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Abstract

The observation of gamma rays associated with the decay of 26Al and

60Fe can provide important information regarding ongoing nucleosynthesis in

our galaxy. The half-lives of these radioisotopes (7.2× 105 y and 1.5× 106 y,

respectively) are long compared to the interval between synthesis events such

as supernovae, so they build up in a steady state in the interstellar medium

(centered on the galactic plane, where massive stars reside), yet short enough

that gamma radiation from their decay may be detected. Additionally, these

half-lifes are short compared to the period of galactic revolution, so that

observable abundances remain in the proximity of their production sites.

Predicted abundances of 26Al and 60Fe vary widely between several calcu-

lations in the last decade. In 2004, the first observation of the gamma ray flux

from 60Fe decay was reported, with a 60Fe/26Al flux ratio in good agreement

with nucleosynthesis modeling from 1995. However, recent calculations that

include well motivated updates to the stellar and nuclear physics, predict a

flux ratio as much as six times higher than the observed value. It is desir-

able to understand the discrepancy between the latest calculation, which in

principle should have been more accurate, and the observation.

In the present study, the uncertainties related to two key nuclear aspects

of this problem, namely the neutron capture reaction rates for 59,60Fe, are

investigated. New reaction rates are modeled using local systematics as op-

posed to the global systematics used in previous studies. Comparisons to

experimental data are made whenever possible. The sensitivity of the reac-

tion rates to various input quantities is gauged, and estimates regarding the

total uncertainty in the reaction rates are made. The resulting rates and un-

certainties are used in parameterized single-zone nucleosynthesis calculations

using hydrodynamic conditions typical of those found in more complex stellar

models. Finally, the sensitivity of the abundance of 60Fe to the reaction rates

is discussed.
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1

1 Introduction

A natural place to begin a discussion about the uncertainties related to the produc-

tion of a radioisotope such as 60Fe is to address three questions:

1. What is so important about this particular isotope?

2. What do we already know about it?

3. Why should we bother researching it further?

In short, 60Fe is important for two reasons. First, its half-life is long compared

to the interval between synthesis events, so that a flux of gamma rays arising from

its decay may be steadily observable. Additionally, its half-life is short compared

to the period of galactic rotation, so that any 60Fe abundance will remain in the

proximity of its production site. This ideal half life allows 60Fe to serve as an

indicator of ongoing nucleosynthesis. Second, since its abundance is observable,

collected astrophysical data pertaining to 60Fe can constrain stellar models.

Much research regarding 60Fe has been carried out in the last decade. In 1995,

a detailed Galactic chemical evolution (GCE) survey predicted the abundances of

26Al and 60Fe, as well as the flux ratio of gamma rays produced in their decays

[34, 36]. At the time of the survey, gamma ray line emission from 26Al existing

in the interstellar medium had been observed, but gamma rays from 60Fe decay

had not. This non-observation was not surprising, since the GCE survey put the

total flux for 60Fe below the detection threshold of the COMPTEL instrument that

detected 26Al. Within the past year and a half, other instruments have recorded a

signal for 60Fe decay, with a 60Fe/26Al flux ratio consistent with the 1995 modeled

value [10, 30].

In the decade since the 1995 survey, improvements have been made to both the

nuclear physics and the stellar models. When the calculations are carried out using
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the new reaction rates and models [25], the predicted flux ratio increases by roughly

a factor of four–no longer in agreement with the observation. Worse yet, the new

prediction would indicate that gamma rays from 60Fe should have been observed by

the COMPTEL instrument.

This brings us to the third question regarding the motivation for further research.

The current discrepancy between the predicted and observed 60Fe/26Al flux ratios

has three possible sources: (1) the observations are flawed, (2) the reaction rates

relevant to the production of 60Fe are incorrect, or (3) the stellar models are in

some way incorrect or incomplete. The first source seems highly unlikely, since

concurrent observations from two independent sources are in excellent agreement

with each other [10, 31]. It is far more likely that the discrepancy comes from either

the nuclear or stellar physics. By thoroughly investigating the uncertainties in the

nuclear side of the problem, we will be able to either resolve the issue or at least

narrow the problem down to another aspect of stellar evolution.

The remainder of this section will explore these issues in greater detail.

1.1 The Significance of 60Fe

Most of the information we can collect from our galaxy and beyond is limited

to the electromagnetic radiation we can observe from ground and satellite based

detectors. We generally cannot collect elements produced in astrophysical events,

such as gamma-ray bursts or supernovae, and bring them back to a laboratory for

analysis, although some data has been gathered from meteorites [2, 15, 20]. Rather,

our information regarding the chemical composition of our galaxy comes primarily

from the spectroscopy of the electromagnetic radiation they produce. In the case

of radioisotopes, this radiation comes primarily from decay.

The average lifetime of massive stars (8M¯ and above) is on the order of one

million years, and the typical frequency of major nucleosynthesis events within our
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galaxy, such as supernovae, is on the order of a few per century [5]. If the lifetime

of a given radioisotope is short compared to this interval, its associated gamma

ray line flux may only be observed for a short period of time following a synthesis

event. Given the low frequency of these events, significant observation of short

lived isotopes becomes unlikely if not impossible. Additionally, a single synthesis

event such as a supernova may not produce an observable quantity of the isotope.

Rather, it is the gradual buildup of a particular species in the interstellar medium

that results in an observable steady-state abundance. Any isotope that would yield

an observable gamma ray flux must have a mean lifetime considerably longer than

the interval between synthesis events.

On the other hand, if the lifetime of the isotope is too long, its decay may still

escape detection. Radioactive decays would be rare, and the flux of gamma rays

associated with those decays ends up lower than the detection threshold of the

observing instrument. So candidate radioisotopes for observable decay flux must be

long-lived, but not too long-lived.

Such nuclear species are intrinsically valuable in astrophysics, in that we can

compare the predictions of stellar evolution models to observation and refine our

models. Additionally, a half life that lends a particular species to gamma ray

observation is short compared to the period of galactic rotation, which is on the

order of 240 million years. Any abundance of the radioisotope will decay before

moving far from its production site. Thus one can identify the stellar populations

responsible for its production, and the isotope can serve as a “tracer” of ongoing

nucleosynthesis [21].

There are only a handful of radioisotopes that have such a lifetime and are

produced in abundances sufficient to enable observation. Two of the more important

are 26Al and 60Fe. Prior to 2004, 26Al (t1/2 = 7.17 × 105 y [35]) had been the only

one of the two observed. 26Al decays via electron capture to the first excited state of
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Figure 1: Electron capture decay of 26Al to 26Mg. The signature 1809 keV gamma
ray is produced as the first excited state in 26Mg decays to the ground state.

26Mg. The 26Mg decays to the ground state by emitting a 1809 keV gamma ray (see

Figure 1, obtained from [19]). This line flux associated with the decay of 26Al was

first observed with the HEAO-3 experiment in 1979 [18]. In 1993, the COMPTEL

detector aboard the Compton Gamma Ray Observatory provided an all-sky map of

the 1809 keV flux [9]. The flux comes primarily from the galactic plane, strongest

at the galactic center. There are additional hot spots, which have been correlated

with spiral arms and known supernovae remnants. This distribution seems to rule

out novae and low mass stars as producers of 26Al, and suggests that 26Al may be

produced primarily in massive stars, particularly Type-II supernovae (SNII), Wolf-

Rayet stars, or Asymptotic Giant Branch (AGB) stars. [21, 23]. The total observed

flux of 1809 keV gamma rays suggests an abundance of roughly 2M¯ of 26Al in our

galaxy [23].

It is unclear whether the origins of 26Al lie in the winds of massive stars or the

explosions of SNII. The present observational data on 26Al cannot discern between

these two possible origins.

The half life of 60Fe (t1/2 = 1.5 × 106 y [35]) is similar to that of 26Al, and
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Figure 2: β− decay chain of 60Fe to 60Ni. 60Fe first decays to the ground or first
excited state of 60Co, both of which decay rapidly to the first three excited states of
60Ni. The signature 1173 keV and 1332 keV gamma rays are emitted as the excited
states of 60Ni decay to the ground state.

the decay flux from 60Fe should also be observable, provided that it is produced in

sufficient quantities. The signature 1173 keV and 1332 keV gamma rays associated
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with the β− decay of 60Fe arise from the subsequent β− decay of the daughter

nucleus 60Co (t1/2 = 1925 d [35]) (see Figure 2). The lifetime of 60Co is short

enough that any amount produced in a synthesis event will decay long before 60Fe

decay becomes appreciable. It has been shown [8] that 60Fe can be produced in

abundance in massive stars evolving as supernovae. However, the production of

60Fe occurs primarily during the advanced stages of the evolution of the star, and

deep inside the stellar interior. Unlike 26Al, the stellar winds of a Wolf-Rayet star

would not eject 60Fe. An observation of the relative fluxes of decay emission lines

from 26Al and 60Fe can therefore provide insight regarding the source of not only

60Fe, but 26Al as well. For instance, if the distribution of 60Fe in the galactic plane

is very similar to that of 26Al, i.e. primarily in the galactic center, spiral arms, and

hot spots correlating to SNII events, it would imply that 60Fe and 26Al are produced

by the same sources, favoring the SNII origin of 26Al [22].

It is apparent that the observation of 60Fe abundance via gamma rays produced

in its decay can provide very important information relative to ongoing nucleosyn-

thesis in our galaxy. It is therefore important to understand, to the greatest extent

possible, the details regarding the origin of both radioisotopes.

1.2 Previous Galactic Chemical Evolution Studies

Several groups have carried out nucleosynthesis calculations and provided an esti-

mate of the 60Fe/26Al line flux ratio. The present review will cover only two of these

studies in detail, namely those of Timmes et al. [33] (hereafter TWHHWM95) and

Rauscher et al. [25] (hereafter RHHW02). We restrict ourselves to these particular

studies primarily because the differences between them are limited to the nuclear

reaction rates and minor adjustments to the stellar evolution code. Certain other

studies have not been included in this analysis because they either start with He pre-

supernovae cores [32] or omit neutrino induced reactions [16], which are important
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in the synthesis of 26Al.

Nucleosynthesis in 1995

The 26Al and 60Fe steady-state abundances in TWHHWM95 are based on the stellar

yields of Woosley and Weaver [36]. The strength of this particular stellar-chemical

evolution survey lies in its predicted abundances of stable isotopes, which compare

favorably with observed abundances [1], generally to within a factor of two [34].

This agreement was obtained without any artificial tuning of the parameters in the

model. The details of the nuclear physics employed will be presented in detail in

Sections 3-5. It is useful at this point to briefly discuss the stellar physics involved.

The TWHHWM95 survey employed several stellar models, with masses ranging

from 11-40 M¯ and initial metallicities of 0, 10−4, 0.01, 0.1, and 1 Z¯. In each

case, the explosion was simulated using a simple piston. The parameterization of

the piston and explosion energies were varied. Mass loss was not accounted for.

These models used a reaction network of 200 isotopes ranging from hydrogen to

germanium. The nuclear reaction rates were based on several sources [3, 6, 7, 28, 37].

A tabulation of the reaction rates is provided by Hoffman [11]. Weak rates were

included, as were neutrino induced reactions which have a significant effect on r-

process nucleosynthesis [38]. For more details on these stellar models see [36].

An exponential disk was assumed for the mass distribution of the galaxy, and the

disk was divided into several radial zones (as opposed to a hydrodynamic treatment).

Sources of nucleosynthesis included primordial contributions, stellar birth, infall,

intermediate to low-mass stars, Type Ia supernovae (SNIa), and Type II supernovae

(SNII). For more details on the chemical evolution model, see [34].

TWHHWM95 predicted that massive stars could account for all of the observed

26Al abundance (although with a somewhat large uncertainty) with a spatial dis-

tribution consistent with that observed by the COMPTEL instrument. It was
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produced in SNII in the hydrogen and neon-oxygen burning shells, in both pre- and

post-explosive supernova processes (see Figure 3, from [33]). During the explosion,

the 26Al in the hydrogen shell is ejected unmodified. The 26Al in the hydrogen shell

may also be ejected in the winds of more massive stars. The synthesis of 26Al in the

neon-oxygen burning shell is significantly enhanced by the ν-process (i.e. neutrino

induced nuclear reactions), which can be seen in Figure 3.

The abundance of 60Fe also predicted in TWHHWM95 comes from pre- and

post-explosive processes, primarily in the neon-oxygen shell, but also at the base of

the helium shell. There is a noticeable absence of 60Fe in the hydrogen envelope,

and hence 60Fe will not be ejected in stellar winds. Otherwise, 60Fe and 26Al are

produced in the same locations in the stellar interior, and one would expect their

galactic distributions to also be similar, provided that SNII are the primary source

of 26Al in the interstellar medium.

The steady-state abundances of 26Al and 60Fe in TWHHWM95 were 2.0 ±

1.0 M¯ and 0.74 ± 0.4 M¯, respectively, with a total abundance of 2.2 ± 1.1 M¯

of 26Al and 1.7 ± 0.9 M¯ of 60Fe. The predicted steady-state abundance of

26Al, compared with the COMPTEL observed abundance of 2M¯, supports the

hypothesis that most 26Al is produced in massive stars, but with a rather large

uncertainty. These abundances of 26Al and 60Fe result in a 60Fe/26Al flux ratio of

0.16. This puts the expected flux from 60Fe below the detection threshold of the

COMPTEL instrument, but within the threshold of modern instruments such as

the INTEGRAL satellite [10].

Nucleosynthesis in 2002

In the decade since TWHHWM95, well motivated improvements have been made

to the stellar models and reaction networks of Woosley, et al. Many of these im-

provements were adopted in a limited study conducted in 2002 by Rauscher et al.
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Figure 3: Production of 26Al and 60Fe as a function of interior mass in a 25M¯ solar
metallicity star (from Timmes, et al., ApJ 449 (1995), 204).

[25] (hereafter RHHW02).

Most of the underlying physics in RHHW02 is identical to that found in TWH-

HWM95, with a few notable exceptions. The most critical change in the stel-

lar model was the inclusion of mass loss, which had been completely neglected in

TWHHWM95. Other changes included the adoption of new opacities below 108K,
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updated neutrino losses, and the suppression of convective overshooting.

The reaction network used in RHHW02 is strikingly different from that of TWH-

HWM95. First of all, the network is much larger. The old survey only included a

few hundred isotopes from hydrogen to germanium. RHHW02 utilizes an adaptive

network, where isotopes are added or removed as needed to account for all signif-

icant nuclear flows, including up to 4679 isotopes from hydrogen to astatine. A

typical 15 M¯ star might employ in excess of 2400 of these isotopes. The reaction

rates were also subject to significant updates. The light isotope rates were based

initially on Caughlan and Fowler [6], but included many updates [12, 14]. More

significant for 60Fe production are the modifications to the Hauser-Feshbach rates

affecting intermediate mass to heavy nuclei, which had been completely revamped

to account for the wealth of experimental data available after 1980 [24, 26, 27]. The

details of the Hauser-Feshbach calculations will be presented in Sections 3-5.

RHHW02 predicts an 26Al abundance roughly half that of TWHHWM95 for a

25M¯ star (see Figure 4, data found in [33, 25]). The 60Fe abundance was several

times larger than that of the previous study. For other stars, the clear trend is a

smaller production of 26Al and a larger production of 60Fe. When convolved with an

initial mass function, these yields predict an 60Fe/26Al flux ratio nearly four times

greater than the value of 0.16 predicted by TWHHWM95 [22].

1.3 Signals for 60Fe

In 2004, the first observation of 60Fe gamma ray line flux was reported from the

Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite, launched

in 2002 [17]. Although intended to perform imaging and spectroscopy of solar flares,

its lack of shielding allows for the detection of gamma rays from all directions, and

the gamma ray line flux from the inner galaxy, where most of the 26Al resides ac-

cording to the COMPTEL all sky map [9], can be obtained using the Earth as
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Figure 4: 26Al and 60Fe yields. Solid black squares (connected with solid lines)
represent yields from TWHHWM95 and open circles (connected with dashed lines)
represent yields from RHHW02.

an occulter [29]. Using this method, the RHESSI satellite measured a total flux

of 1809 keV gamma rays (which arise from 26Al decay) of (5.71 ± 0.54) × 10−4

photons cm−2 s−1. This result is consistent with previous measurements [18, 9].

Additionally, a signal was recorded for the 1173 keV and 1332 keV emission lines

from 60Fe decay with a combined flux of approximately 16% of that the 1809 keV

line [30], in perfect agreement with the prediction of TWHHWM95. Recently, the
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measured fluxes have been revised. The total 1809 keV flux is now reported at

(3.89± 0.36)× 10−4 photons cm−2 s−1, and the combined 1173 keV and 1332 keV

fluxes at (3.6± 1.4)× 10−5 photons cm−2 s−1 [31]. This corresponds to a flux ratio

of 0.093, so that the prediction of TWHHWM95 is still in reasonable agreement

with observation.

Confirmation of this result has recently come from the INTEGRAL satellite,

which has measured an 1809 keV flux of (3.4 ± 0.2) × 10−4 photons cm−2 s−1 and

a combined 1173 keV and 1332 keV flux of (3.7 ± 1.1) × 10−5 photons cm−2 s−1,

corresponding to a 60Fe/26Al flux ratio of 0.11±0.03 [10] Eventually, the INTEGRAL

mission will provide an all sky map of the distribution of 26Al and 60Fe.

The agreement between the TWHHWM95 prediction and observations from

RHESSI and INTEGRAL, combined with the stark discrepancy between the ob-

servations and the RHHW02 prediction, is rather disconcerting. First of all, the

well motivated improvements made in the stellar physics (inclusion of mass loss,

improved opacities, neutrino flows, etc...) and in the nuclear physics (considerably

larger reaction network, reaction rates updated to reflect experimental data avail-

able after 1980) would suggest that the more recent calculation should be more

reliable. Additionally, if SNII are the primary source of steady-state 26Al and one

believes the result of RHHW02, the flux of 1173 and 1332 keV gamma rays should

have been observed in the COMPTEL experiment.

It seems that we must draw one of the following four conclusions:

1. The observations are incorrect. Perhaps the data or the analysis was flawed.

This scenario seems highly unlikely, since the two observations are independent

yet agree so well.

2. The improvements made to the stellar model in RHHW02 were incorrect.

A likely suspect here could be mass loss, since its inclusion marks the most
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significant change from the models employed by TWHHWM95.

3. The reaction rates in RHHW02 are incorrect. The most likely candidates are

discussed later. At the present time, a systematic comparison of the rates

used in TWHHWM95 and RHHW02 has not been carried out , although such

comparisons have been made between several of the TWHHWM95 rates and

a set similar to RHHW02 [13].

4. The stellar-chemical models and nuclear physics are both reasonably correct,

and the observation simply indicates that SNII are not the primary source of

26Al in the interstellar medium.

To safely draw any one of these four conclusions, the other three need to be ruled

out. Herein lies the primary motivation for the present work. A re-evaluation of the

reaction rates directly responsible for the production of 60Fe will allow us to either

pinpoint the nuclear physics as the sole cause of the discrepancy between RHHW02

and observation, determine how much of the discrepancy is due to nuclear aspects,

or eliminate the reaction rates as a suspect altogether. Pending the results of this

investigation, it may subsequently become necessary to examine the stellar physics

in detail.

1.4 Primary Nuclear Uncertainties

The following are the primary nuclear uncertainties relevant to 60Fe.

1. 12C(α,γ)16O: The primary effect of this reaction, as it applies to the production

of 60Fe, is that it controls the structure and presence of the helium shell in

which a significant portion of the 60Fe is formed (see Figure 4). The 12C target

is stable, and numerous experiments have attempted to measure the cross

section. However, the reaction proceeds through two sub-threshold resonances
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whose widths must be determined indirectly [39], so measuring this cross

section is difficult. Direct measurements have only been made down to energies

940 keV, while the reaction energies typical in the helium shell are on the

order of 300 keV and below. Hence, we must rely on modeled or extrapolated

rates. TWHHWM95 adopted the 12C(α,γ)16O rate provided by Caughlan and

Fowler [6], but with an additional multiplicative factor of 1.7 to account for

other aspects of stellar structure beyond the scope of this work. A more recent

evaluation [4], multiplied by a factor of 1.2, is adopted in RHHW02.

In this study, we will not investigate the uncertainties related to this par-

ticular reaction rate. These uncertainties would affect many aspects of the

stellar evolution. An accurate analysis of the sensitivity of 60Fe abundances

to 12C(α,γ)16O may be quite difficult. Furthermore, if this rate was signifi-

cantly in error, other aspects of the stellar evolution would also be in error,

including the abundances of stable isotopes which were reproduced in a most

satisfactory manner in the 1995 GCE survey. It was for these reasons that

the cited multiplicative factors were introduced, and we can be reasonably

confident that the 12C(α,γ)16O rate currently in use is accurate.

2. 22Ne(α,n)25Mg: This reaction is an important neutron source in the neon-

oxygen shell. The 22Ne target is also stable, and the cross section has been

measured. Uncertainties in the cross section can be more readily (and more

accurately) pinned down by experiment than by theory. In any case, the

production of 60Fe appears to have only a minor sensitivity to variations in

this rate.

3. Weak decay rates for 59,60Fe and 60Co: This refers not just to the lifetime of

the radioisotopes as measured in the laboratory, but a temperature-dependent

decay rate more appropriate for astrophysical application. These rates affect
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the amount of 59Fe seed available for neutron capture producing 60Fe and the

flux of 1173 and 1332 keV gamma rays. In the present work we do not consider

the uncertainties in these rates, but adopt the rates used by [36] and [27].

4. 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe. These reactions comprise the primary pro-

duction and destruction channels for 60Fe. Unlike the other strong rates listed

thus far, the target nuclei for these reactions are unstable. The cross sections

cannot be measured with modern experimental techniques, and therefore must

be modeled. Since the compound nuclei involved in these reactions lie off sta-

bility, there can be large uncertainties in the parameters that serve as inputs

to the models. The rates used for these capture reactions in TWHHWM95

and RHHW02 are quite different. If nuclear physics is playing a significant

role in the discrepancy between the yields of the two studies, the 59,60Fe cap-

ture cross sections are prime suspects. It is these reactions that we explore in

the remainder of this thesis.

In Section 2 we provide a review of the reaction mechanisms which play a role in

neutron capture, as well as a discussion of the formalism relevant to modeling the

reactions. In Sections 3-5 we consider the various quantities that serve as inputs

to the calculations, including a detailed review of the models used in developing

the reaction rates of TWHHWM95 and RHHW02. In these three sections we also

develop a procedure for determining systematically input quantities that are not

measured. The systematics are based on data available in the local isotopic region,

as opposed to a global approach used in previous efforts. We investigate the quality

and reliability of the systematic input parameters. In Section 6 we compare cross

sections calculated from our model inputs to those from previous efforts and avail-

able measurements. This is done to establish the accuracy of each modeling effort

in the local region of interest. In Section 7 an investigation is made into the sensi-
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tivity of the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates to the various input quantities.

In Section 8 we explore the sensitivity of 26Al and 60Fe synthesis to variations in

the reaction rates using parameterized single-zone models. Conclusions follow.
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2 Nuclear Reaction Mechanisms

The strength of a given reaction is best described in terms of a cross section. In

particular, the differential cross section dσ/dΩ is defined as the rate at which the

outgoing particle is scattered into the solid angle dΩ, divided by the flux of incoming

particles given as the number of incident particles per unit area per unit time. The

cross section σ is obtained by integrating dσ/dΩ over the 4π solid angle. The

resulting quantity is a function of energy (or velocity), and has units of area. Hence

the name “cross section”. The reaction rates used in nucleosynthesis calculations

are a convolution of the cross section with a velocity distribution of incident particles

Φ(v):

NA 〈σv〉 =
∫ ∞

0
σ(v) v Φ(v) dv . (1)

In stellar environments, Φ(v) is assumed to be Maxwellian. The integral in this

expression can easily be handled numerically, and the process of calculating reaction

rates reduces to calculating the associated cross sections.

