximity to the wall.
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Rc (au) τ (ns) τSPIB (ns) κ

∞ - - 1.0

12 7.8(2) 4.7 1.02(2)

10 4.7(2) 3.0 1.04(2)

8 2.4(1) 1.7 1.10(5)

6 1.1(1) 0.92 1.20(5)

5 0.73(3) 0.68 1.45(5)

4.75 0.67(3) 0.63 1.50(5)

Table I: Calculated o-Ps lifetimes and contact densities in cavity of radius Rc.
“SPIB” denotes single particle-in-a-box model, with radial density given by Eq. 5.
For these ground-state data, this is equivalent to Eq. 8.

Rc (au) ∆

12 3.7(1)

10 3.6(1)

6 3.38(2)

5 3.27(2)

Table II: Calculated values of electronic shell thickness, ∆, in a.u. These are
derived given Rc and experimental lifetime. For the purpose of calculation, the
latter are identified with the single-particle lifetimes, τSPIB in the corresponding
lines of Table I, since these are accepted as good estimates of true lifetimes in
experimental systems.



FIG. 1: Probability density, P∆, for e+ to lie within a distance ∆ = 3.13 au of
the cavity wall. Dashed line: Eq. 8 ; filled points : two-particle PIMC simulation.



FIG. 2: Probability density, P(r), within Rc = 6 au cavity. Solid black circles: β =
100; open circles: β = 30 ; solid diamonds: β = 10. Dashed vertical line indi-
cates radial position located ∆ from the pore wall. (a): P(r) for e+ of Ps. (b):
PSPIB(r), according Eq. 5 with m = 2. (c): P(r) for centroids of Ps chains.



FIG. 3: Expectation value, < cos2θ >. The angle θ is defined by the relative vector,
r+−, and the vector pointing directly toward the pore wall. Here, Rc = 6 au. Solid cir-
cles: β = 100; open circles: β = 30 ; solid diamonds: β = 10. Dashed line indi-
cates the expectation value for an isotropic distribution of orientations: < cos2θ >= 1

3 .



FIG. 4: Curves show lifetimes from Eq. 5 for m = 2 particle in a pore at two
temperatures. Solid line: β = 300; dotted line: β = 150. Diamonds: PIMC sim-
ulation with single, m = 2 particle at β = 300. Filled circles: 2-particle PIMC
simulation with β = 300. Crosses: 2-particle PIMC simulation with β = 150.



FIG. 5: Curves with symbols are 2-particle prediction of the radial density of e+,
P (r), for Rc = 30 au. Filled circles: β = 300. Crosses: β = 150. Curves
without symbols represent PSPIB. Solid line: β = 300; dotted line: β = 150.



FIG. 6: Effective value of ∆ necessary in order to make lifetime, τ from
two particle model equal to τSPIB in pores at β = 300 (T = 1053K).



FIG. 7: Expectation value, < cos2θ > as in Fig. 3. For Rc = 30 au: Solid
circles: β = 300; open circles: β = 150. For Rc = 20 au: Solid diamonds:
β = 1060; solid triangles: β = 300; open triangles β = 150. Dashed line indi-
cates the expectation value for an isotropic distribution of orientations: < cos2θ >= 1

3 .