When one is considering nucleosynthetic processes, all possible nuclear flows

likely to occur in stellar environments must be taken into account. The (possibly

radioactive) residual of a given reaction subsequently becomes a target for additional

reactions. Thus, nucleosynthesis calculations typically involve a large network of

stable and radioactive isotopes, with multiple reactions for each isotope. Ideally, the

cross sections would be measured in the laboratory. However, at the present date,

cross sections have primarily been measured for stable targets. Most radionuclides

have too short a lifetime to fabricate a target and perform the experiment. Those

which are longer lived generally cannot be produced and collected in sufficient abun-

dances. There are only a handful of exceptions, such as 99Tc (t1/2 = 2.1× 105 yr).

Currently research is being conducted into radioactive beam experiments, which

may open the doors to measuring cross sections for radioactive targets [24]. Also,
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there is an effort to measure these cross sections indirectly using surrogate reaction

techniques [9]. In any event, the time when all the rates for a reaction network

will be measured is many decades away, and then only if such measurements prove

feasible. For the time being, a large number of cross sections must be supplied by

theory. Such is the case with the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reactions, which

we have established as the most probable source of nuclear uncertainties in the pro-

duction of 60Fe. In this section, we describe the theory and methods required for

modeling these cross sections.

Before modeling cross sections, one must first understand the mechanisms by

which nuclear reactions take place. Consider a target nucleus I in state µ interacting

with an incident particle j. There are essentially two basic ways the interaction can

occur. First, j may interact directly with one or a few of the nucleons in I. For

example, j may “knock out” one of the nucleons in I and take its place. It is also

possible for j to radiate energy in the form of a gamma ray and fall into a bound

state of the nucleus I + j. If j is a composite particle, such as a deuteron, this

type of radiative capture may only occur for one of its constituents in a “stripping”

reaction. These reactions involving only a few nucleons are referred to collectively

as “direct reactions”. They occur in the time it takes the projectile to traverse the

nuclear field (generally on the order of ∼ 10−22 seconds), and the outgoing particles

tend to be forward peaked.

Second, the reaction may proceed by the absorption of j into I, where collisions

with the various constituent nucleons of I will disseminate the excess kinetic en-

ergy throughout the nucleus. The pair form an intermediate “compound nucleus”

in statistical equilibrium. The excess excitation energy in the compound nucleus is

subsequently shed via the emission of particles and radiation. Such reactions are

called compound nuclear reactions, and occur on time scales of ∼ 10−15 − 10−18

seconds, considerably longer than those of direct reactions. Also, the process of
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equilibration causes the compound nuclear state to essentially “forget” how it was

formed (with the exception that energy, angular momentum, and parity are con-

served), and the outgoing particles are emitted more or less isotropically. Deviations

from isotropic distributions may occur with angular momentum cutoffs, in which

case the distribution will remain symmetric. Thus, by observing the angular distri-

bution of outgoing particles, one can infer which reaction mechanism is dominant.

During the course of equilibration, it is possible for a sufficient amount of excita-

tion energy to be localized onto a single nucleon that it can escape the nuclear field.

This emission happens prior to the compound nucleus obtaining statistical equilib-

rium. Such reactions are referred to as “pre-equilibrium” reactions, and comprise a

third reaction mechanism.

The remainder of this section will briefly summarize the processes of direct and

pre-equilibrium reactions, which turn out to be of only minor importance in this

study. The dominant reaction mechanism in the present work is the compound

nuclear mechanism, and we will review it in considerable detail.

Before proceeding with these in-depth discussions, we should introduce a few

concepts that apply equally to all types of reactions. The first is the notion of

the so-called “Q-value”. The total mass of a system typically changes during the

course of a nuclear reaction. This change in mass is accompanied by an increase or

decrease in the excess energy available to the system. The Q-value of the reaction

I+ j −→ L+k, designated Qjk, is defined as the increase in energy associated with

the reaction. Qjk may take on positive or negative values, depending on the masses

of the reactants and products. The method of calculating these Q-values will be

discussed in Section 3.

Nuclear reactions proceed through “resonances”, which can be described in terms

of “virtual” quasi-stationary energy levels in the target/projectile system [3]. Many

of these resonances, especially those associated with single particle and collective
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Figure 5: Measured total neutron cross section on 55Mn. Structure arising from
individual resonances is clearly seen below 106 eV of incident energy.

excitations, are quite narrow, with widths typically on the order of tens of eV.

At high excitation energies the spacing between these resonances becomes small

compared to their width, and the interaction can be accurately described with

energy-averaged quantities, such as transmission coefficients derived from an optical

potential.

Individual resonances provide structure to some cross sections at low incident

particle energies. An example of such a resonance structure, found in the total

neutron cross section on 55Mg, can be seen in Figure 5. The data below 500 keV

incident energy is taken from [15], and the higher energy data is taken from [1]

and [4]. For the sake of clarity, errorbars have been omitted. Individual resonances

are responsible for the “noisy” structure seen below 1 MeV. At higher energies

(above 1 MeV) the resonances begin to overlap, the interaction from individual

resonances begins to be replaced by an “average” behavior, and the cross section

varies smoothly with energy.

One can model direct reactions between resonances by making use of a real nu-

clear potential. However, the modeling of compound nuclear reactions relies heavily
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on the use of energy averaged transmission coefficients, and cannot reproduce reso-

nant structure. Thus the validity of compound nuclear modeling is questionable at

very low energies where the effects of individual resonances can be seen. At best,

such calculations can yield an average behavior.

2.1 Direct Reactions

Direct reactions involve only one or a few of the nucleons in the target. They pro-

ceed through single resonances, as opposed to compound nuclear reactions which

populate energy levels according to their statistical weights. As such, direct reac-

tions connect the initial and final states via a definite structural relationship, and

provide a powerful probe into nuclear structure [13].

In the specific region of the isotopic plane and at energies of interest to us,

the direct reaction contributions to most reactions are quite small compared to the

compound nuclear and pre-equilibrium components. We are usually able to safely

ignore the direct reaction component to a cross section for incident neutron energies

below a few tens of MeV. However, in cases where sub-threshold resonances with

large spectroscopic factors exist, the contribution may be more significant [22]. In

Section 6.6 we investigate the importance of direct reaction contributions to neutron

capture on a few iron targets. Based on the results, we justify the neglect of direct

reactions in our modeling effort. For completeness, we provide this brief description

of the formalism involved in direct reaction modeling. This discussion will also

introduce some concepts needed in understanding compound nuclear reactions.

2.1.1 Elastic and Inelastic Scattering

The simplest direct process is “shape” elastic scattering, where the incident particle

interacts with the nucleus as a whole without gaining or losing energy. The target

is represented by a potential V which may be either a real or complex optical
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potential. The projectile spin and Coulomb repulsion can be accounted for by

including appropriate terms in the scattering potential. At large distances from the

target, the incident particle is represented by a plane wave (traveling in the direction

of the azimuthal axis by convention), and the refracted particle by a spherical wave,

so that the asymptotic wavefunction is of the form

ψ(r, θ) ∼ exp(ikz) +
f(θ)

r
exp(ikr) . (2)

Here k is the wavenumber given by k =
√

(2mE)/h̄, and f(θ) is the scattering

amplitude which describes the angular dependence of the scattered wave (azimuthal

symmetry is maintained). These scattering amplitudes are found by solving the

Schrödinger equation using the potential V . The differential cross section is related

to the scattering amplitude by

dσel.
dΩ

=
∣

∣

∣f(θ)
∣

∣

∣

2
(3)

and the total elastic scattering cross section is obtained by integrating over solid

angles.

This wavefunction may be decomposed into partial waves:

ψ(r, θ) =
∑

l

φl(r)

r
Pl(cos θ) (4)

where Pl(cos θ) are Legendre polynomials. This expansion allows the Schrödinger

equation to be separated into radial and angular parts. The resulting radial wave

equation may be numerically integrated to obtain the radial wavefunctions φl(r).

All of the information obtained from solving the wave equations can be conveniently

contained in the (complex) phase shift δl, defined as the difference in the phase of

the asymptotic wave in the presence and absence of the scattering potential V . The
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δl are a function of the incident energy, and since each δl is associated with a unique

Pl(cos θ), they contain all of the information regarding the angular and energy

dependence of the scattering. The scattering amplitude can be expressed in terms

of the phase shifts:

f(θ) =
1

2ik

∑

l

(2l + 1) [exp(2iδl)− 1]Pl(cos θ) . (5)

Putting this expression into Equation 3 and integrating over the angles, one finds

σel. =
4π

k2
∑

l

(2l + 1)
∣

∣

∣1− exp(2iδl)
∣

∣

∣

2
. (6)

Even though the partial expansion involves an infinite number of partial waves, only

a few will contribute appreciably to the cross section, and the sum can generally

be cut off after a finite number of l waves. Evaluation of the elastic cross section is

thus reduced to numerically determining a handful of phase shifts [13].

Another useful quantity is the transmission coefficient, defined as

Tl = 1−
∣

∣

∣ exp(2iδl)
∣

∣

∣

2
. (7)

As its name suggests, the transmission coefficient is related to the probability that

the partial wave l will be absorbed into the potential. The absorption cross section

is then given by

σabs. =
π

k2
∑

l

(2l + 1)Tl . (8)

This quantity will be useful in our discussion of compound nuclear reactions.

Inelastic scattering is treated similar to elastic scattering in that the projectile

interacts with the nucleus as a whole, but with energy being transferred between

the target and incident particle. Efforts to model inelastic scattering considering



25

only the transfer of energy between the incident particle and a single nucleon tend

to underestimate the cross section, indicating that the transferred energy can excite

collective motions in the target. Reactions involving these collective states must

be modeled using a coupled-channel formalism. One decomposes the wavefunction

of the system into bound state wavefunctions of the nuclear potential. The bound

state wavefunctions are then decomposed into spherical harmonics, and the expan-

sion coefficients are obtained by solving the Schrödinger equation. The angular and

radial portions of the wavefunction can be separated, similar to the elastic scat-

tering case described above. This yields a set of coupled equations describing the

wavefunction in all the elastic and inelastic channels, which can be solved to find the

radial components of the partial wavefunctions. The phase shifts are subsequently

formed, and the cross section can be determined accordingly.

To perform a coupled channel calculation, one needs to properly describe the

vibrational or rotational nature of the collective nuclear states. In practice, one

must limit the number of inelastic channels (corresponding to final states of the

residual nucleus) to a few of the lowest energy excitations.

2.1.2 Nucleon Transfer Reactions

In our study, we are not so much interested in the scattering of the projectile, but

rather the absorption of it. Direct reactions where one or more nucleons are stripped

from or picked up by the projectile are called nucleon transfer reactions. Neutron

capture is an example of such a reaction–the neutron is transferred to the target.

Nucleon transfer is usually modeled in the context of the distorted wave Born

approximation (DWBA). In this approximation, a first order perturbation theory is

applied to determine the reaction amplitude. The differential cross section is given

by

dσ

dΩ
=

miki
mfkf

∣

∣

∣M(~ki, ~kf )
∣

∣

∣

2
(9)
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where

M(~ki, ~kf ) =
mf

2πh̄2

〈

ψf ( ~kf )
∣

∣

∣H ′
∣

∣

∣ψi(~ki)
〉

. (10)

In these expressions ~ki and ~kf are the wavevectors associated with the projectile and

outgoing particle, and mi and mf are their masses. The perturbation Hamiltonian

H ′ is defined as the difference between the total Hamiltonian of the system and the

Hamiltonian of either the initial or final asymptotic states. The initial wavefunction

ψi may be expressed as a product of the wavefunction of the target ψT , the wave-

function for the relative motion of the projectile with respect to the target ψp(~ki),

and if the projectile is a composite particle (such as a deuteron) the internal wave-

function of the projectile φp. The final state wavefunction can be expressed similarly

using the residual and outgoing particle. Hence, the matrix element becomes

M(~ki, ~kf ) =
mf

2πh̄2

〈

ψRψo( ~kf )
∣

∣

∣H ′
∣

∣

∣ψp(~ki)φpψT
〉

. (11)

The wavefunction of the residual ψR, can be written in terms of the the target ψT

and the captured particle ψc as

ψR =
∑

JL

√

SJLψTφc . (12)

The sum extends over total and orbital angular momenta of the transferred particle.

SJL is the spectroscopic factor associated with the “emptiness” of the final state.

For select targets SJL can be measured in stripping reactions. Otherwise it may be

estimated from nuclear models.

Integration over the coordinates of the target wavefunction, after making this

substitution, reduces the matrix element to

M(~ki, ~kf ) =
mf

2πh̄2
∑

JL

√

SJL
〈

φcψo( ~kf )
∣

∣

∣H ′
∣

∣

∣ψp(~ki)φp
〉

. (13)
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The ψp(~ki) and ψo( ~kf ) are the same wavefunctions that would appear in elastic

scattering of the projectile/target and residual/outgoing pairs, respectively. An

analysis of elastic scattering must therefore precede the modeling of nucleon transfer

reactions. Further approximations allow one to treat H ′φp as a delta function of the

coordinates of the constituents. The remaining wavefunction φc is an eigenfunction

of the potential with the depth adjusted to give the state JL at the appropriate

energy.

This formalism for nucleon transfer reactions only accounts for the capture of

the incident nucleon to a single particle state. As with inelastic scattering, a com-

plete treatment must also account for capture that excites collective states. This is

often referred to as semi-direct capture, and modeling it requires using the coupled-

channel formalism in conjunction with the DWBA.

In our brief study of direct capture in Section 6.6, we use the CUPIDO code,

which entails both direct and semidirect capture [8]. This code also uses the com-

plete “current” Hamiltonian used to describe the interaction between the nuclear

and electromagnetic field rather than the popular density approximation. The only

external inputs required in modeling direct capture are the optical potential (pre-

sented in Section 5) and the spectroscopic properties of the resonances, which we

obtain from experimental databases. Since we are not investigating direct reac-

tions beyond demonstrating their negligible size in relation to compound nuclear

reactions (see Section 6.6), we will elaborate no further on direct reaction mech-

anisms. Rather, we turn our attention to the more important compound nuclear

mechanisms.

2.2 Compound Nuclear Reactions

Statistical reaction theory dates back to 1936 when Bohr first proposed that a

collision between a neutron and a heavy nucleus could result in the formation of
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an intermediate state known as a compound nucleus [2]. The compound nucleus

exhibits “remarkable stability” and is sufficiently long lived that the nucleons reach

statistical equilibrium. Bohr further suggested that the compound nucleus would

decay either by the emission of radiation or particles, and that these competing

decay modes would have no “immediate connexion (Sp) with the first stage of the

encounter”. This latter idea, that the compound nucleus essentially “forgets” how it

was formed, is commonly known as the Bohr independence hypothesis or “nuclear

amnesia”. The excess energy is eventually shed via the emission of particles or

radiation, similar to the evaporation of molecules from the surface of a liquid.

The independence hypothesis has been the subject of numerous experimental

tests. There have been attempts to form a compound nuclear state at a given ex-

citation energy from two separate incident channels, such as the formation of 51Cr

from 50Cr plus neutron or 50V plus proton, and subsequently measure the ratio of

decay probabilities into the various exit channels. If the independence hypothesis

is correct the ratios of decay probabilities should be the same for both incident

channels. Such measurements have been made for intermediate mass and heavy nu-

clei, and support the independence hypothesis [14, 7, 29, 21]. These measurements

typically involve incident energies ranging from 10 to 40 MeV.

There is also experimental evidence that suggests the independence hypothesis

loses validity at higher energies [10, 11]. This can be easily understood within the

framework of pre-equilibrium emission. With greater excitation energies it is more

likely that enough energy will be localized in a single nucleon that it can escape the

nuclear potential, and less likely that a compound nucleus will be formed.

2.2.1 Early Models of Compound Nuclear Reactions

The first working theory of compound nuclear reactions based on Bohr’s hypothesis

was developed by Weisskopf and Ewing [27]. A cross section σjk, which proceeds
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through incident channel j and exit channel k, may be expressed as

σjk = σjPk (14)

where σj is the cross section for the formation of the compound nucleus through

channel j (the absorption cross section), and Pk is the probability that the com-

pound nucleus will decay through channel k. Suppose that we wish to consider an

incident channel of energy E and an exit channel to states of energy between E ′

and E ′ + dE ′. The formation of the compound nucleus will exhibit a dependence

on the incident energy, while the probability of decay via specific exit channels will

depend on both the incident and outgoing energies. This latter dependence on the

incident energy is not in violation of the independence hypothesis: the incident en-

ergy is needed only to supply excitation energy to the compound nucleus. Explicitly

including the energy dependence, Equation 14 reads

σjk(E,E
′)dE ′ = σj(E)Pk(E,E

′)dE ′ . (15)

The decay probability Pk is related to both the decay width Γk(E,E
′) and the

density of states in the residual nucleus (ρk(U
′ = E − E ′ − Bk), where Bk is the

binding energy of the residual). In particular, the probability will be given by the

product of the decay width and level density divided by the sum of all other possible

decay channels k′′, i.e.

σjk(E,E
′)dE ′ = σj(E)

Γk(E,E
′)ρk(U

′)dE ′

∑

k′′
∫ E−Qjk′′

0 Γk′′(E,E ′′)ρk′′(U ′′)dE ′′
. (16)

Qjk′′ is the Q-value of the reaction involving the incident channel j and exit channel

k′′. The integration in the denominator accounts for all possible states in the residual

formed by the emission of k′′.
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At this point we may invoke the reciprocity theorem, which relates a cross section

for a given reaction to it’s inverse:

λ̄2kσjk = λ̄2jσk̂ĵ . (17)

Hats on subscripts refer to time reversed states. The quantity λ̄i is related to the

wave number ki:

λ̄i =
1

ki

=
(

2

h̄2
muÂiEi

)− 1

2

. (18)

Here, mu is 931.5 MeV/c2, Âi is the reduced mass of particle i in atomic units, and

Ei is the center of mass energy. This expression, when combined with Equations 15,

16, and 17 implies that the decay width Γk is proportional to muÂkEkσk, i.e. the

decay width for the exit channel k may be expressed in terms of the cross section

for forming the compound nucleus via incident channel k. Additionally, we note

that the level densities should be augmented by a statistical weight gk = 2Jk +1 to

account for the magnetic quantum states associated with spin Jk. This leads us to

the Weisskopf-Ewing formula

σjk(E,E
′)dE ′ = σj(E)

gkÂkE
′σk(E

′)ρk(U
′)dE ′

∑

k′′ gk′′Âk′′
∫ E−Q′′

0 E ′′σk′′(E ′′)ρk′′(U ′′)dE ′′
(19)

where the absorption cross sections σi(E) are generally expressed in terms of trans-

mission coefficients as in Equation 8, i.e.

σj(E) = πλ̄2jTj(E) . (20)

These transmission coefficients are generally obtained from an optical potential,
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and are energy averaged. As such, they only describe the absorption accurately

in regions where resonance structure is absent. Hence, the Weisskopf-Ewing model

cannot reproduce resonant structure in a cross section.

The simple Weisskopf-Ewing model suffers from two primary weaknesses. First,

it neglects the conservation of angular momentum. Second, it only describes reac-

tions involving a continuum of states, as expressed in terms of an empirical level

density. Despite these weaknesses, this model can still be useful in determining

quantities such as level density parameters (when used in conjunction with mea-

sured cross sections) and the magnitudes of total cross sections [13].

2.2.2 The Hauser-Feshbach Model

To include angular momentum conservation and discrete nuclear structure with the

independence hypothesis, we begin by considering a target nucleus I in state µ

(with spin and parity given by Jµ and Πµ). A compound nucleus of spin J and

parity Π is formed via the incident channel j with energy E and subsequently decays

through the exit channel k with energy E ′, leaving us with a residual nucleus L in

state ν. The incident and outgoing energies E and E ′ are related. In particular

E ′ = E +Qµν
ij (21)

where we have defined

Qµν
ij = Qij + Eµ − Eν . (22)

The quantities Eµ and Eν are the energies corresponding to the states µ and ν.

Suppose that j can be described via an incident plane wave. This wave can

be separated into angular momentum components by means of the partial wave

expansion (Equation 4). Consider now the lth partial wave in this expansion (with

angular momentum l). The cross section for the formation of the compound nucleus
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for this particular l wave is given by

σµj (E) = πλ̄2j(2l + 1)T JΠ
jil (E) (23)

where T JΠ
jil (E) is the transmission function for particle j (having energy E) into Iµ

via partial wave l. The incident channel spin i = J j + Jµ couples with the angular

momentum l to given the compound nucleus angular momentum J .

The independence hypothesis (Equation 14) tells us that the cross section for

this reaction, proceeding through this incident l wave, will be equal to the formation

cross section given in Equation 23 multiplied by the probability that the compound

nucleus will decay through channel k with energy E ′. Similar to the Weisskopf-

Ewing model, the decay probabilities are related to the compound nucleus formation

cross sections for the channel k. In particular, we can combine Equations 14 and

23 to find

σjk(E) = πλ̄2j(2l + 1)T JΠ
jil (E)Pk(E,E

′) (24)

and similarly

σk̂ĵ(E
′) = πλ̄2k(2l

′ + 1)T JΠ
k̂i′l′

(E ′)Pĵ(E,E
′) . (25)

Multiplying the first of these expressions by λ̄2k and the second by λ̄2j , we may invoke

reciprocity (Equation 17) to find

T JΠ
jil (E)Pk(E,E

′) = T JΠ
k̂i′l′

(E ′)Pĵ(E,E
′) . (26)

Hence the decay probability for channel k (Pk) is proportional to the transmission

function for the time reversed channel. The possible decay probabilities must sum

to unity, so that Pk may be written as Pk/
∑

k′′ Pk′′ . Replacing the decay probabili-

ties with their transmission functions, the constants of proportionality will cancel,
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leaving us with

Pk =
T JΠ
k̂i′l′

(E ′)
∑

k′′,i′′,l′′
∑ν′′max

ν′′=0 T
JΠ
k′′i′′l′′(E

ν′′)
(27)

where the sum over states in the denominator is cut of at ν ′′max, the highest level

whose energy is below the maximum excitation energy available to the channel k ′′.

The exit channel spin i′ = Jk + Jν (and i′′ = Jk
′′

+ Jν
′′

in the denominator) and

exiting partial wave l′ (l′′) must couple to give J , the spin of the compound nuclear

state.

We may now write the cross section for the reaction Iµ+ j → Lν+k proceeding

through the absorption of the lth partial wave of j into a compound nuclear state

of spin J in terms of the transmission functions:

σµνjkl(E) = πλ̄2j(2l + 1)T JΠ
jil (E)

T JΠ
k̂i′l′

(E ′)
∑

k′′,i′′,l′′
∑ν′′max

ν′′=0 T
JΠ
k′′i′′l′′(E

ν′′)
. (28)

The partial waves l′ and l′′ are subject to the constraints originating from the cou-

pling of incident and outgoing channel spins (containing the spins of the target

and residual) and the total angular momentum of the compound system, J . Con-

servation of angular momentum has now been explicitly accounted for, as well as

the individual levels in the target, compound nucleus, and residual. Equation 28

gives the cross section proceeding from a specific state in the target to a specific

state in the residual via a specific l wave and state of the compound nucleus. In

practice, such a cross section cannot be measured, in that experiments involve un-

polarized beams consisting of many l waves, and detectors do not measure the spins

of outgoing particles.

The laboratory cross section can be obtained by averaging Equation 28 over

initial spins and summing over final spins. Since the spins of the target and residual

are fixed (recall that we are considering specific states µ and ν), these sums may be

expressed in terms of the channel spins. Additionally, we must sum over all possible



34

l waves and total angular momenta J and parity Π in the compound nucleus. The

averaging over initial spins can be achieved by inserting the probabilities that Jµ

and J j will couple to give a particular i and subsequently that j and l will couple

to give J . Such coupling probabilities are given by

P (a+ b→ c) =
2c+ 1

(2a+ 1)(2b+ 1)
. (29)

In total, we have

σ̄µνjk (E) =
∑

i,i′,l,l′,J,Π

2i+ 1

(2Jµ + 1)(2J j + 1)

2J + 1

(2i+ 1)(2l + 1)
σµνjkl(E) . (30)

The factors of (2i + 1) cancel, and the factor of (2l + 1) will cancel with that in

σµνjkl(E). This leaves us with

σ̄µνjk (E) =
∑

i,i′,l,l′,J,Π

2J + 1

(2Jµ + 1)(2J j + 1)
πλ̄2jT

JΠ
jil (E)

T JΠ
k̂i′l′

(E ′)
∑

k′′,i′′,l′′
∑ν′′max

ν′′=0 T
JΠ
k′′i′′l′′(E

ν′′)
.

(31)

We abbreviate (2Ja+1) with ga. Moving several constant factors outside of the sum,

we obtain an expression for the total spin-averaged cross section of the compound

nuclear reaction Iµ + j → Lν + k:

σ̄µνjk (E) =
πλ̄2j
gµgj

∑

i,i′,l,l′,J,Π

gJT
JΠ
jil (E)

T JΠ
k̂i′l′

(E +Qµν
jk )

∑

k′′,i′′,l′′
∑ν′′max

ν′′=0 T
JΠ
k′′i′′l′′(E

ν′′)
. (32)

This model was first developed in 1952 by Hauser and Feshbach [16], and is appro-

priately known as the Hauser-Feshbach model. It is similar to the Weisskopf-Ewing

model, except that provisions have been made to ensure the conservation of angular

momentum. It additionally considers specific states in the target and residual, as

well as individual states in the compound nucleus.

It is now necessary to say a few more words regarding the denominator of Equa-
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tion 32. In particular, we note that the sum extends over all energetically accessible

discrete states ν ′′. However, the excitation energy for an exit channel k′′ often

exceeds the energy of the highest discrete state for which the relevant spins and

parities are known (typically 1-3 MeV). In such situations, one must employ an

empirical spin- and parity-dependent level density ρ(E, J,Π). The summation over

discrete states may then be replaced with

ν′′max
∑

ν′′=0

T JΠ
k′′i′′l′′(E

ν′′) →
ω
∑

ν′′=0

T JΠ
k′′i′′l′′(E

ν′′) +
∑

J ′Π′

∫ Emax

Eω

T JΠ
k′′i′′l′′(ε)ρ(E +Qjk′′ − ε, J ′,Π′)dε . (33)

Here, ω is the highest level up to which the spins and parities are known and Emax

is the maximum excitation energy available (Emax = E +Eµ +Qjk′′). More will be

said regarding the level density in Section 4.

We should also note at this point that the transmission coefficient is treated

in a different manner for photons. An outgoing photon is described in terms of

its multipolarity rather than by an l wave with a channel spin. Additionally, we

express the photon transmission coefficient in terms of the transition energy εγ In

particular, we should rewrite Equation 32 as

Particle Out : σ̄µνjk (E) =
πλ̄2j
gµgj

∑

i,i′,l,l′,J,Π

gJT
JΠ
jil (E)

T JΠ
ki′l′(E +Qµν

jk )

Ttot

Photon Out : σ̄µνjk (E) =
πλ̄2j
gµgj

∑

i,l,X,L,J,Π

gJT
JΠ
jil (E)

T JΠ
γXL(ε

ν
γ)

Ttot
(34)

where

Ttot =
∑

k′′,i′′,l′′

[

ω
∑

ν′′=0

T JΠ
k′′i′′l′′(E

ν′′) +
∑

J ′Π′

∫ Emax

Eω

T JΠ
k′′i′′l′′(ε)ρ(E

k′′

exc − ε, J ′,Π′)dε

]

+

∑

X′′,L′′

[

ω
∑

ν′′=0

T JΠ
γX′′L′′(εν

′′

γ ) +
∑

J ′Π′

∫ εωγ

0
T JΠ
γX′′L′′(ε)ρ(Eγ

exc − ε, J ′,Π′)dε

]

. (35)
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In this equation, Emax is defined as before and Ek′′

exc is the excitation energy for the

channel k′′, given by Ek′′

exc = E + Eµ +Qjk′′ .

In heavier nuclei where the fissility, defined as 0.0205 Z2/A, is large enough, we

must consider fission as a possible exit channel. In such cases, Ttot would need to

be modified accordingly. In the isotopic region of interest in the present work (the

iron group), fission probabilities are low (≤ 2%) and may be neglected.

2.2.3 Width Fluctuation Correlations

Equations 34 and 35 neglect to account for possible correlations in the wavefunc-

tions of the incident and outgoing waves in the elastic channel. These so-called

width fluctuation correlations cause an enhancement of the elastic scattering and a

corresponding decrease in the cross sections of other channels [23].

Width fluctuation correlations are generally taken into account with an addi-

tional multiplicative factor in the Hauser-Feshbach formula, i.e. Equation 28 be-

comes

σµνjk (E) = πλ̄2j(2l + 1)T JΠ
jil (E)

T JΠ
k̂i′l′

(E ′)
∑

k′′,i′′,l′′
∑ν′′max

ν′′=0 T
JΠ
k′′i′′l′′(E

ν′′)
Wjk . (36)

A reasonably complete expression forWjk can be obtained through the Gaussian or-

thogonal ensemble (GOE) [26]. However, this approach requires the evaluation of a

triple integral, and is numerically expensive. The correlations are usually evaluated

with some sort of approximation. The method developed by Moldauer [20] has been

particularly popular, and this is the model we adopt in our calculations. There are

also other approximation schemes, such as the HRTW method [18]. Both approxi-

mation schemes yield somewhat similar results, although the Moldauer approach is

consistently closer to the full GOE treatment [17].
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The Moldauer approximation yields

Wjk =

(

1 +
2δjk
vk

)

∫ ∞

0
dt
∏

f

(

1 +
2t

vf

〈Γf〉
〈Γtot〉

)(
vf
2
+δfj+δfk)

. (37)

In this expression, the various vi are the degrees of freedom associated with a

χ2 random distribution of partial widths. The partial widths themselves (Γk) are

proportional to the transmission coefficients and level spacings. The product is

over all possible exit channels. Gaussian quadrature can be efficiently employed to

evaluate the integral.

Since the compound elastic cross section decreases rapidly above a few MeV,

width fluctuation correlations are generally only significant for incident energies

below 1 MeV.

2.2.4 Decay of Continuum States

The cross section given in Equation 34 is still not, in practice, measurable in the

laboratory. In an experiment designed to measure a cross section, the beam of

incident particles may excite several states in the residual nucleus, many of which

rapidly decay. Due to the frequency of events, it is not possible to reconstruct

which particular state was formed. What can be measured is the total cross section

ultimately ending up in the ground state and, if they exist, any long lived isomers

in the residual nucleus.

In the case where all excited states eventually decay to the ground state, the

measurable laboratory cross section can be obtained from Equation 34 by simply

summing over all energetically accessible states in the residual. This is done by

replacing the T JΠ
ki′l′ in Equation 34 with a sum over the transmission coefficients,

including the continuum as described by the level density formula, as in Equation

33. However, when isomers are present, the process is more complicated and requires
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a detailed knowledge of how the various states in the residual decay.

The necessary information is found in the gamma decay branching ratios, which

can be measured. The branching ratio Γνν
′

γ is the probability that a state ν will

decay to a state ν ′. The absence of branching ratios for state ν would imply that

the state is stable, and hence one may account for long-lived isomers by assuming

all the branching ratios for the isomeric state are zero With this information, one

can model the gamma ray cascade in detail and determine how often a given state

will decay to the ground state or isomers.

Branching ratio data is only available for a few of the lowest lying discrete levels.

For residuals in a continuum state, the branching ratios can be estimated in terms

of transmission functions. In particular, for a transition energy εγ from a continuum

state at energy E to a state at energy E ′,

Γγ(εγ) =

∑

X,L TγXL(εγ)
∑

J ′,Π′,X′,L′

[

∑ω
ν′′=0 TγX′L′(εγiν

′′) +
∫ E−Eω

0 TγX′L′(εγ)ρ(E − εγ , J ′,Π′)dεγ
] .

(38)

Even with this approximation, a portion of the cross section will occasionally remain

in the continuum after the gamma cascade is modeled. When this occurs, we

distribute the continuum cross section to the ground and isomeric states, weighting

the distribution by spins. If the spin of a possible final state (either the ground

state or an isomer) is J , the amount of continuum cross section distributed to that

state is given by

σcont→J =
2J + 1

∑

J ′(2J ′ + 1)
σcont (39)

where σcont is the amount of cross section left in the continuum (typically less than

1% of the activation cross section). The sum is over the ground state and isomers.

This completes our description of the statistical model used in our modeling

effort. As mentioned previously, the compound nuclear mechanism is dominant
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over other reaction mechanisms in the mass and energy ranges of interest to us,

and we could safely model our cross sections using only the Hauser-Feshbach model

with width fluctuation correlations.

2.3 Pre-equilibrium Reactions

Pre-equilibrium emission of particles from the compound nucleus occurs when enough

energy is localized in a single particle during equilibration, allowing it to escape the

nuclear field. The escaping particle can either be a single nucleon or a composite,

such as an alpha cluster. This generally requires a large excitation energy, and hence

pre-equilibrium processes only become significant above ∼10 MeV incident energy.

For astrophysical purposes, we only need to consider incident energies up to ∼10

MeV, so pre-equilibrium could be safely ignored. However, in our study we model

cross sections up to 20 MeV to aid in the evaluation of input parameters. We have

therefore included pre-equilibrium in our modeling effort, and a brief description of

the model used is appropriate.

We adopt a simple exciton model in our calculations [6]. In this model, the

system of target plus projectile equilibrates through a series of two-body collisions.

Emission of particles is allowed from all intermediate states, which are characterized

only by the number of particle and hole degrees of freedom (P and H, respectively).

These particle and hole states are created and annihilated in pairs, so that the

state of the system may be equivalently expressed in terms of the exciton number

N = P +H.

We assume that upon absorption of the projectile, the compound system is

in a state consisting of two particles and one hole (P0 = 2, H0 = 1). The initial

population probabilities of states with exciton number N may be expressed in terms

of a delta function

b0(N ) = δNN0
. = δPP0

δHH0
(40)
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The occupation of these states after m+ 1 internal transitions is given by

bm+1(N ) = bm(N + 2)
λ−(N + 2)

λ(N + 2)
+ bm(N )

λ0(N )

λ(N )
+ bm(N − 2)

λ+(N − 2)

λ(N − 2)
. (41)

In this expression, λ+(N ) is the average rate of transitions resulting in a change

of exciton number by +2. The rates λ0(N ) and λ−(N ) correspond to transitions

resulting in a change of exciton number by 0 or -2. The denominator λ(N ) is the

total transition rate, given by

λ(N ) = λ+(N ) + λ0(N ) + λ−(N ) + λe(N ) (42)

where λe(N ) is the rate of emission of particles. This quantity is in turn given by

λe(N ) =
∑

j

∫

dεjλ
e
j(N , εj) (43)

where λej(N , εj) is the emission rate for particle j with kinetic energy εj. The sum

extends over all particles for which pre-equilibrium emission is considered. The

occupation numbers are determined iteratively, beginning with the initial configu-

ration. After a maximum number of transitions M , defined by

∣

∣

∣

∣

∣

bM−1(N )

bM(N )
−
∑

N ′ bM−1(N ′)
∑

N ′ bM(N ′)

∣

∣

∣

∣

∣

≤ 0.01

∑

N ′ bM−1(N ′)
∑

N ′ bM(N ′)
(44)

for all N , the system is assumed to be in equilibrium. The pre-equilibrium contri-

bution to the cross section is then given by

dσjk
dE

= σj(E)
M
∑

m=0

∑

N

bm(N )
λek(N , E)

λ(N )
(45)

which can be integrated to find the total pre-equilibrium cross section. It is also
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useful to define the pre-equilibrium fraction, which expresses the fraction of the

reaction cross section that undergoes pre-equilibrium processes. This is given by

F =
M
∑

m=0

∑

N

bm(N )
λe(N , E)

λ(N )
. (46)

A large pre-equilibrium fraction indicates that pre-equilibrium processes are signif-

icant.

The internal transition rates are a function of excitation energy, and are given

by [5]

λ+(N ) =
2π

h̄

∣

∣

∣M
∣

∣

∣

2 g(gE − CP+1,H+1)
2

P +H + 1

λ0(N ) =
2π

h̄

∣

∣

∣M
∣

∣

∣

2
g(gE − CP,H)(P +H− 1)

λ−(N ) =
2π

h̄

∣

∣

∣M
∣

∣

∣

2
gPH(P +H− 2) (47)

where

CP,H =
1

2
(P2 +H2) . (48)

The parameter g is related to the Fermi-gas level density parameter a (discussed in

Section 4) by g = 6a/π2. In our implementation of the exciton model, we assume

a = A/8. The average effective matrix element
∣

∣

∣M
∣

∣

∣

2
is given by

∣

∣

∣M
∣

∣

∣

2
=

FM

A3E
. (49)

Here, A is the mass number and E the excitation energy of the compound system.

The parameter FM is chosen empirically to match measured cross section data. In

this region of interest, FM = 200 provides a satisfactory fit. Sensitivity to this

parameter will be explored in Section 7.

This leads us to the particle emission rates. For neutrons and protons, we employ
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the rates suggested by [12], which are

λej(N , εj) =
2Jj + 1

π2h̄3
m̂jεjσj(εj)

N ± 1

N
w(P − 1,H, E − Sj − εj)

w(P ,H, E)
(50)

where the “+” is used when the incident and emitted nucleon are of the same type.

The quantities m̂j and Jj are the reduced mass and spin of the exit particle, and

σj(εj) is the absorption cross section for particle j incident on the residual with

kinetic energy εj. Sj is the separation energy of particle j from the compound

nucleus. The w(P ,H, E) is the density of of states for P particles and H holes at

energy E, given by [28]

w(P ,H, E) =
g [g(E −∆)− AP,H]

P+H−1

P !H!(P +H− 1)!
(51)

with

AP,H =
1

4
(P2 +H2 + P − 3H) . (52)

In our implementation, ∆ = 0.

We also include possible alpha particle emission, with the rate given by [19]

λeα(N , εα) =
1

π2h̄3
m̂αεασα(εα) .

ΦKα
N−1w(P − 1,H, E − Sα − εα)

ΦKα
Nw(P ,H, E) + (1− Φ)ΦKν

Nw(P ,H, E)
(53)

The various K factors appearing in this expression are constants given in [19], and

Φ is the alpha cluster preformation probability, which we take to be 0.5.

This completes our description of the implementation of pre-equilibrium in this

work. In Figure 6 we plot the pre-equilibrium fraction defined in Equation 46 for

protons and neutrons incident on 59,60Fe. As expected, the pre-equilibrium fraction

is small at low energies, accounting for only 10% of the decay of the 57Fe compound

nucleus. The fraction is easily negligible below 1 MeV, where the neutron capture
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Figure 6: Pre-equilibrium fraction for neutrons (solid line) and protons (dotted line)
incident on 56Fe.

cross sections are most significant. Above 10 MeV, pre-equilibrium accounts for as

much as 30-70% of the reaction cross section. Since the transition and emission

rates (Equations 47, 50, and 53) depend only on the mass number of the target, the

pre-equilibrium fractions for other isotopes in this region will be similar.

2.4 The STAPRE Code

In our modeling efforts, we adopt the STAPRE-H95 code [25]. This code embodies

the Hauser-Feshbach model and the pre-equilibrium treatment described above.

Pre-equilibrium emission is considered only for the first compound nucleus. Direct

reactions are not included, but have been calculated separately for a few select

capture reactions using the CUPIDO code [8].

A few reactions we have modeled, including (n,2n), (p,2n), and (n,np), in-

clude the emission of multiple particles. Such multistep emission is handled in

the STAPRE code by means of sequential evaporation, where the cross section for

emission from the first compound nucleus replaces the absorption cross section in

the Hauser-Feshbach model. Decay of the resulting second compound nucleus is
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then treated within the framework of the statistical model in the usual way. Se-

quential evaporation requires the specification of the particle emission sequence,

i.e. an (n,np) reaction is treated differently than an (n,pn) reaction. The order of

particle emission cannot be determined in experiments, and hence measured (n,np)

cross sections should be compared with the sum of (n,np) and (n,pn) calculations.

Versions of the STAPRE code are widely available. However, we have made

significant modifications, particularly to level density and transmission coefficient

subroutines. These modifications have been made to expand the capability of the

code with regards to the inclusion of modern treatments of level density parameters

and the E1 and M1 photon strength functions.
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3 Nuclear Structure Data

The Hauser-Feshbach model requires as input the spins and parities of the ground

state and excited states of the various compound nuclei involved in the reaction,

which enter into the statistical factors of Equation 32 and the selection rules of

Equations 34 and 35. Also required are the binding and separation energies, which

come into the definition of the excitation energy and determine the reaction thresh-

olds, and the detailed gamma decay branching information needed to accurately

model the gamma ray cascade.

Fortunately, a large number of the relevant properties have been measured, even

for unstable nuclei. The wealth of data available at the present day exceeds that

available to previous studies. However, in some cases the relevant quantities have

not been measured, particularly with respect to ground state masses and gamma

ray branching ratios. When this is the case, we use extrapolations and estimates.

This section details the sources of nuclear structure data used in our modeling

effort, and provides comparisons with those used previously.

3.1 Ground State Spins and Parities

Our adopted ground state spins and parities come primarily from the Evaluated

Nuclear Structure Data File (ENSDF). [3]. A full listing can be found in Appendix

A. In Table 1 we highlight the differences between our values and those used by

Woosley, et al. [6] and Rauscher and Thielemann [5]. Missing entries in Table

1 indicate that the nucleus was not included in the input decks. These missing

entries account for half of the differences between the sets listed in Table 1. Parity

assignments are consistent among the sets, with the exception on 63Fe. When the

spins of the sets differ, it is generally only by one unit. The exceptions are the spins

of 54V and 62Co used by Woosley, et al. Of all the nuclei listed in this table, the
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Table 1: Select ground state spins and parities in various modeling efforts. Nuclei
involved in the reactions included in this work not appearing in this table have
consistent Jπ assignments in all three efforts.

Nucleus Our Values Woosley, et al. Rauscher & Thielemann
54Ti 0.0+ – 0.0+
54V 3.0+ 5.0+ 3.0+
56V 2.0+ – –
57V 1.5+ – –
59Cr 1.5+ – –
60Cr 0.0+ – –
48Mn 4.0+ – 4.0+
59Mn 1.5− 2.5− 1.5−
61Mn 2.5− 1.5− 2.5−
51Fe 2.5− 3.5− 2.5−
63Fe 2.5− 1.5− 2.5+
52Co 1.0+ 1.0+ –
62Co 2.0+ 5.0+ 2.0+
56Cu 3.0+ 2.0+ –

only one that would affect the 59,60Fe neutron capture cross sections is 59Mn, which

is the residual nucleus for the proton exit channel of the 60Fe compound nucleus and

the deuteron exit channel of the 61Fe compound nucleus. However, the thresholds

for 59Fe(n,p)59Mn and 60Fe(n,d)59Mn are 4.5 and 10.7 MeV, respectively. At these

energies, the relevant capture cross sections have dropped to ∼1 millibarn, and the

opening of the charged particle exit channels will only have negligible effects on

the neutron capture cross sections. Thus, at least with regard to the 59Fe(n,γ)60Fe

and 60Fe(n,γ)61Fe cross sections, the ground state spin and parity assignments of

all three groups are essentially identical.

3.2 Masses and Separation Energies

The total mass of a system, and thus its binding energy, almost always changes

in a nuclear reaction. A corresponding loss (increase) is mass is accompanied by

an increase (decrease) in binding energy. Hence, a decrease in the total mass of a
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nuclear system results in an excess amount of energy, which is often expressed in

terms of a Q-value:

Q = (
∑

initial

m−
∑

final

m)c2 (54)

where the masses are in atomic units and c2 = 931.5 MeV/amu. The Q-value should

be raised by the appropriate energy if the target nucleus is in an isomeric state, and

lowered when the residual is an isomer. When the Q-value is negative, the reaction

will have a threshold. In the laboratory frame this threshold energy is

Eth = −mX +ma

mX

Q (55)

where mX and ma are the masses of the target and projectile, respectively.

Once a compound nuclear state has been formed, certain exit channels may be

kinematically forbidden at low excitation energies. The minimum excitation energy

required for a particle k to exit the compound nucleus is called the separation energy,

and is defined as

Sk = (mY −mX′ +mk)c
2 (56)

where mX′ is the mass of the compound system, mY is the mass of the residual,

and mk is the mass of the exiting particle.

Each of the above equations may alternately be expressed in terms of binding

energies. The binding energy for a particular nucleus may be derived from its mass,

via the relation

BX = (ZXm1H +NXmn −mX)c
2 (57)

where ZX , NX and mX are the proton number, neutron number, and mass of a

nucleus X. The other masses appearing in this expression are those of the neutron

and 1H atom, the latter accounting for atomic binding energies.

Separation energies andQ-values serve indirectly as inputs to the Hauser-Feshbach
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model in that they are used to determine the reaction thresholds and excitation ener-

gies of the various compound nuclei. In Appendix A we provide our adopted masses,

binding energies, and separation energies. The masses are taken from [1], with ex-

trapolations made for nuclei off stability without measured values. The binding and

separation energies are then calculated from these masses. Table 2 highlights the

differences between our binding energies (columns labeled “Adopted”) and those

used by Woosley, et al. (WFHZ) [6] and Rauscher and Thielemann (RT) [5]. This

table includes only binding energies that differ by more than 10 keV. We have also

only included nuclei from 24 ≤ Z ≤ 26 in this table, representing possible residuals

from the decay of iron compound nuclei. The differences in binding energies for

other nuclei considered in this study are similar.

In most cases, the binding energies are within 100 keV of each other. The

largest deviation is that of 60Cr, which is 1.4 MeV. For the nuclei most important

to neutron capture onto 59,60Fe (56,57Cr, 58−60Mn, and 59−61Fe), the largest deviation

is that of 59Mn. However, this residual represents the proton exit channel of the 60Fe

compound system and the deuteron exit channel of the 61Fe system. As discussed in

the previous section, the neutron capture cross section is quite small at the energies

where these exit channels open, and changes in this separation energy will have

negligible effects on the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe cross sections.

3.3 Discrete Levels

Ideally one would have a complete set of discrete levels up to the necessary excitation

energies for each of the compound nuclei involved in the modeled reaction. In such a

scenario, one would not need to resort to empirical level density formulae. However,

discrete level schemes are often only known up to a few MeV, and many of the

measured levels do not have well established spins and parities. Additionally, one

needs to know the gamma decay branching ratios for each of the discrete levels in
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Table 2: Select binding energies (in MeV) adopted in various modeling efforts. Only
nuclei for which the adopted energies differ by more than 10 keV are included in
this table.

Nucleus Adopted WFHZ RT Nucleus Adopted WFHZ RT
47Cr 395.13 395.22 395.13 55Mn 482.07 482.09 482.07
48Cr 411.47 411.48 411.47 56Mn 489.34 489.36 489.35
49Cr 422.05 422.12 422.05 57Mn 497.99 498.14 498.00
50Cr 435.05 435.06 435.05 58Mn 504.48 504.66 504.41
51Cr 444.31 444.32 444.31 59Mn 512.13 512.42 512.12
52Cr 456.35 456.36 456.34 60Mn 517.90 517.71 517.89
53Cr 464.29 464.30 464.28 61Mn 524.35 525.14 524.94
54Cr 474.01 474.02 474.00 51Fe 431.52 431.54 431.52
55Cr 480.25 480.28 480.25 52Fe 447.70 447.72 447.70
57Cr 493.81 493.82 493.93 53Fe 458.38 458.40 458.38
58Cr 501.19 501.48 501.84 54Fe 471.76 471.78 471.76
59Cr 505.32 – 506.11 55Fe 481.06 481.08 481.05
60Cr 512.01 – 513.41 56Fe 492.26 492.28 492.25
48Mn 397.19 – 397.07 57Fe 499.90 499.93 499.90
49Mn 413.55 413.67 413.55 58Fe 509.95 509.97 509.94
50Mn 426.63 426.65 426.63 59Fe 516.53 516.56 516.53
51Mn 440.32 440.33 440.32 60Fe 525.35 525.39 525.35
52Mn 450.86 450.87 450.85 61Fe 530.93 531.06 530.93
53Mn 462.91 462.92 462.91 62Fe 538.98 539.51 538.97
54Mn 471.85 471.87 471.84 63Fe 543.70 544.29 544.13

order to include detailed gamma ray cascades in the de-excitation of the compound

nuclei.

The majority of our adopted level schemes are drawn from the RIPL database

[4] and ENSDF [3]. Additional evaluations for select nuclei were performed by R.

Bauer [2]. Complete information on our adopted discrete level schemes is presented

in Appendix B.

In Tables 3 and 4, we compare our level schemes for 60,61Fe (the most significant

level schemes for neutron capture onto 59,60Fe) with those of Woosley, et al. (WFHZ)

[6] and Rauscher and Thielemann (RT) [5]. These tables include only the levels

actually used in the calculations (note in particular that we begin with seven levels
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Table 3: Discrete level schemes for 60Fe. The first two columns list the energy,
spin, and parity assignments adopted in this work. The third column indicates
(with a black dot) the levels included in the modeling effort of Woosley et al.. The
third column indicated the levels included in the modeling effort of Rauscher and
Thielemann, with any differences between their adopted levels and ours listed in
parenthesis. The final column indicates the modifications we made from the level
schemes in the Reference Input Parameter Library. A “BR” indicates that we have
modified the branching ratios, and “Added” indicates that the level was not included
in RIPL.

Energy (MeV) Jπ WFHZ RT Modified from RIPL
0.0000 0+ • •
0.8236 2+ •
1.9738 0+ (1.9750)
2.1145 4+ •
2.2994 2+ •
2.3580 0+ BR
2.6730 2+ •
2.7560 2+ •
2.7924 3+ (2+)
3.0390 2+ •
3.0724 4+ (3.0720, 2+)
3.2930 3− BR
3.3080 3+

3.5020 4+ BR
3.5161 5− (2+)
3.5200 4+ BR
3.5620 3− BR
3.6350 2+ BR
3.6480 4+

3.6980 0+ BR
3.7140 3+

3.8670 3− BR
3.8750 4− BR
3.9290 2+ BR
3.9544 6+

for 61Fe in Appendix B, but only include five of these levels in our calculation, due

to difficulties encountered fitting the level density to this set of levels). The first

two columns give the energy, spin, and parities of our adopted set of levels. The

next two columns indicate (with a black dot) which of these levels are present in
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Table 4: Discrete level schemes for 61Fe. The first two columns list the energy,
spin, and parity assignments adopted in this work. The third column indicates
(with a black dot) the levels included in the modeling effort of Woosley et al..
The third column indicated the levels included in the modeling effort of Rauscher
and Thielemann. The final column indicates the modifications we made from the
level schemes in the Reference Input Parameter Library. A “BR” indicates that we
have modified the branching ratios, and “Added” indicates that the level was not
included in RIPL.

Energy (MeV) Jπ WFHZ RT Modified from RIPL
0.0000 1.5− • •
0.2068 2.5−

0.3910 0.5−

0.6287 1.5−

0.8610 4.5+ Added

the other two sets. If the level is present but the properties differ from our set, the

values for the other set are given in parenthesis. The last column indicates which

properties in our adopted level set were modified from what appears in [4] (‘BR’

indicates a modification to the branching ratios, ‘Added’ indicates the level was not

included in [4]).

The most distinct difference between the various schemes is the number of levels

included. Only the ground states for both nuclei are included in the WFHZ set.

The RT set includes excited states for 60Fe, but only a ground state for 61Fe. There

are some minor differences in a few of the energies in 60Fe between our set and

RT, and some more significant differences in a few spin and parity assignments.

Our modifications to the data found in [4] include estimates of branching ratios in

60Fe and the addition of a level (found in [3] but not in [4]) to 61Fe. We further

note that the modeled cross sections of [6] and [5] do not include detailed gamma

ray cascades. These differences in the discrete level schemes, in conjunction with

the appropriate level densities, may have a significant impact on the modeled cross

sections. An investigation into this issue will be presented in Section 7.2.1.
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4 Nuclear Level Densities

In this section, we summarize the theoretical considerations with regard to the

nuclear level density and describe our level density systematics. We also compare

our systematics with those used in previous reaction rate libraries [27, 21]. We

conclude by discussing the performance of the various level density prescriptions

relative to neutron resonance data.

4.1 Theoretical Foundations of the Nuclear Level Density

Our level density prescription is similar to that of [21], in that we assume a back-

shifted Fermi gas at high excitation energies and a constant temperature state

density at lower energies.

4.1.1 The Fermi Gas State Density

Hans Bethe attempted to describe the density of states in a nucleus as a Fermi gas

[1]. Others have derived similar expressions for a Fermi gas state density, including

Lang and LeCouteur [18] and Newton [20]. The standard formulation used in the

calculation of astrophysical reaction rates is that of Gilbert and Cameron [7], and

it is this form that we adopt.

Consider N neutrons occupying single particle levels s of energy as, occupation

number ns, and magnetic quantum number ms. Additionally there are Z protons

occupying single particle states t of energy bt, occupation number zt, and magnetic

quantum number mt. The macroscopic state of this system is defined by four

constants of motion: the total neutron and proton numbers (N and Z), the total

energy E, and the net magnetic quantum numberM of the system. These quantities
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are defined by

N =
∑

s

ns

Z =
∑

t

zt

E =
∑

s

nsas +
∑

t

ztbt

M =
∑

s

nsms +
∑

t

ztmt . (58)

Using these one can define the grand partition function

exp(Ω) =
∑

N ′,Z′,E′,M ′

exp[β(µ1N
′ + µ2Z

′ + µ3M
′ − E ′)] (59)

where the sum is over all possible macroscopic states. One can replace the energy

with an integration over the density of states P (E,N,Z,M)

exp(Ω) =
∑

N ′,Z′,M ′

∫

dE ′P (E ′, N ′, Z ′,M ′) exp[β(µ1N
′ + µ2Z

′ + µ3M
′ − E ′)] . (60)

Then by a series of successive inverse Laplace transformations one obtains an ex-

pression for the density of states:

P (E,N,Z,M) =
(

1

2πi

)4 ∫ γ+i∞

γ−i∞
dβ
∫ γ3+i∞

γ3−i∞
dα3

∫ γ2+i∞

γ2−i∞
dα2

∫ γ1+i∞

γ1−i∞
dα1

× exp(Ω− α1N − α2Z − α3M + βE) . (61)

The total nuclear level w(E) density is the sum of this quantity over all possible

M , i.e.

w(E) =
∑

M

P (E,N,Z,M) . (62)

This is the basic procedure for determining the total nuclear state density for a gas

of particles obeying Fermi-Dirac statistics. The earlier works of [18] and [20] use
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this same method, but do not include M as a constant of the motion.

While making the inverse Laplace transformations, it is useful to describe the

energy in terms of U ≡ E − U0 where U0 is the energy of the first fully degenerate

state. The level densities may then be expressed as functions of U rather than E.

The process of evaluating Equation 61 is rather involved, and a full treatment is

given in Appendix C of [7]. For our purposes, we need only consider the final result

for the total state density, which is

w(U) =

√
π

12

exp(2
√
aU)

a1/4U5/4
. (63)

In this expression, a is known as the level density parameter and is related to the

sum of the neutron and proton single particle level spacings.

In statistical model calculations, we consider the absorption (emission) of the

various particles into (from) a single particle state with a given spin. For this reason,

we need to know the density of levels of a particular spin, referred to as the spin-

dependent level density. The distribution of levels with total magnetic quantum

number M is given by [7]

ρ(U,M) = w(U)P (M)

= w(U)
exp(−M 2/2σ2)

σ
√
2π

(64)

where σ2 = g 〈m2〉 t is referred to as the spin cutoff parameter. Here, g is the

sum of neutron and proton single particle level spacings, t is the thermodynamic

temperature, and 〈m2〉 is the mean square magnetic quantum number for the single

particle states. This level density includes all states of total magnetic quantum

number M , all of which must have J ≥M . In the absence of external fields, single

particle states that differ only in their magnetic quantum numbers are degenerate,
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and ρ(U,M = J)− ρ(U,M = J +1) will count the total number of states with spin

J . Hence, in the absence of external fields, we find

ρ(U, J) = ρ(U,M = J)− ρ(U,M = J + 1)

=
w(U)

σ
√
2π

[

exp(−J2/2σ2)
σ
√
2π

− exp(−(J + 1)2/2σ2)

σ
√
2π

]

=
w(U)

σ
√
2π
f(J) . (65)

The quantity f(J) is often replaced with an approximation involving only a single

exponential. In this work we adopt

f(J) ≈ 2J + 1

2σ2
exp

[

−(J +
1

2
)2/2σ2

]

. (66)

Hence we write the spin-dependent level density as

ρ(U, J) =
1

σ
√
2π

2J + 1

2σ2
exp

[

−(J +
1

2
)2/2σ2

]

√
π

12

exp(2
√
aU)

a1/4U5/4
. (67)

Previous level density descriptions have used other approximations for f(J). These

will be presented in Section 4.2.

Equation 67 is a function of energy and three other parameters: the level density

parameter a, the spin cutoff parameter σ2, and the energy of the first fully degen-

erate state U0. In principle, these parameters can be determined from measured

nuclear properties, as will be discussed later. Comparing these parameters with

measured values often involves the total level density observable in the absence of

external fields, i.e. ignoring the magnetic quantum number degeneracy. We can ob-

tain an expression for this “observable level density” by summing over the angular
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momenta

ρ(U) =
∑

J

ρ(U, J)

≈ 1

σ
√
2π

√
π

12

exp(2
√
aU)

a1/4U5/4
. (68)

We now consider the parity distribution of states represented by these expres-

sions for the nuclear level density. The total parity of the nuclear state is given by

the product of the parities of the constituent nucleons, so that if there are an odd

number of odd parity nucleons, the macroscopic nuclear state will itself be of odd

parity. In a system of n nucleons where the probability of each nucleon having odd

parity is p, the probability P that a nuclear state will have odd parity given by [7]

P =
1− (1− 2p)n

2
. (69)

It is generally assumed that p is on the order of 1/2, so that (1− 2p) << 1 and thus

P ≈ 1/2. This means that the distribution of parity states in roughly equal, so that

ρ(U, J,Π) =
1

2
ρ(U, J) . (70)

Having discussed the origins of the Fermi gas level density formula, we now

provide a more in depth discussion regarding the individual parameters of Equation

67.

4.1.2 The Backshift

As mentioned previously, the Fermi gas level density is expressed as a function of

U = E − U0, where U0 is the energy of the first fully degenerate state. Hence, U is

the excitation energy of the nucleus in question. The cumulative number of discrete
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Figure 7: Cumulative number of levels in 55−56Mn and 55−56Fe as a function of
excitation energy. The effect of pairing energies on the level density is clearly
illustrated, with nuclei containing paired nucleons having considerably fewer levels
at a given energy.

levels of neighboring nuclei, when plotted as a function of excitation energy, show

a marked sensitivity to the pairing of the constituent nucleons. This sensitivity is

illustrated in Figure 7. The level density for nuclei with unpaired nucleons tends

to be higher. This sensitivity can be understood in terms of the pairing energies

associated with paired nucleons. In order to excite a paired nucleon, one must first

overcome the pairing energy, i.e. additional energy is required to separate paired

nucleons. This type of odd-even effect can also be seen at higher energies, for

example in measured resonance spacings.

Odd-even effects can be removed from the level density by substituting an effec-

tive excitation energy in place of the true excitation energy,

Ueff = U −∆ . (71)

The quantity ∆ is referred to as the backshift.

As a first approximation, one would expect ∆ to be the sum of the neutron and
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proton pairing energies, ∆n and ∆p, which are either found in tables such as in [7]

or determined by differences in nuclear binding energies:

∆n(Z,N) = BE(Z,N)− 1

2
[BE(Z,N − 1) +BE(Z,N + 1)]

∆p(Z,N) = BE(Z,N)− 1

2
[BE(Z − 1, N) +BE(Z + 1, N)]

∆(Z,N) = ∆n(Z,N) + ∆p(Z,N) . (72)

These latter expressions for ∆p and ∆n apply only for paired nucleons. There is

not a pairing energy associated with unpaired nucleons. This simple parameteriza-

tion of the backshift leads to a systematic disagreement between the a parameters

inferred from resonance spacings and those obtained through an analysis of correla-

tion widths of fluctuating cross sections [5]. It has been shown that this systematic

disagreement can be eliminated by using a backshift of the form

∆ = ∆n +∆p −
η

A
(73)

where η ≈ 70. Effectively, this formulation assigns a negative pairing energy to

unpaired nucleons.

There is a second way to eliminate the disparity between level density parameters

obtained through the evaluation of level spacings and correlation widths. This

second method does not involve the introduction of a new parameter. One may

determine the pairing energies ∆n and ∆p using Equation 72, but do so for all

nuclei (including those that have unpaired nucleons). The unpaired nucleons are

then assigned negative pairing energies, similar to Equation 73. The backshift is

then taken to be the average of ∆n and ∆p, i.e.

∆(Z,N) =
1

2
(∆n +∆p) . (74)
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This is the method employed by [22].

Hereafter, the variable U will always refer to the backshifted excitation energy

Ueff .

4.1.3 Spin Cut-off Parameter

The spin cutoff parameter is defined in [7] as σ2 = g 〈m2〉 t where g is the sum of

neutron and proton single particle level spacings, t is the thermodynamic tempera-

ture (not to be confused with the nuclear temperature), and 〈m2〉 is the mean square

magnetic quantum number for the single particle states. The single particle level

spacing is related to the level density parameter via a = π2g/6. The thermodynamic

temperature is given by

t =
1

β
=

√

1

a

√

√

√

√U − M2

4 〈m2〉 gU . (75)

In the process of determining the state density, one may assume U is much larger

than the single particle level spacing g−1, and replace several sums with integrals.

This allows one to approximate the thermodynamic temperature by t ≈
√

U/a. It

has also been shown that 〈m2〉 ≈ 0.146A2/3 [15], so that the spin cutoff parameter

may be written as a simple function of the level density parameter, the energy, and

the nuclear mass:

σ2 = 0.0888
√
aUA2/3 . (76)

With these approximations, the level density (Equation 67) is a function of U and

a only.

Other treatments have been suggested for the spin cutoff parameter. For in-

stance, Rauscher and Thielemann [22] use

σ2 =
Θrigid

h̄2
t (77)
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with Θrigid being the moment of inertia for a sphere of mass 1 amu and nuclear

radius R. If one makes the usual approximation R = R0A
1/3 with R0 = 1.25 fm,

this expression reduces to

σ2 = 0.01496

√

U

a
A5/3 . (78)

Note that for a = A/6 (a value not far removed from the canonical A/8) Equations

76 and 78 are approximately equal.

4.1.4 The Level Density Parameter

There are several ways in which the level density parameter a can be extracted from

experiment [4]:

1. At relatively low excitation energies (usually below 5 MeV), discrete levels

can be counted directly.

2. The level density at the neutron binding energy (Bn, generally around 7-

8 MeV of excitation energy) can be determined from measurements of the

average S-wave resonance spacing (D0).

3. An analysis of the spectra of particles emitted in statistical reactions can

reveal information about the level density for excitation energies around 10

MeV.

4. Correlation widths of fluctuating cross sections can yield information for ex-

citation energies from 10-20 MeV.

In this work we focus only on the first two methods. At excitation energies below

5 MeV the level density is better represented by a constant temperature formula

which will be discussed later. Information about the a parameter is therefore most

readily extracted from the resonance spacings.
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The average S-wave resonance spacing at the neutron binding energy is related

to the level density by

D0 =
2

ρ(Bn −∆, J = 1/2)
(79)

for a spin zero target and

D0 =
2

ρ(Bn −∆, J = s+ 1
2
) + ρ(Bn −∆, J = s− 1

2
)

(80)

for a target with non-zero spin s. Provided the backshift and spin cutoff parameter

formulation have already been chosen, these expressions may be used to infer the

value of a at the neutron binding energy (Bn). This is most easily accomplished

with a bisectional root finding method.

Since the a parameter is proportional to the sum of the neutron and proton

single particle level spacings, one would expect a systematic description of a to

depend on mass number. This expectation has been borne out in several studies

[6, 3, 13, 27, 25, 22]. Generally, the a parameter scales with the mass number, i.e.

a = A/X where X falls in the range of 6.0-9.0.

4.1.5 Shell Effects and the Level Density Parameter

Nuclei residing on or near closed neutron and proton shells tend to have level spac-

ings much higher than their immediate neighbors that sit further from the closed

shell. More simply put, closed shell nuclei have lower level densities. These so-called

“shell effects” can be accounted for in terms of a shell correction applied to the level

density parameter. In [7], the shell correction is of the form

a = (α + βS)A . (81)
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In this expression, a is the level density parameter, and the constants α and β have

values of approximately 1/8 and 1/100, respectively. The shell correction S receives

contributions from both neutrons and protons, and their values are tabulated in [7].

This treatment applies the shell correction independent of excitation energy.

It has been shown that shell effects diminish with increasing excitation energy,

becoming negligible around 30 MeV [4]. Such a vanishing shell correction may be

described by an energy dependent a parameter. Ignatyuk, Smirenkin and, Tishin

proposed using

a(U,Z,N) = ã

[

1 + δW (Z,N)
1− exp(−γU)

U

]

(82)

where δW is the ground state shell correction and γ is a thermal damping coefficient

[13]. Generally, γ is assumed to have a value of approximately 0.02-0.08 MeV−1,

which ensures that the shell effects become negligible at energies greater than 20

MeV. At higher energies, the level density approaches ã, referred to as the asymp-

totic a parameter. When an energy dependent a parameter is used, one extracts

the value of ã (rather than a) from neutron resonance spacings. As with the a

parameter, ã exhibits a systematic dependence on mass number.

The ground state shell correction is defined as the difference between the exper-

imental mass and the mass predicted by nuclear models, such as the liquid drop

model. It has also been suggested that the shell correction should be identified with

a “microscopic correction” that describes the deviation of a nucleus from a spherical

macroscopic shape [22].

4.1.6 Level Densities below the Neutron Binding Energy

The Fermi gas level density diverges at U = 0. If the backshift is positive, this

divergence occurs when the true excitation energy is finite. In these cases one must
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use some other description of the level density at and below E = ∆. The simplest of

parameterizations assume that the level density is constant below a certain energy

[26], although one would hope for a better treatment.

Gilbert and Cameron showed that the cumulative number of levels at low ener-

gies can be fit with a constant temperature level density of the form

w(E) =
1

T
exp

[

E − E0
T

]

. (83)

In this expression, T represents the temperature (assumed constant). Equation 83

does not provide a reasonable description of the level density above the neutron

binding energy. Generally the constant temperature formulation is used up to an

energy Ex (where ∆ < Ex < Bn), and the Fermi gas level density is used above Ex.

The two level densities are required to match tangentially at Ex.

Similar to the Fermi gas, the observable level density is related in a simple way

to the total level density,

ρ(E) =
1√
2πσ

w(E) =
1

T
exp

[

E − E0
T

]

1√
2πσ

. (84)

The spin cutoff parameter σ cannot have the same form as it does for the Fermi

gas. Equations 76 and 78 are proportional to
√
U , and at U = 0 (E = ∆) they

become imaginary. This is, of course, unacceptable.

Several treatments have been proposed for the spin cutoff parameter in the

constant temperature regime. The simplest method is to evaluate σ using Equation

76 or 78 at Ex and assume that the value remains constant at σ(Ex) for lower

energies. A second method, proposed by [23], evaluates σ at the energy of the
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highest known discrete level for which the spin and parity are known (Ecut) as

σ2(Ecut) =
1

2N

∑

i

(

Ji +
1

2

)2

. (85)

The sum runs over all discrete states up to and including that at Ecut. Below Ecut,

σ2 is held constant at σ2(Ecut). Between Ecut and Ex, σ
2 varies linearly with energy,

i.e.

σ2(E) = σ2(Ex)−
σ2(Ex)− σ2(Ecut)

Ex − Ecut

(Ex − E) . (86)

Above Ex, the Fermi gas value of σ2 is used.

A third treatment of σ2 below Ex is given by [2]. At Ecut σ
2 is evaluated in the

Fermi gas way. Then, for energies between 1
2
Ecut and Ex, the spin cutoff parameter

is given by

σ2(E) = σ2(Ecut) +
σ2(Ex)− σ2(Ecut)

Ex − 1
2
Ecut

(

E − 1

2
Ecut

)

. (87)

Below 1
2
Ecut, σ

2 is held constant.

4.1.7 Fitting the Level Density Formulae to Spectroscopic States

As mentioned, the Fermi gas and constant temperature level densities, which we

will refer to as ρ1 and ρ2, respectively, are required to match tangentially at the

matching energy Ex. Specifically, we require

ρ1(E −∆)
∣

∣

∣

E=Ex

= ρ2(E)
∣

∣

∣

E=Ex

d log ρ1(E −∆)

dE

∣

∣

∣

∣

∣

E=Ex

=
d log ρ2(E)

dE

∣

∣

∣

∣

∣

E=Ex

. (88)

Assuming that the Fermi gas parameters are already fixed, these requirements place

two constraints on the three degrees of freedom associated with the constant tem-
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perature parameters E0, T , and Ex. One may use the matching conditions to fix

the values of E0 and T , and then vary Ex to provide the best fit to the low lying

levels. Given a particular Ex, the matching conditions yield

T =







√

a

Ux
− 3

2Ux
+

[ã− a(Ux)](1 + γUx) + ãγδW
√

a(Ux)Ux







−1

E0 = Ex − T log [Tρ1(Ux)] (89)

with Ux = Ex −∆.

The Hauser-Feshbach formula makes explicit use of the discrete levels up to what

we have defined as Ecut, and one must take care that the integrated level density

matches the cumulative number of levels at Ecut. If not, the effective number of

discrete levels used in the Hauser-Feshbach formula (see Equation 35) will have a

discontinuity at Ecut, which may manifest itself as a kink in the resulting cross sec-

tions. To avoid this situation, one should ensure
∫ Ecut

0 ρ(E)dE = N(Ecut) whenever

possible. In other words, one should try to match the level density as closely as

possible to the level at Ecut.

It was mentioned previously that Ex should lie between ∆ and the neutron bind-

ing energy (Bn). If Ex is greater than Bn, the level density at Bn (and consequently

the calculated value of D0, which we have fixed to measured or systematic values)

will change. If Ex ≤ ∆, the discontinuity in the Fermi gas formula will reappear.

Thus it is critical that we have Ex > ∆, and desirable that Ex < Bn. Additional

lower limits may be placed on Ex if we require T > 0. The ability to place the

matching energy in this range is greatly affected by the level density parameter ã.

If ã is too large, one will need Ex > Bn to match the discrete levels. Addition-

ally, the validity of the constant temperature formula is questionable at best in this

higher energy region. If ã is too small, we will need Ex ≤ ∆ to match the discrete

level spectra. Also for small ã and in the case ∆ < 0, the integrated Fermi gas
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level density may still be much greater than the cumulative number of levels at Ecut

(N(Ecut)), in which case matching the spectroscopic data is impossible. A consis-

tent occurrence of these issues signals that the ã parameters are inappropriately

high or low. The value of ã is inferred from measured resonance spacings after pa-

rameterization of ∆ and σ2 has been chosen. Thus, the inability to properly match

the level density to discrete level spectra is most likely due to the chosen form of ∆

or σ2.

This concludes our discussion of the theoretical considerations relative to nuclear

level densities. We will now provide an overview of the level density parameters used

in previous reaction rate libraries and outline our methods for fixing the Fermi gas

level density parameters using local systematics.

4.2 Past Approaches to the Level Density

In this section we provide an overview of the level densities used in previous cross

section modeling. The first set of parameters comes from [27], which was used in

the 1995 stellar evolution survey [28]. The second set of parameters comes from

[22], used in the more recent 2001 stellar evolution calculations [21]. The third

set of level densities presented in this section has not yet been used to develop a

reaction library, but represents a recent attempt to calculate level densities in the

microscopic Hartree-Fock BCS theory.

4.2.1 Woosley et al. (1978)

The reaction library used in [24] was developed in 1978 by Woosley et al. [27]

(hereafter WFHZ) using the code CRSEC [26]. The level density parameters used

in these rates are similar to those of Gilbert and Cameron [7], though there are

some noteworthy modifications.

WFHZ use the spin cutoff parameter of Equation 78, while Gilbert and Cameron
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use Equation 76. The parameterization of the backshift employed by WFHZ is that

of Equation 73 with η = 80. Gilbert and Cameron use Equation 72. Both use the

pairing energies tabulated in [7]. Both level density formulations also use the same

shell corrections, though the dependence of the a parameter on the shell correction

is slightly different for WFHZ. For nuclei with Z < 30 they use

odd A : a = (0.05260 + 0.002209 S)A1.2

odd Z, odd N : a = (0.05264 + 0.001592 S)A1.2

even Z, even N : a = (0.05267 + 0.001901 S)A1.2 . (90)

Here, S = Sn + Sp is the shell correction. For self-conjugate nuclei, a is reduced by

a factor of 1.10 to account for isospin effects. These level density systematics were

derived from neutron resonance spacings. For compound nuclei with measured

resonance spacings, “experimental” values of the a parameter are provided. We

note that while the choice of spin cutoff parameter and backshift are consistent

with modern treatments, WFHZ use an energy independent a parameter, which

maintains shell effects at all excitation energies.

The spin dependence of the level density employed by WHFZ according to [27]

is slightly different than that of Equation 66:

f(J) =
2J + 1

2σ2
exp

[

−J(J + 1)

2σ2

]

. (91)

However, further investigation into the CRSEC code [26] utilized in the GCE survey

[24] reveals a far more complex spin dependence:

f(J = 0) =
3

4σ2
exp

(

− 1

σ2

)

f(J 6= 0) =
2J − 1

4σ2
exp

[

−J(J − 1)

2σ2

]

+
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2J + 1

4σ2
exp

[

−J(J + 1)

2σ2

]

+

2J + 3

4σ2
exp

[

−(J + 1)(J + 2)

2σ2

]

. (92)

The last remaining issue to discuss regarding the WFHZ level densities is the

treatment of the level density at low excitation energies. The CRSEC code indicates

that the level density is held constant below the point at which the slope of the level

density changes sign down to 0.5 MeV. Below 0.5 MeV, the level density is assumed

to be zero. In cases where a sufficient amount of data on the discrete levels is

available, the form of the level densities at such low excitation energies has no

effect, since the Hauser-Feshbach model calls for the use of the explicitly known

levels (see Equation 35). However, in nuclei with only a very few known levels, such

as 61 Fe, this may not be the case, and the low energy behavior of the level density

could affect the calculated cross sections.

To evaluate the performance of the WFHZ level densities (and other formulations

that follow), we consider two quantities. First, we consider the ratio of the average

resonance spacings predicted by the systematics to measured values. In this type

of evaluation we use only the systematic values of level density parameters, and not

those derived explicitly from measured data. In Figure 8 we present this ratio for

nuclei used in this study (20 ≤ Z ≤ 29, select isotopes). Errorbars reflect the ratio

obtained using the upper and lower limits of the measured values (i.e. the errors

in the measured values). We find that the systematic level densities of WFHZ

tend to overestimate the average resonance spacings, some by more than a factor

of two (indicated by dotted lines). We shall see later that modern level density

parameterizations more accurately replicate the measured D0.

The second ratio we consider is the integrated level density at to the known

cumulative number of discrete levels at Ecut. Ideally, this ratio should be close to
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Figure 8: Ratio of calculated to measured resonance spacings using WFHZ level
densities for various nuclei in the region of interest. The dotted lines denote a
factor of two from unity.

unity, as such a value indicates a good fit to the highest known level. When making

this sort of comparison, we always use the discrete levels associated with the level

density in question, i.e. when considering WFHZ level densities we also use the

discrete levels employed by WFHZ. Since WFHZ do not include a constant temper-

ature formulation, there is no matching energy that can be adjusted to provide the

best possible fit to the discrete levels. Thus we should not necessarily expect this

ratio to be consistently close to unity. This is verified in Figure 9. Although the

integrated level density is always within a factor of ten, only about half fall within

a factor of two (denoted by the dotted lines).

4.2.2 Rauscher, Thielemann, and Kratz (1997)

We now consider the level densities of Rauscher, Thielemann, and Kratz [22] (here-

after RTK), used in the more recent stellar evolution [21].

The spin cutoff parameter is treated the same as in WFHZ. The backshift is

taken to be the average of the neutron and proton pairing energies as determined as
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in Equation 74. Binding energies are calculated from the FRDM nuclear masses of

[19]. The microscopic ground state energies of [19] are adopted as shell corrections

(δW ), and the level density parameter is given an energy dependence as in Equation

82. Systematic values of ã were developed by assuming a form

ã = αA+ βA2/3 (93)

and making a three parameter fit (for α, β, and the thermal damping coefficient

γ) to a global set of measured average resonance spacings. This fit yields values of

α = 0.1337, β = −0.06571, and γ = 0.04884. The function f(J) which describes

the spin dependence of the level density is that of Equation 91.

The use of an energy dependent level density parameter is a marked improve-

ment over WFHZ. Another major improvement comes from the use of a constant

temperature formula at low excitation energies. The matching energies for the con-

stant temperature fits are determined on a case by case basis, as outlined in Section
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Figure 10: Ratio of calculated to measured resonance spacings using RTK level
densities for various nuclei in the region of interest. The dotted lines denote a
factor of two from unity.

4.1.7.

We must keep in mind that the systematic used for the level density parameter

is a global systematic. The overall performance relative to the reproduction of mea-

sured resonance spacings is generally good for global systematics, in that a proper

choice of backshift and shell correction remove many of the local effects caused by

pairing gaps and closed shells. However, there may still be local regions where the

performance is not as good. In Figure 10, we see that this global systematic does

particularly good in reproducing resonance spacings for nuclei from chromium to

cobalt, but not so good for nickel and elements below vanadium. In any event,

most of the calculated D0 are within a factor of two of the measured values, so the

overall performance is fairly good. This prescription for the level density shows an

improvement over WFHZ in this respect, as indicated by a comparison of Figures

8 and 10.

Since the RTK level density prescription includes a constant temperature fit,

we also expect considerable improvement over WFHZ with regards to the ratio of
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Figure 11: Ratio of the integrated level density to the measured cumulative number
of discrete levels at Ecut, using the level densities from RTK and discrete levels
adopted by RT. The dotted lines denote a factor of two from unity.

the integrated level density to the cumulative number of discrete levels, presented

in Figure 11. RTK do not provide a tabulation of matching energies, and we were

required to make our own constant temperature fits, matching the level density as

closely as possible to the last discrete level. The discrete levels in this analysis are

those used in [21], so that the treatment is consistent. As expected, introducing

a constant temperature fit greatly improves the correlation of the integrated level

density with the cumulative number of levels (compare Figures 9 and 11, most cases

being within a factor of two.

4.2.3 Hartree-Fock BCS

In our investigation of the neutron capture rates on 59,60Fe, we have also considered

a completely different formulation of the level density derived from the Hartree-

Fock BCS model [8]. The procedure for calculating these level densities does not

resort to many of the approximations used in the backshifted Fermi gas densities.

Microscopic nuclear structure properties, such as the density of single particle states
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Figure 12: Ratio of calculated to measured resonance spacings using the Hartree-
Fock BCS level densities for various nuclei in the region of interest. The dotted
lines denote a factor of two from unity.

at the Fermi energy, are calculated within the context of the Hartree-Fock BCS

model, using a Skyrme-type effective nucleon interaction. These level densities are

available in tabular form online at the URL referenced in [8]. They suggest that

globally the asymptotic level density parameter is best approximated by ã ≈ A/11.

This value is markedly different from the canonical ã = A/8.

Two of the Hartree-Fock BCS level density parameters, the excitation energy

and entropy, can be adjusted in such a way to normalize the level densities to

measured discrete level spectra and S-wave resonance spacings. In the cases where

both quantities are available, both parameters can be normalized on a case-by-case

basis, and generally do quite well in replicating experimental data. In cases where

only a discrete level scheme is available (10 or more levels), only the excitation

energy is adjusted. No attempt has been made to systematically normalize the

level densities in [8] when data is not available.

We now consider how well experimental data is reproduced relative to our par-

ticular region of interest and our set of adopted discrete levels. First, we consider
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Figure 13: Ratio of the integrated level density to the measured cumulative number
of discrete levels at Ecut, using the Hartree-Fock BCS level densities and our set of
adopted discrete levels. The dotted lines denote a factor of two from unity.

the S-wave resonance spacings. Figure 12 seems to indicate that the Hartree-Fock

BCS is superior in reproducing these values. However, one must temper any en-

thusiasm with the fact that the tabulated level densities provided by [8] have been

individually normalized only when possible, and no systematic normalization has

been applied to nuclei without measured resonance spacings. We can get a rough

idea of the typical error in the calculated D0 for nuclei without measured values by

considering a similar analysis on unnormalized Hartree-Fock BCS level densities.

The unnormalized densities are not provided in electronic format by the authors of

[8], but they do present a plot similar to Figure 12 for the unnormalized densities

(Figure 1 in their paper). In the range of 45 ≤ A ≤ 65, the unnormalized calculated

D0 are generally within a factor of 3 of the measured values. There is no consistent

tendency toward unity, as in Figure 10. The Fermi gas results depicted in Figures 8

and 10 are based on systematic level density parameters (as opposed to “experimen-

tal” parameters), and typical errors for nuclei without measured resonance spacings

will be similar to those in the figures.
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Now we turn our attention toward the reproduction of discrete level spectra.

The authors of [8] demonstrate a remarkable agreement in their paper. However,

the set of discrete levels we are using has received additional evaluation, and in

some cases we include many more levels than used in the normalization process in

[8]. Figure 13 provides us with an idea of how well the integrated Hartree-Fock

BCS level densities replicate our preferred set of cumulative levels. The result is of

a quality intermediate between WFHZ and RTK (Figures 9 and 11).

With regard to the reproduction of measured resonance spacings and discrete

level spectra, we consider RTK to be superior thus far.

4.3 Local Systematics for Level Density Parameters

Global systematics for level density parameters, such as those developed by WFHZ

and RTK ([27] and [22]) do remarkably well reproducing large sets of experimentally

measured quantities. Local deviations due to pairing energies and shell effects can

generally be removed with a proper parameterization of the backshift and shell

correction. However, local deviations from the global systematic are inevitable, and

hence in certain local regions of the isotopic plain global systematics may not be

ideal (see Figure 10 for calcium and titanium nuclei). In this section, we discuss the

development of a local systematic for ã which, due to its local nature, is superior in

reproducing measured resonance spacings and discrete level spectra in the region of

interest.

Global systematics are made by varying a set of parameters such that one can

obtain the lowest reduced χ2 fit to a large set of experimental data ranging over the

entire isotopic plane. The development of local systematics is done in the same way,

except that only a subset of the experimental data local to the region of interest

is used. In this study, we define the local region to be 20 ≤ Z ≤ 29. We include

data for all mass numbers, although the data is mostly limited to nuclei on the
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line of stability. Such local systematics have proven effective in past radiochemical

studies [10, 11, 12, 16]. This particular local region does present a few difficulties,

due primarily to the proximity of the Z,N = 20, 28 closed shells.

Local systematics can provide an improvement over global systematics, in that

they can account for any local deviations as explained above. However, they also

have limitations. In particular, a local systematic is of questionable value near the

boundaries of the local region, and is certainly of no practical use outside of those

boundaries.

In many respects, our systematic for the level density parameter is similar to

that of RTK. We assume the usual Fermi gas at high excitation energies and a

constant temperature form at lower energies. We also use the energy dependent a

parameter of Equation 82.

In developing our systematic, we have considered several combinations of pre-

scriptions for the backshift and spin cutoff parameter. For the backshift we initially

consider both Equation 72 and Equation 74. In both cases, the pairing energies are

determined from the adopted set of binding energies discussed in Section 3.2 and

listed in Appendix A (Recall RTK derive their binding energies from mass excesses

listed in [19]). For the spin cutoff parameter, we initially consider both Equation

76 and 78. For the shell corrections, we use the microscopic ground state energies

from [19].

For each of the four combinations of ∆ and σ described above, we assume that

the asymptotic level density parameter is of the form of Equation 93. We then

acquire a least squares fit for the parameters α, β, and γ. This fit is based only

on measured S-wave resonance spacings for nuclei in the local region of interest

(20 ≤ Z ≤ 29), taken from [9]. In addition to these four combinations, we have also

considered a two parameter fit for α and β, assuming Equations 74 and 78 for the

backshift and spin cutoff parameter and γ = 0.04884 (the value from RTK). For
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Table 5: Local level density systematics trials. For each systematic named in the
first column, the parameterization of the backshift and spin cutoff parameter is
given in the second and third columns. The resulting best fit parameters are given
in the next three columns. The χ2 values for the fit is given in the final column.

Systematic ∆ σ γ α β χ2

1 Eqn. 74 Eqn. 78 0.07036 0.038139 0.301954 9.71
2 Eqn. 72 Eqn. 78 0.11227 0.091519 0.169690 19.54
3 Eqn. 74 Eqn. 76 0.10462 0.001056 0.411101 10.57
4 Eqn. 72 Eqn. 76 0.15585 0.061823 0.258793 19.07
5a Eqn. 74 Eqn. 78 0.04884 -0.004942 0.468456 2.06
5b Eqn. 74 Eqn. 78 0.04884 0.111903 0.024660 8.68
5c Eqn. 74 Eqn. 78 0.04884 -0.030033 0.568457 4.05

this two parameter fit, we developed separate systematics for even-Z even-N nuclei,

even-Z odd-N nuclei, and odd-Z nuclei.

The χ2 values for each of these local systematics are given in Table 5. A small

χ2 indicates a good fit to measured resonance spacings. The three parameter fit

using the backshift of Equation 74 and spin cutoff parameter of Equation 78 (Figure

14) provides the smallest χ2, and is thus initially favored. Note that for the two

parameter fit, one should compare the sum of the three χ2 values for sets 5a (Even-Z

Even-N nuclei), 5b (Even-Z Odd-N nuclei), and 5c (Odd-Z nuclei) to the χ2 of the

other systematics. We also note that the value of γ from this systematic is in closer

agreement to the γ of previous level density prescriptions [14, 22] than the other

three parameter fits.

The two systematics based on the backshift parameterization in 72 result in

larger level density parameters. When the level density parameter is too large,

issues may arise in making fits to the discrete levels, as discussed in Section 4.1.7.

Since this backshift parameterization also often results in level density parameters

inconsistent with those derived from coherence widths of fluctuating cross sections

[5], it is further disfavored.

Being hesitant to rely solely on the value of χ2 for determining which local sys-
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Figure 14: The local level density systematic, determined using a three parameter
fit and Equations 74 and 78 for the backshift and spin cutoff parameter. The
systematic values of Ã are given as a function of mass number. The data points
represent Ã parameters derived from measured resonance spacings, and the error
bars reflect the respective errors of the measured resonance spacings.

tematic is best, we have also compared cross sections calculated using the various

local level density systematics (with all other Hauser-Feshbach inputs fixed to our

preferred values). The level densities resulting from each of these systematics result

in similar cross sections (see Section 7.2.1). Since this analysis lends no preference,

we default to the systematic with the smallest χ2. This prescription uses the back-

shift calculated as the average of the neutron and proton pairing energies (Equation

74), the spin cutoff parameter of Equation 78, the microscopic ground state ener-

gies of [19] as shell corrections, and the energy dependent level density parameter

of Equation 82 with γ = 0.070036 and an asymptotic level density parameter given

by

ã = 0.038139 A+ 0.301954 A2/3 . (94)

Naturally, we use the experimentally derived ã in our cross section calculations

when they are available.



81

 1
63C

u
64N

i
62N

i
61N

i
60N

i
59N

i
58N

i
59C

o
58F

e
57F

e
56F

e
54F

e
55M

n
54C

r
53C

r
52C

r
50C

r
51V

 
50V

 
50T

i
49T

i
48T

i
47T

i
46T

i
45S

c
44C

a
43C

a
42C

a

D
0ca

lc
. /D

0m
ea

s.

Target Nucleus

Figure 15: Ratio of calculated to measured resonance spacings using our local level
density systematic for various nuclei in the region of interest. The dotted lines
denote a factor of two from unity.

We now investigate how well this systematic reproduces the measured neutron

resonance spacings, similar to the analysis in Figures 8, 10, and 12. Figure 15 shows

the ratio of the calculated D0 to measured values. Although the global systematic

of RTK (Figure 10) does slightly better for the iron species, our local systematic is

superior overall in this local region of interest. With the exception of 46Ti, all the

ratios are within a factor of two of unity. Many of the calculated D0 are within the

errors of the measured values.

We now proceed to fit the constant temperature portion of the level density to

our adopted discrete levels. The fit is made individually for each nucleus, as opposed

to a global prescription for the matching energy as is found in [7]. As explained

earlier, the goal is to match the level density to the highest known discrete level

with assigned spin and parity. This is done so that when one switches between the

discrete levels and the level density in the Hauser-Feshbach formula, the effective

level density at the transition will be smooth and continuous. If such a match is not

made, the result will be the appearance of “kinks” in the modeled cross sections.
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In previous sections we discussed some of the difficulties that may arise in making

the constant temperature fits. In particular, if the level density parameter is too

small, fitting to the highest known level may require a matching energy smaller

than the backshift. Using such a matching energy would result in an unphysically

divergent level density. Also, if the level density parameter is too high, one might

have to choose a matching energy that is well above the neutron separation energy–a

region where the constant temperature form is not valid.

However, when one cannot match the last discrete level, the cause may not

necessarily be the level density parameter. In some cases, our initial set of adopted

levels for a given nucleus appears to have regions where levels are missing, indicated

by relatively large energy gaps between neighboring levels. When faced with a

situation where we need a matching energy that is too small, the issue can generally

be resolved by reducing the number of discrete levels used in the calculation. This

solution is usually justifiable in the sense that the levels discarded are levels that

were added in our evaluation of the discrete level schemes. In cases where discarding

levels cannot be justified, we fit the level density as closely as possible we could to

the discrete levels, keeping the matching energy between ∆ and Bn. The resulting

gap between the highest level and integrated level density was generally quite small.

In cases where there were no discrete levels to fit, we assumed the default match-

ing energy from [7], given by

EGC =
5

2
+

150

A
+∆ . (95)

If EGC was greater than the neutron binding energy, we set Ex = Bn.

This matching procedure was carried out for each of the five local systematics

developed for ã (listed in Table 5). Our preferred systematic for ã resulted in the

fewest number of problematic fits. This increases our confidence in this choice of
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local systematic.

Figure 16 illustrates typical constant temperature fits. In these plots, the hori-

zontal axis is the excitation energy and the vertical axis in the number of discrete

levels. The staircase represents the measured discrete level spectra, and the curved

solid lines represent the integrated level density. In the larger plots, only the levels

up to Ecut are included in the staircase. In the smaller plots, all levels available

in [9] are shown, as well as dotted lines representing Ecut and Bn and a dashed

line representing Ex. The fit for 48Cr shows a gap in discrete levels (above Ecut),

interpreted as missing levels. The fit for 49V represents a typical case where the

last level could not be matched exactly. The remaining fits in Figure 16 are the

level densities most critical to this study, each of which represent what would be

considered a good fit.

We may now perform the same analysis as in Figures 9, 11, and 13 for our local

systematic. The ratio of our integrated level density to the cumulative number of

levels at Ecut is presented in Figure 17. Comparing this figure with Figures 9, 11,

and 13, we find that our level density performs better than the other prescriptions

in this respect. Most of the ratios are quite close to unity. Most of the lowest ratios

involve matching a very small number of levels.

This concludes the development of the level densities used in our modeling effort.

Based on the relative abilities of the various prescriptions in reproducing measured

discrete level spectra and S-wave resonance spacing, we find that our preferred local

systematic, in conjunction with our adopted discrete levels and constant tempera-

ture fits, is superior to previous global systematics and microscopic level densities.

In a later section we will investigate the sensitivity of the neutron capture rates to

the level densities. This investigation includes both a consideration of possible errors

related to our systematic as well as complete changes in level density prescription.
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Figure 16: Select constant temperature fits to discrete level spectra. The measured
cumulative number of levels as a function of excitation energy is denoted by the
staircase, and the integrated level density is denoted by the smooth line. The larger
viewport in each plot shows only the levels up to where the level scheme is known to
be complete. The smaller viewport shows all levels included in the Reference Input
Parameter Library. The dashed and dotted lines in the smaller viewport indicate
Ecut, Ex, and the neutron binding energy.
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Figure 17: Ratio of the integrated level density to the measured cumulative number
of discrete levels at Ecut, using the our local level density systematic and adopted
set of discrete levels. The dotted lines denote a factor of two from unity.
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5 Transmission Coefficients

We now turn our attention to the final ingredient of the Hauser-Feshbach model:

the transmission coefficients.

Transmission coefficients describe the probability that an incident particle with a

given energy will be absorbed into a particular state in a compound nucleus. In the

context of reciprocity, they also describe the probability that a given particle will be

emitted from a compound nuclear state. We need to include, therefore, transmission

coefficients for the incident and each possible exit channel considered, for each of the

compound nuclei involved in the reaction. This section will describe the formulation

we use for the various transmission coefficients, as well as a comparison to those

used by Rauscher and Thielemann [22] and Woosley, et al. [27]. We begin with

the particle transmission coefficients, and conclude with the photon transmission

coefficients.

5.1 Particle Transmission Coefficients

Ideally one could calculate the probability that an incident particle would be ab-

sorbed into a given nucleus in terms of the elementary particles and interactions

present. In reality, such a calculation is impossible. To begin with, the QCD mod-

els that describe the fundamental physics governing strong interactions are non-

perturbative in the energy range of interest in nuclear reactions. One might be able

to substitute an effective field theory model for the nucleon-nucleon interaction, but

the sheer number of nucleons involved makes the calculation infeasible. Hence, we

must resort to simpler empirical models, the most popular being the optical model.

The absorption of an incident particle into a nucleus can be described in terms
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of a potential having the form

U(r) = V (r)− iW (r) . (96)

The elastic scattering of the incident particle due to the nuclear and Coulomb forces

is fully described by the real term V (r). The imaginary function W (r) translates

into a decrease in the elastic scattering amplitudes, or in other words, absorption

of the incident particle [15].

Generally optical potentials are of a Woods-Saxon shape. There are volume

potentials of the form

VWS(r) =
−V0

1 + exp[(r −R)/a]
(97)

and surface potentials with a radial dependence that goes as dVWS/dr. In this ex-

pression, V0 is the nominal depth of the potential, R is the nuclear radius, and a is

the diffusivity of the surface. Separate real and imaginary volume and/or surface

terms may be included. Additional terms may describe spin-orbit and Coulomb in-

teractions, the latter when the incident particle has an electric charge. The various

Woods-Saxon parameters are chosen to best reproduce experimentally measured

quantities that can be derived from an optical potential, such as elastic cross sec-

tions, total reaction cross sections, S- and P-wave strength functions, and so on.

Transmission coefficients are calculated by solving the Schrodinger equation us-

ing the optical potential. The incident wavefunction is assumed to be a plane wave

or Coulomb-distorted plane wave, and is separated into its various angular mo-

mentum components (which scatter independently) via the partial wave expansion.

Once the Schrodinger equation has been solved, the complex scattering amplitudes

can be determined. The transmission coefficients are related to these scattering

amplitudes [15] (see Section 2.1.1).
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5.1.1 Neutron and Proton Transmission Coefficients

In our modeling effort, we adopt the optical potential of Koning and Delaroche [16]

(hereafter KD) for incident neutrons and protons. This particular optical model was

chosen because of its superior ability to reproduce measured nuclear properties. The

comparisons made in [16] are quite extensive. We provide supporting comparisons in

this work. The Woods-Saxon parameters of the KD optical potential are functions

of the atomic and mass numbers of the target, and also of the energy of the incident

particle. We use the ECIS code [23] to solve the Schrödinger equation. Although

the ECIS code is capable of coupled-channel calculations for deformed nuclei, the

deformation parameters in this local region of the isotopic plane are small enough

to justify using the code in a spherical mode.

The previous modeling effort of [22] used the optical model of Jeukenne, Leje-

une, and Mahaux [11] (hereafter JLM). This optical potential is in many respects

similar the KD potential, in that a Woods-Saxon form is assumed and the various

parameters related to the potentials are functions of incident particle energy and

the atomic and mass numbers of the target. However, this particular optical model

does not include spin-orbit components.

The optical potential adopted by Woosley, at al. [27] is considerably simpler the

KD and JLM models. They use the equivalent square well potential of Michaud and

Fowler [19] (hereafter MF). The calculation of the transmission coefficients in this

model is far less time consuming since analytic expressions may be obtained for the

transmission coefficients in terms of the Coulomb wavefunctions. Hence, solving the

Schrodinger equation for each energy at which the transmission coefficients are to

be evaluated is not necessary. Since the ECIS code will only handle Woods-Saxon

potentials, we have not calculated total neutron cross sections or neutron resonance

parameters for this potential. In any event, we consider the Woods-Saxon potentials
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Figure 18: Transmission coefficients from the Koning and Delaroche optical poten-
tial for a proton incident on 58Fe. The transmission coefficients for the first six
partial waves are shown as a function of incident proton energy.

to be superior to MF, since they provide a more realistic description of the nuclear

potential.

At the incident energies where the neutron capture cross section is most impor-

tant (∼30 keV), the proton transmission coefficient is generally quite small, if not

zero altogether (for example, see Figure 18 compared to 19). Consequently, the

proton exit channel, if kinematically accessible at these energies, will be suppressed

(more details regarding this suppression are given in Section 5.1.2). For this reason,

the neutron capture cross sections will show very little sensitivity to the proton

transmission coefficients, and we will focus primarily on the neutron transmission

coefficients.

The optical potential can be used to calculate the total neutron cross section,

and we use this particular quantity as one of our benchmark tests for optical model

quality. In Figure 20 the predictions of the KD and JLM optical models are com-

pared to measured total neutron cross section data in the region of interest. Since

the ECIS code only evaluates Woods-Saxon potentials, we have not made a calcula-
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Figure 19: Transmission coefficients from the Koning and Delaroche optical poten-
tial for a neutron incident on 58Fe. The transmission coefficients for the first six
partial waves are shown as a function of incident neutron energy.

tion of the total neutron cross section using the MF equivalent square well potential.

However, we fully expect the results of the two more modern Woods-Saxon poten-

tials to give better agreement with the experimental data. The data on these figures

is the aggregate of all total neutron cross section data available on EXFOR [4] at

the time of the writing of this thesis. Individual data sets are not listed due to

space constraints.

Both optical potentials do a good job replicating total neutron cross sections.

There are some general features worth mentioning. First, the KD potential tends

to yield a larger cross section than the JLM potential below ∼500 keV. At these

energies, the resonance structure is very apparent in the measured data, and the

error bars span a wide range. In general, both optical potentials result in cross

sections within the error bars below 500 keV. The average central values of the

experimental data may slightly favor the JLM potential.

Above 500 keV, both potentials still perform quite well, although the KD po-

tential tends to lie closer to the central values of the measured data. In the cases
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Figure 20: Modeled total neutron cross sections compared to measurements. Cross
sections calculated with the Koning and Delaroche optical potential are shown by
solid lines. Cross sections calculated with the JLM optical potential are indicated
by dotted lines. The measured data represents all total neutron cross section data
available from the EXFOR library as of 2004.
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Figure 20: (continued)
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Figure 20: (continued)

of 50,54Cr and 62,64Ni, the Koning and Delaroche potential does considerably better

at matching the measured cross section at 14 MeV. For 54Cr, both potentials un-

derestimate the total neutron cross section between 800 keV and 10 MeV. For the

54Fe cross section, both potentials seem to overestimate the cross section above 20

MeV.

Overall, neither potential seems to be favorable over the other with respect the

total neutron cross sections. We thus turn our attention toward other quantities in

our effort to evaluate the neutron potentials.

The S- and P-wave strength functions (or S0 and S1, respectively) and potential

scattering radius R′ can also be calculated for an optical model. In Figures 21-23

we present the ratios of the calculated values of these quantities to experimental

values. The experimental data for the S- and P-wave strength function plots is

that provided in the obninsk file in the Reference Input Parameter Library [5]. The

experimental data for the potential scattering radius is taken from [20].

The KD potential does better in reproducing the S-wave strength functions for

40 ≤ A ≤ 120. Below A = 115, the calculated values are always within a factor of

two of the experimental values. The situation is even better around the region of

A = 60, which is of key interest to this study. In this region, the S-wave strength

functions calculated from the KD optical potential are all within the errors of the
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Figure 21: Ratio of S-wave strength functions modeled with the KD and JLM
optical potentials to measured values taken from the Reference Input Parameter
Library.
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Figure 22: Ratio of P-wave strength functions modeled with the KD and JLM
optical potentials to measured values taken from the Reference Input Parameter
Library.

experimental values. On the other hand the JLM potential, while doing well at

A = 60, tends to be quite low or high in the regions below and above mass 60.

With regard to the P-wave strength functions, the story is similar. Overall, the

KD potential is superior, although the JLM potential does well around A = 60.
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Figure 23: Ratio of potential scattering radii modeled with the KD and JLM optical
potentials to measured values taken from [20].

Both potentials do well in reproducing the measured potential scattering radii,

although KD does slightly better in the mass region of interest.

Overall, the S- and P-wave strength functions and potential scattering radii tend

to favor KD potential over JLM. Additionally, this optical potential has proven quite

effective in cross section modeling efforts in other mass regions between A = 40 and

A = 135 [7, 8, 12, 13]. It is for these reasons that we have adopted the KD potential

in our modeling effort.

We now make one last comparison of the neutron transmission coefficients from

each of the three optical potentials considered. In Figures 24 and 25, we present

the ratios of the neutron transmission coefficients from the JLM and MF potentials

to those of the KD optical potential for the first six partial waves. These results are

presented for the two most critical particle transmission coefficients to this study:

neutrons incident on 59,60Fe targets.

In both cases, the transmission coefficients for the first two partial waves (L=0

and L=1) for the JLM and KD potentials are quite similar. However, the coefficients

for the third and subsequent partial waves are considerably lower for the JLM
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Figure 24: Ratio of transmission coefficients from the JLM and MF potentials to
those of the KD potential for neutron incident on 59Fe

potential below 1 MeV. This is consistent with the behavior of the calculated total

neutron cross sections. When modeling reaction cross sections at low energies, it is

these first few partial waves that account for most of the absorption of the incident

particle into the compound nuclear state.

The comparison of the MF potential to KD yields a different result. The first
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Figure 25: Ratio of transmission coefficients from the JLM and MF potentials to
those of the KD potential for neutron incident on 60Fe

partial wave transmission coefficient is only about half as large as its counterpart

in the Koning and Delaroche potential. On the other hand, the coefficient for the

second partial wave is roughly three times larger. Also, in the equivalent square

well scheme, the coefficients for the L=4 and L=5 disappear completely below 2

and 10 keV, respectively. In both cases the ratios of the sums of the coefficients of
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the first six partial waves exhibit an overall behavior quite similar to the ratios of

the coefficients of the first partial waves.

This concludes our initial discussion regarding the neutron and proton trans-

mission coefficients. An investigation of the sensitivity of the neutron capture cross

sections to the neutron transmission coefficient will be provided in Section 7.2.2.

5.1.2 Alpha Particle Transmission Coefficients

For alpha particles we adopt the optical potential of McFadden and Satchler [17].

The transmission coefficients resulting from this optical potential are calculated

using the SCAT2 subroutine built into the STAPRE code [25]. This optical potential

was used by Rauscher and Thielemann in their cross sections [22]. The cross sections

of Woosley, et al. [27] use the same equivalent square well potential of Michaud and

Fowler [19] as was used for the neutrons and protons, except with the parameters

R0 = 1.25 A1/3 fm, R1 = R0 + 2.3 fm, V0 = 60 MeV, and f = 4.8.

The inclusion of a possible alpha particle exit channel will have minimal effects

on the neutron capture cross section, if any at all. The reasons for this are twofold.

First, the thresholds for (n,α) reactions in this local region of the isotopic plane tend

to be above the energies at which the neutron capture cross section becomes quite

small. Second, in the event that a kinematic threshold does not exist, emission of

alpha particles from the compound nucleus at low excitation energies is suppressed

by the presence of a Coulomb barrier. In either case, alpha particle emission will

only amount to a small fraction of the total reaction cross section at low excitation

energies.

This can also be understood in terms of the transmission coefficients. With the

Bohr independence hypothesis in mind, we recall that the transmission function for

alpha particle emission is identical to the transmission function for alpha particle

absorption in the incident channel. As can be seen in Figure 26, the transmission
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Figure 26: Transmission coefficients from the Equivalent Square Well potential for
an alpha particle incident on 55Cr. The transmission coefficients for the first six
partial waves are shown as a function of incident energy.

coefficient for an alpha particle incident on 55Cr (relevant to alpha particle emission

from the 59Fe compound nucleus) is negligible below 6.581 MeV (the neutron binding

energy for 59Fe, equal to the excitation energy of the compound nucleus formed by

58Fe plus neutron at thermal incident energy). As a result, when the transmission

function is calculated for energies below 6 MeV as in Equation 35, the resulting sum

and integration will be quite small as well. Meanwhile, by 6 MeV of incident energy,

the 58Fe(n,γ)59Fe cross section has dwindled to about 0.7 millibarns (it was roughly

3 millibarns at 1 MeV and 40 millibarns at 10 keV). This case is representative of

the alpha particle transmission functions throughout this local region.

5.1.3 Deuteron Transmission Coefficients

In this modeling effort, we have included deuteron exit channels. As with the

alpha particles, inclusion of this exit channel will make no difference in the neutron

capture cross sections, since in many cases the (n,d) threshold (∼ 10 MeV in this

region) is at an incident energy where the neutron capture cross section is negligibly
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small. Additionally, the presence of a Coulomb barrier for the exiting deuteron will

suppress the cross section at low excitation energies. The deuteron exit channel is,

thus, included only for the aesthetic reasons of completeness, and to a minor extent

to allow some comparison with measured (n,d) cross sections in the local region of

interest. A deuteron exit channel was not included in the modeling efforts of [22]

and [27].

The optical potential we choose for the deuterons is that of Perey and Perey

[21]. The transmission coefficients are calculated using the SCAT2 subroutine of

the STAPRE code [25].

5.2 Photon Transmission Coefficients

Unlike massive particles, the photon absorption and decay widths cannot be de-

scribed by an optical potential. Rather, photon decay widths are directly related

to transition rates between states in the compound nucleus. These radiative transi-

tions are described by the electromagnetic operator (in the radiation gauge), which

can be written in terms of a complete set of spherical tensor operators. Breaking

down the electromagnetic operator in this way is known as the “multipole expan-

sion”, and is useful when the transition energies do not exceed a few tens of MeV.

The multipole operators have definite spin Lγ and parity πγ. Operators with parity

equal to (−1)Lγ are electric, and those with parity equal to (−1)Lγ+1 are magnetic.

If the compound nucleus is in state µ prior to photon emission and state ν after,

the transition rate is given by

Rµ
γ(Lγ,mγ, πγ) =

8π(Lγ + 1)

Lγ [(2Lγ + 1)!!]2
k2Lγ+1γ

h̄

∣

∣

∣

〈

µ
∣

∣

∣O(Lγ ,mγ, πγ)
∣

∣

∣ν
〉 ∣

∣

∣

2
. (98)

In this expression, mγ is the projection of Lγ, kγ is the photon wave number, and

O(Lγ,mγ , πγ) is the multipole operator. Such transitions are governed by selection
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rules. In particular

1.
∣

∣

∣Jµ − Jν
∣

∣

∣ ≤ Lγ ≤ Jµ + Jν , where Jµ and Jν are the spins of the initial and

final compound nuclear states. Transitions from Jµ = 0 states to Jν = 0

states are not allowed.

2. mµ = mγ +mν , where mµ and mν are the projections of Jµ and Jν .

3. πµ = πγπ
ν , where πµ and πν are the parities of the initial and final compound

nuclear states.

Equation 98 needs to be averaged over initial nuclear orientations and summed

over final orientations, since these orientations are random. The decay width may

then be written in terms of the transition rate

Γ̄µγ(Lγ, πγ) = h̄Rµ
γ(Lγ, πγ) , (99)

and the photon transmission function can then be written in terms of this decay

width:

T µ
γ (Lγ, πγ) = 1− exp

[

−2πΓ̄µγ(Lγ, πγ)

D(Jν , πν)

]

(100)

where D(Jν , πν) is the spacing of levels with spin and parity J ν and πν at the

excitation energy. Generally, T µ
γ (Lγ, πγ) << 1, and so

T µ
γ (Lγ, πγ) ≈

2πΓ̄µγ(Lγ, πγ)

D(Jν , πν)
. (101)

Hereafter, we shall simplify the notation by using T µ
γ (Lγ, πγ) = T µ

γ,XL where X

refers to the transition type (electric or magnetic) and L is the multipole order.

Equation 98 can naturally be written in terms of the level density rather than level

spacings.
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The initial and final state wavefunctions that enter into Equation 98 are not well

known. Practical constraints require that simple models be employed. In general,

the resulting transition rates end up being essentially independent of the exact

initial and final states, and depend primarily on the multipole type. As a result,

the photon transmission coefficient may be written as

T µ
γ,XL(Eγ) = 2πE2L+1γ fXL(Eγ) (102)

where we are now writing the Tγ as a function of transition energy Eγ, as in Equation

34. The fXL(Eγ) appearing in Equation 102 is known as the strength function.

The first description of the strength function to emerge was that of Blatt and

Weisskopf [2]. This model assumes that all transitions are single particle, and that

the overlap of initial and final wavefunctions is maximal. The result is that the

strength function is constant, i.e.

fXL(Eγ) = NXL
4

3π

e2

h̄c

1

Mpc2
. (103)

Here, Mp is the proton mass, and NXL is a normalization factor. Various modifica-

tions to the Blatt-Weisskopf model have been proposed [10].

Strength functions for multipole transitions can be studied via photoabsorption

reactions. The statistical model photoabsorption cross section, ignoring for sim-

plicity the sums and statistical factors, goes as σph.abs. ∼ λ̄Tγ,XL(Eγ). We note

that for incident photons λ̄ = h̄c/Eγ, so that the photoabsorption cross section will

scale roughly as E2L−1γ fXL(Eγ). In the case of Blatt-Weisskopf, the photoabsorption

cross section would increase with gamma ray energy, since the strength function is

constant. Such an energy dependence is seen in experiments for incident gamma

rays of energy less than a few MeV. However, at higher energies a giant resonance is
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observed around ∼20 MeV. This indicates that the Blatt-Weisskopf model does not

provide an adequate description of the photon transmission function for transition

energies greater than a few MeV. This statement is further supported by the fact

that this simple model violates electromagnetic sum rules [10].

The roots of the inadequacies of the Blatt-Weisskopf model may be traced back

to the assumption that all transitions are single particle. In reality, nucleons tend to

act, at least in part, in a collective manner. It is this semi-collective behavior that

gives rise to the giant dipole resonance (GDR) seen in photoabsorption experiments.

The GDR can be described using a strength function with a Lorentzian shape. The

simplest such strength function (properly referred to as a simple Lorentzian or SLO

[3]) may be written as

fXL,SLO(Eγ) = NXL
4

3π

e2

h̄c

1

Mpc2
ΓXLEγ

(E2γ − E2XL)
2 + (ΓXLEγ)2

. (104)

In this expression,Mp is the proton mass, EXL is the GDR energy for multipole type

XL, and ΓXL is the width of the GDR. The factor NXL is an overall normalization,

which will be discussed in greater detail in the next few sections. The Lorentzian

strength function is generally applied only to E1 transitions, although it has been

suggested that an SLO model may also be used to describe M1 transitions [6].

The simple Lorentzian description is a definite improvement over the Blatt-

Weisskopf strength function, but it also has its inadequacies. While it reproduces

the giant dipole resonance behavior seen in photoabsorption cross sections, it has

a tendency to overestimate these cross sections at low transition energies [14]. An

improved model, known as the enhanced generalized Lorentzian or EGLO, provides

a better description of the photon strength function at low Eγ. The EGLO differs

from the SLO in its use of an energy dependent GDR width and an additional term
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corresponding to zero transition energy. The EGLO strength function is given by

fXL,EGLO(Eγ) = NXL
4

3π

e2

h̄c

1

Mpc2
(105)

×
[

EγΓk,XL(Eγ, Tf )

(E2γ − E2XL)
2 + (Γk,XL(Eγ, Tf )Eγ)2

+ 0.7
Γk,XL(0, Tf )

E3γ

]

.

where the energy dependent width Γk,XL(Eγ, Tf ) is

Γk,XL(Eγ, Tf ) =
[

κ+ (1− κ)
Eγ − ε

EXL − ε

]

ΓXL

E2XL

[

E2γ + (2πTf )
2
]

(106)

with ε = 4.5 MeV. For nuclei with A < 148, the factor κ is unity. For heavier nuclei,

κ = 1 + 0.009(A− 148)2 exp(−0.18(A− 148)).

The Tf that appears in Equations 105 and 106 is the temperature of the fi-

nal state. This quantity is determined from the level density parameters. For a

backshifted transition energy U = Sn − Eγ −∆, one determines the energy depen-

dent level density parameter (Equation 82) a(U , Z,N). Provided U is positive, the

temperature is given by

Tf =
a(U , Z,N)

2

[

1 +
√

1 + 4a(U , Z,N)U
]

. (107)

Otherwise, Tf = 1/a(U , Z,N).

Further refinements to the photon strength function have also been proposed

[6]. These have not been considered in this study. The only additional modification

we have considered is a possible low energy enhancement of the strength function.

It has been suggested [26] that the total strength function (the sum of the strength

functions for the individual multipoles) should be augmented with a term

fenh.(Eγ) =
A

3π2c2h̄2
E−Bγ (108)
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where A and B are parameters that can be measured by experiment. To date, these

parameters have only been measured for 56,57Fe.

At this point, we will review the photon transmission functions employed in pre-

vious cross section modeling efforts [27, 22]. Following this review, we will detail our

own choice of strength functions. Finally, we will compare average radiation widths

calculated with the various prescriptions (in conjunction with the appropriate level

density formulation) with measured values. A detailed look at the sensitivity of the

reaction rates to the photon strength function parameterization is given in Section

7.2.5.

5.2.1 Previous treatments

The cross sections of Woosley, et al. [27] employ an SLO strength function for

E1 transitions and a Blatt-Weisskopf strength function for M1 transitions. Higher

order transitions (E2, M2, E3, etc...) are not included. We therefore need to review

their choice of E1 GDR parameters and the overall normalization for both the E1

and M1 strength functions.

Collective models predict that the energy of the peak of the GDR (EE1, here)

should go roughly as A−1/3 or A−1/6 [1]. Making a least squares fit to measured

GDR energies using each power law, it was found that the GDR energy was more

accurately described over a large range of nuclear masses by

EE1 =
35

A1/6
. (109)

The width of the GDR cannot be predicted by collective models, but is known to

have some dependence on shell effects. The parameterization adopted by Woosley,
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et al., again based on a least squares fit to measured widths, is

ΓE1 =
33

A1/3
. (110)

The width is reduced by a factor of 0.6 on closed shells and 0.8 for other nuclei within

two nucleons of closed shells. The development of these systematics is explained

in greater detail in [10]. Eventually we will see that the exact choice of GDR

parameters makes very little difference in the modeled reaction rates.

The overall normalization for the E1 and M1 strength functions was determined

by fitting two parameters globally to 30 keV neutron capture cross sections. At

30 keV, the neutron transmission coefficient is considerably larger than that of

photons and other particles. In this case, the neutron transmission coefficient in

the numerator of the Hauser-Feshbach formula will approximately cancel with the

denominator. The result is that the capture cross section is mostly insensitive to

the neutron transmission coefficient and highly sensitive to the photon transmission

coefficient.

The development of the global normalizations is outlined in considerable detail

in [10]. Ultimately it is found that

NE1 = 0.25
NZ

A
, (111)

NM1 =
9π

32

1

Mpc2
. (112)

These normalizations correspond to the strength functions in Equation 104 for E1

transitions and 103 for M1 transitions. The choice of parameterization for the E1

and M1 strength functions is somewhat significant, but the overall normalization

of the strength functions is by far the most significant factor related to the photon

transmission coefficient affecting the calculated neutron capture rates.
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The photon transmission coefficients employed by Rauscher and Thielemann

[22] are somewhat more complex than those of Woosley, et al.. They still use an

SLO representation for the E1 strength function, but include an energy dependent

width. The Blatt-Weisskopf model is used for the M1 transition. Again, higher

order transitions are not taken into account. The omission of these transitions

is justifiable, however, since the E2 strength function is generally about 50 times

smaller than that of E1 transitions.

Rauscher and Thielemann use a more complex parameterization for the GDR.

The peak of the GDR is located at

EE1 = h̄c

√

√

√

√

8J

R2m∗

(

1 + µ− ε
1 + ε+ 3µ

1 + ε+ µ

)−1

(113)

with J = 36.8 MeV, R = r0A
1/3, m∗ = 0.7mn, ε = 0.0768, µ = 3Jr0

QR
, r0 = 1.18 fm,

and Q = 17.0 MeV. This parameterization is based on a microscopic droplet model

of the GDR [18]. The GDR width has an energy dependence, and is given by

ΓE1 =



αEδ
E1 + 2.35

√

5

8π
EE1β2





√

Eγ

EE1

(114)

where α = 0.0205, δ = 1.8, and β2 is the nuclear deformation parameter [24]. These

parameterizations have been shown to be quite effective in replicating measured

GDR energies and widths.

The overall normalizations are again determined globally, using an empirical fit

to 30 keV Maxwellian averaged neutron capture cross sections. The M1 normaliza-

tion is identical to that of Woosley, et al. (Equation 111). However, with a change

of GDR parameters (particularly the inclusion of an energy dependent width), the
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normalization for the E1 strength function now becomes

NE1 = 1.2
NZ

A
. (115)

5.2.2 Photon Strength Functions Based on Local Systematics

For our E1 strength function, we adopt the EGLO representation. As previously

mentioned, this representation is an improvement over the SLO used in previous

studies. We also include two resonances in the strength function. When available,

we adopt the measured GDR parameters of [5]. Such measurements are sparse,

though, and we are constrained to develop systematics.

As indicated in the previous section, the E1 GDR energy should have a de-

pendence on the nuclear mass that goes roughly as A−1/3 or A−1/6. When one is

considering a global systematic, such guidelines should be followed. However, we

are only considering a narrow range of masses from 43 ≤ A ≤ 65. In this narrow

range, the mass dependence of the parameters is approximately linear, and we have

developed our systematics using a least squares linear fit to the available data. For

the GDR energies, we consider only the data in the mass range mentioned. For

the GDR widths, the data in this mass range is scattered, and a fit to the data in

a narrow mass range results in a systematic that varies far too rapidly. We have

thus used all available data in determining our linear fit to the GDR widths. We

have also developed systematics for the peak cross section associated with the GDR,

although these values will be effectively negated by our process of normalizing the

E1 strength function.

Our GDR systematics are presented in Figures 27-29. The systematics for the

parameters are as follows:

EE1,1 = −0.1079 A+ 23.22 ,
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Figure 27: Systematics for E1 GDR energies. The systematics represent a linear fit
to the measured GDR energies in the region of interest provided in the Reference
Input Parameter Library.

EE1,2 = −0.1695 A+ 29.47 ,

ΓE1,1 = −0.0118 A+ 5.73 ,

ΓE1,2 = −0.0134 A+ 7.39 ,

σE1,1 = 0.1050 A+ 51.25 ,

σE1,2 = −0.0365 A+ 42.84 . (116)
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Figure 28: Systematics for E1 GDR widths. The systematics represent a linear fit
to all measured GDR widths provided in the Reference Input Parameter Library.

These systematics are based on data in the local region only, and are of no value

outside the range 43 ≤ A ≤ 65. As mentioned, the GDR parameters only have a

minor effect on the modeled cross sections, as will be detailed in Section 7.2.4.

Our process of normalizing the E1 transmission function is completely differ-

ent from that of previous groups. Rather than normalizing to 30 keV Maxwellian

averaged neutron capture cross sections, we consider the average S-wave radiation

widths obtained from neutron resonance experiments. These radiation widths are
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Figure 29: Systematics for E1 GDR peak cross sections. The systematics represent a
linear fit to the measured GDR peak cross sections in the region of interest provided
in the Reference Input Parameter Library.

related to the photon transmission coefficient, the discrete levels, and the level den-

sity. In particular,

〈Γγ〉0 =
Jt + 1

2Jt + 1

〈

Γγ
(

Bn, Jt +
1

2
,Πt

)〉

+
Jt

2Jt + 1

〈

Γγ
(

Bn, Jt −
1

2
,Πt

)〉

. (117)

In this expression, Jt and Πt are the spin and parity of the target nucleus, and Bn

is the neutron binding energy (equivalent to the neutron separation energy). The



114

quantity 〈Γγ(E, J,Π)〉 is given by

〈Γγ(E, J,Π)〉 =
1

2πρ(E, J,Π)
×

∑

XL

∑

Jf ,Πf

[ ω
∑

ν=1

Tγ,XL(E − Eν , Jν ,Πν) +

∫ E−Eω

0
dε Tγ,XL(ε, Jf ,Πf )ρ(E − ε, Jf ,Πf )

]

(118)

where ρ(E, J,Π) is the level density of the compound nucleus consisting of the

target plus a neutron. Note that this quantity will change with variations to the

level density prescription and discrete levels in addition to the photon transmission

coefficient.

We define our E1 normalization to be

NE1 = 0.26σE1ΓE1ξ (119)

where ξ is defined as

ξ =
〈Γγ〉0, meas.

〈Γγ〉0, calc.
. (120)

〈Γγ〉0, meas. is the measured average S-wave radiation width, and 〈Γγ〉0, calc. is the

value calculated using Equation 117 and NE1 = 0.26σE1ΓE1 (Equation 119 with

ξ = 1). Note that in this process of normalization, systematics for σE1 become

completely irrelevant: any change in σE1 will be compensated for by a change in ξ.

Radiation widths have only been measured for a handful of nuclei, consisting

primarily of stable targets plus neutron. As such, we are required to develop system-

atics for 〈Γγ〉0. Our systematics are based on data taken from [5]. In the local region

of interest, even- and odd-Z nuclei appear to have a somewhat different systematic

behavior, and we have consequently developed separate systematics for even-Z and

odd-Z nuclei. These systematics are made by performing a least squares linear fit to
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the appropriate measured values. The resulting systematics may be seen in Figure

30. The solid lines represent the systematics, which are as follows:

〈Γγ〉Even−Z0 = 0.8146 A+ 1707.22 ,

〈Γγ〉Odd−Z0 = −41.0663 A+ 3123.39 . (121)

Higher order polynomials were also fit to the data. However, the values with small

error bars drive higher order fits in such a way that the measured values around mass

60, which are important to this study, were not well replicated by the systematic.

Hence we have adopted the linear fit. When they are available, we use measured

values over systematic ones. This method of normalizing the E1 strength function

to local systematic radiation widths has been proven successful in the past [7, 8, 9].

Capture reactions, particularly neutron capture reactions, are highly sensitive

to this overall normalization. At this point we wish to emphasize that, although

our method of normalizing the photon strength functions always reproduces mea-

sured 〈Γγ〉0, ultimately what we need to do is reproduce neutron capture cross

sections, specifically Maxwellian-averaged cross sections (MACS). Both of the pre-

vious modeling efforts normalize the photon transmission coefficient by globally

fitting to MACS. Eventually, we will also make a second empirical normalization

to our photon strength functions to improve our performance in reproducing the

recommended MACS. More will be said regarding this issue later.

For the M1 strength function, we adopt an SLO representation with GDR pa-

rameters and normalization relative to the E1 strength function as given in [6]. In

particular the parameters of the M1 giant resonance are

EM1 =
41

A1/3
,

ΓM1 = 4 , (122)
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number. The measured widths are from the Reference Input Parameter library.
The upper and lower panels show the systematics for even- and odd-Z nuclei, re-
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both with units of MeV. The normalization of the M1 strength function is chosen

so as to satisfy

fγ,E1(Sn)

fγ,M1(Sn)
= 0.0588 A0.878 . (123)

We also include higher order multipole transitions, including E2, M2, E3, and M3.

For these we use Blatt-Weisskopf strength functions, normalized in such a way that
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the following conditions are satisfied:

fγ,E2(Sn)

fγ,E1(Sn)
= 7.2× 10−7 A2/3 ,

fγ,M2(Sn)

fγ,E1(Sn)
= 2.2× 10−7 ,

fγ,E3(Sn)

fγ,E1(Sn)
= 3.4× 10−13 A4/3 ,

fγ,M3(Sn)

fγ,E1(Sn)
= 1.1× 10−13 A2/3 . (124)

These are the normalizations included as default in the version of the STAPRE

Hauser-Feshbach code we use. The inclusion of these higher order transitions is,

for the most part, purely academic. Their strength functions are several orders of

magnitude smaller than the E1 strength at Sn, and remain small as the transition

energy approaches zero. Hence, their contribution to the total photon transmission

function is negligible.

We do not include the low energy enhancement suggested by [26] in our photon

transmission coefficient. The parameters related to this enhancement have only

been measured for the 57,58Fe isotopes. Although one might reasonably extend

these parameters to other nearby iron species, there is no reason to suspect that they

would be valid for other nuclei. We consider the effect that such an enhancement

may have on the 59,60Fe capture rates in Section 7.2.5.

5.2.3 Average Radiation Widths

For the purposes of evaluating the overall quality of the photon transmission func-

tions from all three cross section modeling efforts, we consider the corresponding

calculated radiation widths compared to measured values. The formula for the ra-

diation width (Equation 117) includes the photon transmission function, the level

density, and a set of discrete levels. In this analysis, we maintain consistency in
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Table 6: Modeled average S-wave radiation widths (in meV), listed by compound
nucleus.

Nucleus Measured Width Woosley, et al. Rauscher & Thielemann
56Mn 750±150 381.91 722.51
55Fe 1800±500 1060.90 1170.20
57Fe 920±410 786.08 1088.30
58Fe 1900±600 758.93 1300.10
59Fe 3000±900 429.09 542.33
60Co 560±100 358.42 510.03
59Ni 2600±800 891.70 944.93
60Ni 2200±700 516.14 971.08
61Ni 1700±500 477.52 1050.60
62Ni 2200±700 428.43 917.04
63Ni 910±270 314.44 629.14
65Ni 2400±700 217.29 430.80

our choice of input quantities, i.e., when we calculate a radiation width for a given

transmission coefficient, we use the level densities and level schemes from the same

modeling effort. Our process of normalizing the photon strength function ensures

that our transmission coefficients will always exactly replicate the measured widths,

regardless of our choice of level density and discrete levels. However, when we apply

a secondary normalization to our photon strength functions in the next section, we

will need to re-examine this issue.

Radiation widths calculated using the input quantities of Woosley, et al. and

Rauscher and Thielemann are presented in Table 6. Values in this table are in meV.

Both calculations tend to be low. Both groups are within the errors of the 57Fe data,

and Rauscher and Thielemann also are within the errors for 56Mn, 58Fe, and 60Co.

In some cases, particularly 59Fe and the nickel isotopes, both groups underestimate

the measured data considerably.

We have made a similar analysis in other isotopic regions around A = 80, A =

125, and A = 150. In each of these regions, the prescriptions of the two previous

groups do better reproducing the measured widths than they do in this A = 60
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region. We also note that the average radiation widths are much smaller in these

other regions, as are the errors for the measurements.

In Section 7.1.3, we will investigate the sensitivity of reaction rates to variations

in this normalization.
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6 Cross Sections Modeled with Local Systematics

Having described the prescriptions used for our statistical model inputs, we now

present our modeled cross sections. We begin with a short discussion on the normal-

ization of modeled neutron capture cross sections to measured 30 keV Maxwellian

averaged cross sections (MACS). Following this discussion, we present our modeled

neutron capture cross sections in the region of interest compared to experimen-

tal data, followed by a comparison of our Maxwellian-averaged cross sections to a

standard set of recommended values. The results for 59,60Fe targets are then given.

We also present results for other cross sections modeled using our preferred in-

put parameters representing a variety of reaction channels. These calculations are

compared to measured cross sections to assist in evaluating the Hauser-Feshbach

input quantities. Last of all, we provide a brief discussion regarding direct reaction

contributions.

6.1 Normalizing Capture Cross Sections

It is generally accepted that the statistical model can predict a neutron capture

cross section to within a factor of two [6]. It is not uncommon for the modeled

capture cross sections to be normalized to a standard set of Maxwellian-averaged

cross sections (MACS). As its name suggests, the MACS is a cross section averaged

over a Maxwellian distribution of incident particle (in this case, neutron) velocities.

In general, the averaging of a cross section over a velocity distribution is given by

〈σ〉kT =
〈σv〉
v̄

=

∫∞
0 σv Φ(v)dv

v̄
. (125)

In this expression, v̄ is the mean incident particle velocity and Φ(v) is the velocity

distribution. The velocity of an incident particle is related to its energy, and one
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can change the variable of integration to energy. This is convenient since the cross

section is expressed as a function of incident energy.

In the simplest case, one well suited to stellar interiors, Φ(v) is assumed to be

Maxwellian:

Φ(v)dv =
4√
π

(

v

v̄

)2

exp
(

−v
v̄

)2

d
(

v

v̄

)

. (126)

The mean velocity of a Maxwellian distribution is a function of temperature

v̄ =

√

2kT

µ
(127)

where µ is the reduced mass of the incident particle and k is the Boltzmann constant.

Combining these two expressions with Equation 125, one can obtain an expression

for the MACS:

〈σ〉kT =
2√

π(kT )2

∫ ∞

0
σ(E)E exp(−E/kT )dE (128)

where E is the center of mass energy.

The energy integral in Equation 128 is semi-infinite. One cannot accurately cal-

culate a neutron capture cross section below a few keV. At such energies resonance

structure is always apparent in the measured cross sections. This resonant behavior

cannot be reproduced by a statistical model. However, the “average” behavior of

capture cross sections at low energies tends to have an energy dependence going

as E−1/2 (or 1/v). Thus, we assume that our modeled cross section has such a

dependence below the last point in the energy grid. If Elow is the last point on the

energy grid, and the cross section at Elow is σlow, then below Elow the cross section

is given by

σ(E < Elow) = σlow

√

E

Elow

. (129)

In our modeling effort, we have considered incident neutron energies up to 20 MeV.
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Table 7: Modeled 30 keV neutron capture MACS (in mb) compared to recommended
values.

Target Modeled MACS Recommended MACS Scale Factor
50Cr 58.18 49±13 0.842
51Cr 137.85 87±16 0.631
52Cr 23.10 8.8±2.3 0.381
53Cr 35.70 58±10 1.625
54Cr 25.09 6.7±1.6 0.267
55Mn 49.92 39.6±3.0 0.793
54Fe 52.36 27.6±1.8 0.527
55Fe 88.30 75±12 0.849
56Fe 23.31 11.7±0.5 0.502
57Fe 27.12 40±4 1.475
58Fe 61.79 12.1±1.3 0.196
59Co 59.84 38±4 0.635
58Ni 78.59 41±2 0.522
59Ni 130.90 87±14 0.665
60Ni 55.43 30±3 0.541
61Ni 104.14 82±8 0.787
62Ni 37.13 12.5±4 0.337
63Ni 70.93 31±6 0.437
64Ni 63.72 8.7±0.9 0.136

The capture cross section at 20 MeV is on the order of hundreds of microbarns,

whereas at energies of 30 keV it can be on the order of barns. It is thus safe to assume

that above 20 MeV the capture cross section goes to zero. Using these prescriptions

for incident energies outside our calculated range, we numerically evaluate Equation

128 for each of our modeled neutron capture cross sections. We interpolate between

points on our energy grid using a cubic spline.

In Table 7, we present a list of MACS for our modeled cross sections at kT=30

keV compared to standard values compiled by Bao, et al. [1]. The last column of

this table is a scaling factor, defined as the ratio of the standard 30 keV MACS to

our modeled value. This scaling factor can be applied to the modeled cross sections

(as a simple multiplicative factor) to normalize them to the recommended MACS.

While the majority of the MACS presented in Table 7 are within a factor of two
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of the recommended values in [1], there are a few notable exceptions. In particular,

the modeled MACS for targets 54Cr, 58Fe, and 62,64Ni are more than a factor of

two high. The most likely cause of this disagreement lies in the normalization

of our photon strength functions. A quick glance at Figure 30 reveals that the

measured average S-wave radiation widths for the compound nuclei 55Cr, 59Fe, and

63,65Ni, which are the widths to which the key gamma ray transmission functions in

the above cited reactions are normalized, are among the largest measured values.

Additionally, the error bars on these measurements are generally in excess of 700

meV, bringing the accuracy of these quantities into question.

Furthermore, while the values in Table 7 allow us to normalize capture cross

sections for which recommended MACS are available, they do not directly tell us

how to normalize the cross sections on unstable targets, specifically 59,60Fe. However,

we can investigate systematic behavior in these quantities.

As mentioned, the source of the failure to replicate MACS lies primarily in the

photon transmission coefficient. This is highly convenient, since other neutron in-

duced reactions involving particles in the exit channels are mostly insensitive to

variations in the radiative strength functions (the photon transmission coefficient

is generally several orders of magnitude smaller than the particle transmission co-

efficients, and therefore makes a negligible contribution to the Hauser-Feshbach de-

nominator). Hence, rather than simply applying these empirical factors to the cross

sections themselves, we may apply them directly to the photon strength functions

and get similar results.

Global systematics for 〈Γγ〉0 [5] suggest that the quantity is not only a function of

mass number but also of the resonance spacing at the neutron binding energy (D0).

When the the values in Table 7 are plotted as a function of A and D0, they display a

slight variation with mass number (decreasing with increasing A). The dependence

on D0 is more significant, and appears to be somewhat Lorentzian in shape, peaked
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around D0 = 10 keV. Based on this empirical behavior, we parameterize the MACS

normalization as

N (A,D0) =
MACSmeas.
MACScalc.

= (c1A+ c2))

[

c3c
2
4D0

(c25 −D2
0)
2
+ (c4c5)

2
+ c6

]

(130)

which has assumed a Lorentzian-like dependence on D0 and a linear dependence on

A. We determine the parameters ci by making a weighted least squares fit to the

scale factors in Table 7, using the measured error divided by our calculated value

as weights. The resulting coefficients are

c1 = −0.028 ,

c2 = 1.959 ,

c3 = 1.747 ,

c4 = 38.080 ,

c5 = −1.649 ,

c6 = 0.914 . (131)

The systematic, plotted against the scale factors with their associated errors, is

shown in Figure 31.

Applying these secondary normalization factors to the photon strength function

will destroy the perfect agreement with measured 〈Γγ〉0. However, since our goal is

to reproduce cross sections, not resonance parameters, this additional normalization

is reasonable. We present the 〈Γγ〉0 values calculated using our newly normalized

radiative strength functions in Table 8. We include again the values calculated

using the level densities and transmission functions of WFHZ [12] and RT [9] for

comparison.

In some cases, our systematics reproduce the measured values better than the
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Figure 31: Secondary normalization factor applied to photon transmission coef-
ficient to reproduce measured MACS. The data points represent the ratio of the
recommended MACS to our modeled values found in Table 7.
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Table 8: Calculated average S-wave radiation widths (in meV) after including the
secondary normalization factors of Figure 31.

Compound Nucleus Measured Width WFHZ RT Our Calculation
56Mn 750±150 381.91 722.51 676.33
55Fe 1800±500 1060.90 1170.20 973.04
57Fe 920±410 786.08 1088.30 340.74
58Fe 1900±600 758.93 1300.10 2362.64
59Fe 3000±900 429.09 542.33 929.81
60Co 560±100 358.42 510.03 251.62
59Ni 2600±800 891.70 944.93 1417.83
60Ni 2200±700 516.14 971.08 1266.20
61Ni 1700±500 477.52 1050.60 717.84
62Ni 2200±700 428.43 917.04 1021.72
63Ni 910±270 314.44 629.14 243.15
65Ni 2400±700 217.29 430.80 360.42
g – 2.263 1.630 1.950

other groups. In other cases they do not. To quantify the agreement with experi-

mental values, we define a figure of merit

g2 =
1

N

N
∑

i=1

(

yi − xi
σi

)2

(132)

where yi are the measured data with errors σi, and xi are the calculated values. The

resulting figures of merit for the reproduction of the radiation widths listed in Table

8 are 2.263 for WFHZ, 1.630 for RT, and 1.950 for our latest effort. So RT does

a slightly better job in reproducing these widths. However, as we have mentioned

before, it is more important for our purposes to reproduce cross sections than it is

to reproduce resonance parameters.

Having made this secondary normalization to the photon strength function, we

recalculate our cross sections and MACS. The results, compared to WFHZ and

RT, are presented in Table 9. Included in this table is the figure of merit for the

MACS data, as defined in Equation 132. For reference, the figure of merit for our
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Table 9: Calculated neutron capture MACS from various modeling efforts com-
pared to recommended values, with the secondary photon transmission coefficient
normalization applied to our calculation.

Target Recommended MACS WFHZ RT Our Calculation
50Cr 49± 13 34 44.8 58.7
51Cr 87± 16 63 86.0 131.1
52Cr 8.8± 2.3 12 16.7 12.2
53Cr 58± 10 24 26.0 54.5
54Cr 6.7± 1.6 7.2 9.4 12.0
55Mn 39.6± 3.0 28 35.5 46.3
54Fe 27.6± 1.8 28 46.5 34.7
55Fe 75± 12 46 83.9 85.9
56Fe 11.7± 0.5 19 26.2 11.0
57Fe 40± 4 21 30.3 33.9
58Fe 12.1± 1.3 9.5 12.9 26.1
59Co 38± 4 36 51.3 30.1
58Ni 41± 2 29 50.5 54.3
59Ni 87± 14 72 92.4 83.8
60Ni 30± 3 20 33.2 30.6
61Ni 82± 8 37 77.8 57.9
62Ni 12.5± 4.0 12 19.2 13.3
63Ni 31± 6 24 36.5 44.5
64Ni 8.7± 0.9 6.1 10.1 15.2
g – 4.399 7.349 3.823

MACS prior to the secondary normalization is 18.762. Renormalizing the radiative

strengths to the measured MACS values improves our ability to reproduce capture

cross sections as one would expect. We now do a better job replicating these values

than either of the previous groups.

6.2 Neutron Capture Cross Sections

We now present our statistical model calculations of the neutron capture cross sec-

tion on various stable targets in the local region of interest. These cross sections were

modeled using our preferred Hauser-Feshbach inputs as described in the previous

three sections. In each of the plots that follow, our cross section is represented with
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a thick solid line. The dashed line represents the cross section as calculated using

the NON-SMOKER code [8] used by RT [9]. The dotted line represents the cross

section as calculated using the CRSEC code [11] used in [10]. Wherever isomeric

states exist, they are treated as both a possible final state of the residual nucleus

and as targets. Unless otherwise noted, the cross sections presented in this section

are “activation” cross sections, i.e. the total cross section going to all possible final

states in the product nucleus.

The measured data presented in these plots is a compilation of all data available

from [3] at the time the calculations were carried out in February of 2005. For

purposes of clarity, labels for the individual data sets have been left off these figures.

A common feature noticeable in the measured data is the dominance of resonance

type behavior below ∼200 keV. This is to be expected in this region of the isotopic

plane, since the level densities are relatively low for small excitation energies. The

validity of a statistical model calculation in these resonance regions is questionable.

However, when measured data is not available, modeled cross sections are all that

we have.

Ultimately, we will only be making use of the reaction rates for neutron capture

onto 59Fe, and 60Fe. Our purpose in presenting results for other reactions is to aid

in the evaluation of our Hauser-Feshbach input quantities. If we are consistently

successful at reproducing reactions with measured data, it gives us confidence in

our calculations for reactions with unstable targets.

Figure 32 begins with our modeled cross sections on stable chromium targets.

For these targets, all of the data is in the resonance regions, and it is difficult to gauge

whether any single calculation does “better” than the others. Our cross sections

tend to be higher than those of CRSEC and NONSMOKER. The results from all

three modeling efforts for the chromium targets are similar, with the exception of

53Cr(n,γ)54Cr where our calculation is significantly larger. This is consistent with
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Figure 32: Modeled neutron capture cross sections compared to measurements. The
solid lines represent modeled cross sections from the present work. Dotted lines
represent cross sections calculated by the CRSEC code used by WFHZ. Dashed
lines represent cross sections calculated with the NON-SMOKER code used by RT.
Measured cross section data represents all cross section data available in the EXFOR
libraray for the reaction as of 2004.

the MACS for this reaction in Table 9, where our result is within the errors of the

recommended value. For 55Mn(n,γ)56Mng, all three calculations do reasonably well

and are within a factor of two of each other.

The results for neutron capture by stable iron targets are similar to those for



131

 1e-04

 0.001

 0.01

 0.1

 1

 0.001  0.01  0.1  1  10

C
ro

ss
 S

ec
tio

n 
(b

ar
ns

)

En (MeV)

56Feg(n,γ)57Fe

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1  10

C
ro

ss
 S

ec
tio

n 
(b

ar
ns

)

En (MeV)

57Feg(n,γ)58Fe

 1e-04

 0.001

 0.01

 0.1

 1

 0.001  0.01  0.1  1  10

C
ro

ss
 S

ec
tio

n 
(b

ar
ns

)

En (MeV)

58Feg(n,γ)59Fe

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1  10

C
ro

ss
 S

ec
tio

n 
(b

ar
ns

)

En (MeV)

59Cog(n,γ)60Co

 0.0001

 0.001

 0.01

 0.1

 0.001  0.01  0.1  1  10

C
ro

ss
 S

ec
tio

n 
(b

ar
ns

)

En (MeV)

59Cog(n,γ)60Com1

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1  10

C
ro

ss
 S

ec
tio

n 
(b

ar
ns

)

En (MeV)

58Nig(n,γ)59Ni

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1  10

C
ro

ss
 S

ec
tio

n 
(b

ar
ns

)

En (MeV)

61Nig(n,γ)62Ni

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1  10

C
ro

ss
 S

ec
tio

n 
(b

ar
ns

)

En (MeV)

64Nig(n,γ)65Ni

Figure 32: (continued)
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Figure 32: (continued)

chromium targets. Most of the measurements lie in the region where the effects of

individual resonances are seen, making a qualitative statement regarding the repro-

duction of the cross section difficult. For 54Feg(n,γ)
55Feg, the three calculations are

quite similar. Our cross section for 56Feg(n,γ)
57Feg is lower than the other two, and

considerably lower than the NON-SMOKER calculation. Our calculation is supe-

rior in reproducing the recommended MACS for this reaction (see Table 9). Our

57Feg(n,γ)
58Feg cross section is similar to that produced by the NON-SMOKER

code, and significantly larger than that from CRSEC above 20 keV. Last of all, our

58Feg(n,γ)
59Feg is significantly larger than both previous calculations. We overpre-

dict the MACS for this reaction. The source of this overprediction most likely lies in

the photon transmission coefficient. Prior to the secondary normalization described

in Section 6.1, the normalization for the 59Fe radiative strength function was based

on an experimentally measured radiation width of 3000±900 meV. This value is

quite large compared to other measured widths, and the error bars are roughly

30% of the central value. Our initial calculation based on this value overpredicted

the MACS by nearly a factor of six. The resulting ratio of measured to calculated

MACS is considerably smaller than that of nearby nuclei, as may be seen in Figure

31, and lies below the systematic normalization represented by the dotted surface.

Since we only use systematic values in the secondary normalization, an overpre-
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diction of this particular cross section is expected. Since the 59,60Fe capture cross

sections are based initially on systematic values for the radiative strength function

normalization (as opposed to a measured value such as that used for 58Fe), it is not

expected that this problem of gross overprediction will affect these two key cross

sections.

The residual nucleus for the 59Co(n,γ)60Co reaction has an isomer, and a limited

amount of experimental data for the cross section to the isomeric state is available.

The CRSEC and NONSMOKER codes do not separate the excitation function

into populations of the ground and metastable states. Similar to 55Mn, all three

calculations are fairly similar for this reaction. Our calculation appears to lie slightly

below the data. This is true for both the activation cross section and the cross

section to the isomer in 60Co.

Figure 32 concludes with our modeled cross sections on stable nickel targets.

While all three calculations are generally similar, our results tend to be in closer

agreement with the NON-SMOKER cross sections.

Overall, our modeling reproduces measured (n,γ) cross sections reasonably well.

Additionally, Table 9 indicates that our present effort is superior in modeling neu-

tron capture cross sections around 30 keV.

6.3 Maxwellian-Averaged Capture Cross Sections

The MACS provided in [1] are accompanied by recommended values for the MACS

at energies other than 30 keV. Specifically, these values are listed in their Table II.

While estimated errors are given for the recommended values at kT = 30 keV, none

are given for the other values of kT .

In Figure 33 we compare our calculated MACS to the recommended values

in [1], represented by the gray circles. We also include MACS calculated from

NONSMOKER and CRSEC cross sections, represented by the dashed and dotted
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Figure 33: Modeled neutron capture MACS compared to recommended values from
[1]. The solid lines represent MACS from the present work. Dotted lines represent
MACS calculated from cross sections produced by the CRSEC code used by WFHZ.
Dashed lines represent MACS calculated from cross sections produced by the NON-
SMOKER code used by RT.

lines, respectively. Our calculation is represented by the heavy solid line. We have

already seen how well our calculation compares against the 30 keV MACS in Table

9. Our purpose in making the present comparison is to see how the calculations

compare to the recommended MACS at other values of kT .

The relative magnitudes of the various MACS are consistent with the cross
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Figure 33: (continued)
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Figure 33: (continued)

sections in Figure 32. We note that the shape of the MACS is generally well

reproduced by our calculation, particularly for kT > 30 keV. We further note that

some of the recommended values in [1] are based on the NONSMOKER calculations.

Specifically, these are the MACS for 51Cr, 55Fe, and 59Ni.
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Figure 34: Modeled neutron capture cross sections for 59,60Fe targets. The solid lines
represent modeled cross sections from the present work. Dotted lines represent cross
sections calculated by the CRSEC code used by WFHZ. Dashed lines represent cross
sections calculated with the NON-SMOKER code used by RT.

6.4 Results for 59Fe and 60Fe Capture Cross Sections

We now present the results for the two key cross sections in this study, namely

59Feg(n,γ)
60Fe and 60Feg(n,γ)

61Fe. In Figure 34, our calculation is represented by a

heavy solid line. The calculations from the NONSMOKER and CRSEC codes are

represented by dashed and dotted lines, respectively.
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For both cross sections our calculation is higher than the previous calculations.

The larger cross section for 59Feg(n,γ)
60Feg would supposedly result in a larger

production of 60Fe. Our cross section at 30 keV (the approximate energy of most

importance to the s process) is roughly a factor of three larger than that of the

NONSMOKER code. However, 60Feg(n,γ)
61Feg is also larger than the previous

calculations. This larger cross section out of 60Fe would result in a higher rate of

depletion.

Perhaps a more useful quantity to consider is the ratio of the 59Feg(n,γ)
60Fe

and 60Feg(n,γ)
61Fe cross sections presented in Figure 35. One might expect 60Fe

production to scale roughly with this ratio. The line types correspond to the same

calculations as in the previous figure, i.e. dashed lines represent the calculations

from NONSMOKER and dotted lines represent those from CRSEC. We note that

our calculation results in a larger ratio at 30 keV, suggesting that the production

of 60Fe may be higher when our calculated cross sections are used. However, there

are many factors which go into the production of 60Fe. A discussion on the effects

these rates have in nucleosynthesis will be provided in Section 8.

6.5 Other Reactions with Stable Targets

We now present results for reactions other than neutron capture modeled in the local

region of interest. Included on the following figures is our calculation, represented by

a solid line, as well as the calculations from NONSMOKER and CRSEC, represented

by dashed and dotted lines, respectively. The experimental data in these figures is a

compilation of all data available from [3] as of February 2005. Labels for individual

data sets have been omitted for clarity. Only data between 1 keV and 20 MeV is

included.

In the previous modeling efforts of [12] and [9], all reactions involving a single

neutron, proton, or alpha particle in the incident and exit channels were included,
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Figure 35: Ratio of 59,60Fe neutron capture cross sections. The solid line represents
the ratio from cross sections in the present work. Dotted lines represent the ratio
from the CRSEC code used by WFHZ. Dashed lines represent the ratio from the
NON-SMOKER code used by RT.

with the exception of elastic and inelastic scattering. Capture reactions were mod-

eled for each of the three types of incident particles. In the present work, we consider

primarily reactions with incident neutrons. However, we have included several ad-

ditional exit channels. We also consider (p,n) reactions, which are highly sensitive

to the level density and discrete level structure of the residual nucleus.

Many of the reactions presented in the following figures have thresholds well

above the typical incident energies found in stellar environments. Our purpose in

modeling these cross sections is to aid in the evaluation of our input quantities,

particularly the particle transmission coefficients and level densities. We note that

the photon transmission coefficient is much smaller than those for particles (particu-

larly neutrons), so that the overall normalization of the radiative strength function,

perhaps the most critical input parameter in neutron capture reactions, will have a

negligible effect on reactions with particles in the exit channel.

The CRSEC code only calculates cross sections up to ∼10 MeV, while our calcu-
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lations are carried up to 20 MeV. Also, the NONSMOKER and CRSEC calculations

only include activation cross sections. In cases where there are isomers in the resid-

ual nucleus, our calculations also include the amount of cross section going to the

ground state and isomers. We also have the option of treating isomers as targets,

although no measured cross section data is available for such reactions. Activa-

tion cross sections are indicated on these figures by the absence of the final state

identifiers g or m1 on the residual nucleus in the plot title.

Figure 36 presents the modeled (n,p) cross sections. Some general trends are

notable. From threshold up to about 10 MeV, the three calculations tend to be quite

similar. Between 10 and 15 MeV, the measured cross sections begin to taper off as

additional exit channels open. In many of these (n,p) cross sections, the calculation

from NONSMOKER continues to rise after the measured data has reached its peak.

Overall, our calculation tends to be more consistent with the measured data than

those from CRSEC and NONSMOKER.

The 58Fe(n,p)58Mn, 58Ni(n,p)58Co, 60Ni(n,p)60Co, and 62Ni(n,p)62Co cross sec-

tions have residual nuclei with isomers. In the case of 58Fe(n,p)58Mn, it appears

that our distribution of the cross section to the ground state and first isomer of

58Mn is somewhat inaccurate. However, only a single data point exists for the cross

section to the isomer, and there is considerable disagreement in the data for the

cross section to the ground state. It is possible that some of the ground state cross

section data may actually be misidentified activation data, as the magnitude of

these data points is similar to those for activation.

For the 58Ni(n,p)58Co reaction, it also appears that our distribution of cross

sections to the ground state and isomers of the residual nucleus is questionable. The

measured data seems to be far more consistent than in the case of 58Fe(n,p)58Mn.

However, 58Co has two isomeric states, and it is likely that the measured cross

sections reportedly going to the first isomer are in fact the cross section going to
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Figure 36: Modeled (n,p) cross sections compared to measurements. The solid lines
represent modeled cross sections from the present work. Dotted lines represent
cross sections calculated by the CRSEC code used by WFHZ. Dashed lines represent
cross sections calculated with the NON-SMOKER code used by RT. Measured cross
section data represents all cross section data available in the EXFOR libraray for
the reaction as of 2004.

both isomers. Furthermore, the higher ground state cross section data is roughly

equal to data reported as activation cross sections, and it is possible that the final

state of these measurements was misidentified.

The various (n,α) calculations are presented in Figure 37. The results are similar
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Figure 36: (continued)
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Figure 36: (continued)
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Figure 36: (continued)

to what we see in the (n,p) cross sections, with the three calculations having similar

behavior up to 10 MeV. Beyond the peak of the cross section, both our calculation

and that of NONSMOKER have a tendency to be high, though our calculation

generally lies somewhat closer to the data. The likely cause of our overshooting

the peak is our simplified treatment of pre-equilibrium. Pre-equilibrium processes

for exiting alpha particles are somewhat more complex than those for single nucle-

ons. The additional complexity arises from the tendency of nucleons to form alpha

clusters [7]. The CRSEC calculations were not carried up to the peak of the cross

section.

We have included deuterons as possible exit particles in our calculations, and

the results of our (n,d) reaction modeling are found in Figure 38. Experimental

data for these reactions is sparse. Usually there is only a single data point from

a single measurement at 14 MeV. Our calculation tends to run below these data

points, although we are usually within a factor of two of the error bars.

We have also modeled neutron induced cross sections with multiple particles

in the exit channel. Figure 39 shows our combined results for (n,np) and (n,pn)

reactions. The results for the two reactions are summed for comparison against the

data, since experiments are not able to distinguish the order in which particles are

emitted from the compound nucleus. Our ability to reproduce the measured values
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Figure 37: Modeled (n,α) cross sections compared to measurements. The solid
lines represent modeled cross sections from the present work. Dotted lines represent
cross sections calculated by the CRSEC code used by WFHZ. Dashed lines represent
cross sections calculated with the NON-SMOKER code used by RT. Measured cross
section data represents all cross section data available in the EXFOR libraray for
the reaction as of 2004.

for these reactions is mixed. However, we tend to find better agreement with the

larger data sets (57Fe and 58Ni targets, for example).

Figure 40 shows our results for (n,2n) reactions. For the most part, our agree-

ment with the measured data is good. The most notable exception is 50Cr(n,2n)49Cr.
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Figure 37: (continued)

Given the good agreement with the other (n,2n) reactions, we do not suspect that

the issue here involves pre-equilibrium. Rather, an input quantity used only for

this reaction, such as the neutron transmission coefficient leading to the 51Cr com-

pound nucleus or the level density for 49Cr, is the most likely culprit. We see good

agreement between our calculation and the measured activation cross section for

59Co(n,2n)58Co, as well as the portion going to the ground state. However, we ap-

pear to underpredict the amount going to the isomer. 58Co in fact has two isomers,

and the measured data is likely the sum of the cross section to both. No measure-

ments were explicitly identified with the second isomer. This is consistent with the

results seen for the 58Ni(n,p)58Co and 58Fe(p,n)58Co reactions. For 59Ni(n,2n)58Ni

and 60Ni(n,2n)59Ni, the measured data consists of a single point at 14 MeV. The

data points for both of these reactions seem to be unusually low, bringing their

accuracy into question. Predicting (n,2n) cross sections is fairly straightforward,
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Figure 38: Modeled (n,d) cross sections compared to measurements. The solid lines
represent modeled cross sections from the present work. Dotted lines represent
cross sections calculated by the CRSEC code used by WFHZ. Dashed lines represent
cross sections calculated with the NON-SMOKER code used by RT. Measured cross
section data represents all cross section data available in the EXFOR libraray for
the reaction as of 2004.

as they scale roughly with the size of the nucleus. The activation cross section is

typically about a barn at 14 MeV regardless of atomic number.

Our success at modeling these cross sections gives us a good deal of confi-

dence in our particle transmission coefficients, level densities, and treatment of
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Figure 39: Modeled (n,np)+(n,pn) cross sections compared to measurements. The
solid lines represent modeled cross sections from the present work. Dotted lines
represent cross sections calculated by the CRSEC code used by WFHZ. Dashed
lines represent cross sections calculated with the NON-SMOKER code used by RT.
Measured cross section data represents all cross section data available in the EXFOR
libraray for the reaction as of 2004.

pre-equilibrium. However, the photon transmission coefficient plays a negligible role

in the calculation of these cross sections, while capture cross sections are extremely

sensitive to it. Our most uncertain Hauser-Feshbach input quantity, relative to the

calculation of neutron capture cross sections, is thus the photon strength function.
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Figure 39: (continued)
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Figure 40: Modeled (n,2n) cross sections compared to measurements. The solid
lines represent modeled cross sections from the present work. Dotted lines represent
cross sections calculated by the CRSEC code used by WFHZ. Dashed lines represent
cross sections calculated with the NON-SMOKER code used by RT. Measured cross
section data represents all cross section data available in the EXFOR libraray for
the reaction as of 2004.

Last of all, the calculations for (p,n) reactions may be found in Figure 41. The

three calculations are similar up to 10 MeV, with our calculation tending to be more

consistent in matching the data. Above 10 MeV, the NONSMOKER calculation

again has a tendency to overshoot the peak. Only a limited amount of data close to
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Figure 40: (continued)

threshold is available for 50Cr(p,n)50Mn. In fact, no activation data is available. The

activation cross section has been included nonetheless for the purposes of comparing

our calculation with previous ones. We note that identification of the isomeric final

states in 58Co is again the likely cause of the disagreement between our calculation

and the measured 58Fe(p,n)58Com1 cross section.
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Figure 41: Modeled (p,n) cross sections compared to measurements. The solid lines
represent modeled cross sections from the present work. Dotted lines represent
cross sections calculated by the CRSEC code used by WFHZ. Dashed lines represent
cross sections calculated with the NON-SMOKER code used by RT. Measured cross
section data represents all cross section data available in the EXFOR libraray for
the reaction as of 2004.

6.6 Direct Reaction Contributions

To this point we have only considered statistical model and pre-equilibrium con-

tributions to the calculated cross sections. We now must justify neglecting direct

reaction contributions to the capture cross sections.
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Figure 41: (continued)
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Figure 41: (continued)

Calculating the direct reaction contribution to neutron capture requires that

one know the spectroscopic factors for the various resonances. These factors are

generally measured in stripping reactions such as (d,p), and measured values are

thus available only for stable targets. Ideally, we would calculate the direct reaction

contribution for the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reactions. But in so doing we

would rely on spectroscopic factors derived from models. For the present study we

will restrict ourselves only to target nuclei for which the spectroscopic factors are
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Figure 42: Direct reaction contributions to neutron capture by 56Fe and 58Fe. The
solid line represents the compound nuclear contribution, and the dotted line repre-
sents the contribution from direct and semi-direct processes.

known, in particular 56,58Fe.

The direct reaction contribution for 56Fe(n,γ)57Fe and 58Fe(n,γ)59Fe was calcu-

lated using the CUPIDO code [2]. This code includes both direct and semidirect

contributions. The spectroscopic factors were taken from [4].

As can be seen in Figure 42, direct capture accounts for only about 20% of

the 56Fe(n,γ)57Fe reaction up to about 1 MeV. In this plot, the compound nuclear
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contribution is represented by a solid line and the direct contribution by a dotted

line. For incident energies greater than 1 MeV it plays a more important role.

However, for astrophysical purposes we are primarily interested in capture cross

sections between 5 and 100 keV of incident energy. Direct capture plays an even

less important role in 58Fe(n,γ)59Fe, as may be seen in Figure 42. Generally, this

will be the case. Direct reactions are small compared to compound nuclear reactions

at low incident energies. For these reasons, we can omit direct reactions from our

analysis of the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe cross sections and only introduce

errors of (generally) less than ∼15%.
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7 Reaction Rate Sensitivities

We now consider the approximate uncertainties in our 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe

reaction rates with respect to the various input quantities. These uncertainties fall

into one of two classifications: those associated with uncertainties in our local sys-

tematics, and those associated with differences in choices of prescriptions for the

input parameters. Initially we vary only one input parameter at a time, and this

analysis is followed by considering the collective effects of the uncertainties in all

input parameters.

In these sensitivity studies, we focus our analysis on the reaction rates obtained

from the cross sections rather than the cross sections themselves. We do this because

it is the reaction rates that are used in nucleosynthesis calculations. Since measured

cross sections do not exist for these reactions, we do not diminish the quality of our

comparisons by making this choice. The reaction rate (〈σv〉) is related to the cross

section by

〈σv〉 =
∫ ∞

0
σvΦ(v)dv . (133)

In this expression Φ(v) represents the velocity distribution, which we assume to

be Maxwellian as we did for the MACS in Section 6.1. Making this assumption,

Equation 133 simplifies to

〈σv〉 =

(

8

πµ

)1/2
1

(kT )2/3

∫ ∞

0
σ(E)E exp(−E/kT )dE

=
3.732× 1010

Â1/2T
3/2
9

∫ ∞

0
σ(E)E exp(−11.605× E/T9)dE (134)

where E is the center of mass energy, µ is the reduced mass of the incident particle

plus target, Â is the reduced mass in atomic units, k is the Boltzmann constant,

and T9 is the temperature in billions of degrees Kelvin.

We begin by considering the uncertainties introduced through our local system-
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Figure 43: Uncertainties in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates asso-
ciated with uncertainties in the local level density systematic

atics.

7.1 Uncertainties in Systematic Input Parameters

The Hauser-Feshbach input quantities presented in Sections 3-5 represent our best

estimates given available experimental data. As such, we consider our cross sections

to be as accurate as may be reasonably expected. However, the key 59Fe(n,γ)60Fe

and 60Fe(n,γ)61Fe cross sections are based on systematics, and any uncertainty

associated with these systematics will translate into an uncertainty in the reaction

rates.

7.1.1 Asymptotic Level Density Parameter

The standard deviation of “experimental” asymptotic level density parameters (ã)

from our systematic is 0.232 MeV−1 (see Figure 14), a value somewhat larger than

the mean errorbar on the experimental values (0.135 MeV−1). Assuming that the er-

ror in the level density parameters for 60,61Fe are the same as the standard deviation

of the experimental values, we determine an approximate error in the 59Fe(n,γ)60Fe

and 60Fe(n,γ)61Fe neutron capture reaction rates stemming from these uncertain-

ties by refitting the level densities to the discrete level spectra using the systematic
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values plus or minus 0.232 MeV−1 (as in Section 4.1.7) and calculating the resulting

cross sections and reaction rates. The results are shown in Figure 43. The uncer-

tainties in the level density systematic amount to uncertainties in the reaction rates

of 22-28% for 59Fe(n,γ)60Fe and 19-28% for 60Fe(n,γ)61Fe.

7.1.2 GDR Parameters

The standard deviation of measured GDR parameters from their respective system-

atic values are 0.482 MeV for the peak energy and 1.721 MeV for the width (see

Figures 27 and 28). We examine the effects of these uncertainties by recalculating

the cross sections and reaction rates using the systematic GDR parameters plus or

minus their respective uncertainties. We do not consider uncertainties in the GDR

peak cross section, since the effect of this value is eliminated by our process of nor-

malizing the photon strength functions to measured/systematic radiation widths.

Despite the rather large uncertainty in the GDR widths, the resulting uncertainties

in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates are negligibly small (less than

1.5% for 59Fe, 0.5% for 60Fe). We do not present figures illustrating these sensitivi-

ties here, but they are included in the collective uncertainties presented in Section

7.1.4.

7.1.3 Normalization of the γ-ray Transmission Coefficient

Measurements of the average total S-wave photon width (〈Γγ〉0) in the region of

interest have an average error of ∼600 meV for even-Z compound nuclei and ∼160

meV for odd-Z compound nuclei. These average errors are similar to the standard

deviations of the measured values from the primary systematic (Figure 30), which

are 630.7 meV and 320.9 meV for even- and odd-Z compound nuclei, respectively.

We assume the uncertainty in the systematic radiation widths of 60Fe and 61Fe

are equal to the even-Z standard deviation. Upon recalculating the 59Fe(n,γ)60Fe
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Figure 44: Uncertainties in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates asso-
ciated with uncertainties in the local radiation width systematic

and 60Fe(n,γ)61Fe reaction rates, we find the approximate uncertainties depicted in

Figure 44. In this analysis, we enforce a lower limit on the radiation width of 100

meV. The approximate uncertainty in the reaction rates resulting this systematic

are 27-41% for 59Fe(n,γ)60Fe and 63-140% for 60Fe(n,γ)61Fe. These are the largest

uncertainties associated with these reactions.

7.1.4 Collective Uncertainties Arising from Local Systematics

We now provide an estimate of the collective range of uncertainty in our calculated

capture reaction rates arising from our local systematics (level density parameter,

GDR parameters, and radiation widths). This range is illustrated in Figure 45.

Shown for reference are the reaction rates calculated from the CRSEC [5] and

NON-SMOKER [2] codes. The range of uncertainty is +(60-75)% to -(49-55)%

for 59Fe(n,γ)60Fe and +(135-210)% to -(71-78)% for 60Fe(n,γ)61Fe. The dominant

contribution to these uncertainties comes from the radiation width systematic. We

must stress that these cumulative uncertainties are approximate, and they do not

represent an absolute error in our calculation. However, since this modeling effort

is based on modern prescriptions and local systematics based on a relatively large

set of experimental data, we have a reasonable degree of confidence in this result.
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Figure 45: Collective uncertainties in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction
rates based on uncertainties in local systematics

7.2 Variations in Input Parameter Prescriptions

We consider the effect of choices for various prescriptions for the Hauser-Feshbach

input quantities in addition to the uncertainties arising from our systematics. Again,

we initially consider the effects of each quantity by varying one parameter at a time

and conclude with an examination of the collective effect.

We have already considered the effect of variations on the level density parameter

alone. We now present results where the overall treatment of the level density
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Figure 46: Variations in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates arising
from the choice of level density prescription (local systematic v. global systematics)
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Figure 47: Variations in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates arising
from the choice of level density prescription (preferred systematic v. other local
systematics)

prescription (in conjunction with the proper set of discrete levels) is varied, keeping

all other parameter input fixed. Figures 46 and 47 illustrate this sensitivity.

7.2.1 Level Density Prescription and Discrete Levels

In these plots, the shaded region corresponds to the uncertainty in our level den-

sity systematic (see Section 7.1.1), shown for reference. These figures present the

deviation from the reaction rate calculated using all of our preferred inputs (λpref ),

defined as

δλ =
λ− λpref
λpref

× 100% (135)



164

rather than the rates themselves. In Figure 46, the solid and dotted lines correspond

to the rates calculated using the level densities and discrete levels of Rauscher,

Thielemann, and Kratz [3] (RTK) andWoosley, Fowler, Holmes, and Zimmerman [6]

(WFHZ), respectively. The dashed line (the highest rates in both cases) correspond

to level densities derived from the Hartree-Fock BCS model [1] and our full set of

discrete levels. Because of the rather large deviations it introduces, and the lack of

systematic normalization in this level density prescription, it is not included in our

overall uncertainty provided in Section 7.2.6. The level densities of RT and WHFZ

result in smaller rates for both reactions, with the greatest deviation for the WFHZ

level densities used in 60Fe(n,γ)61Fe.

In Figure 47, the solid lines correspond to the other local systematics listed in

Table 5. These systematics did not provide as good a fit to measured resonance

spacings (as indicated by their larger χ2) and generally led to conditions where

either the parameter γ was unusually high (greater than 0.1 MeV−1) or the matching

energy frequently exceeded the the neutron binding energy. These systematics result

in reaction rates similar to those produced using our preferred systematic. We

include them in our overall uncertainty found in Section 7.2.6.

Note that the magnitude of the net uncertainties due to varying the level density

prescription, excluding the Hartree-Fock BCS level densities, are similar to the

uncertainties corresponding to the level density parameter systematic presented in

Section 7.1.1. In general, the Fermi gas level density prescription can change the

reaction rate by as much as 40-50%, but for most temperatures the variation is

within 30%.

7.2.2 Neutron Transmission Coefficients

The sensitivity to the choice of neutron transmission coefficient is shown in Figure

48. The effects associated with this input prescription are smaller than those asso-
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Figure 48: Variations in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates arising
from the choice of neutron transmission coefficient
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Figure 49: Variations in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates with the
inclusion of width fluctuation correlations.

ciated with the level density. Overall the Jeukenne, Lejeune, and Mahaux (JLM)

and equivalent square well potentials both result in lower reaction rates, with the

difference being more significant for the JLM potential (up to 30%). We do not

consider uncertainties due to the charged particle transmission coefficients for the

reasons given in Section 5.1.2.

7.2.3 Width Fluctuation Correlation

Figure 49 shows the effect of the Width Fluctuation Correlation on the 59Fe(n,γ)60Fe

and 60Fe(n,γ)61Fe capture rates. These figures depict the effect when the WFC is

turned off, and represent an enhancement of the capture cross section of 7-12%.
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Figure 50: Variations in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates arising
from the choice of GDR parameters.

7.2.4 GDR parameters

In Section 7.1.2 we have shown that the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates bear

a minimal sensitivity to uncertainties in the GDR systematics. We now consider

the effect of adopting an entirely different prescription for the GDR parameters.

As can be seen in Figure 50, the reaction rates are minimally sensitive to the GDR

parameters, even though the additional systematics in this figure include only a

single resonance. The STAPRE default GDR parameters (EGDR = 80/A1/3 and

ΓGDR = 5 MeV) represent the largest departure from our systematic values (see

Figures 27 and 28). Such a wide departure from our systematic still only results in

a 2-4% change in the reaction rates, confirming that the choice of GDR parameters

makes little difference in the calculation of these rates.

7.2.5 E1 and M1 Strength Functions

In our modeling effort we use the EGLO representation of the E1 giant dipole reso-

nance and the SLO representation for the M1 strength function. We now investigate

the sensitivity of the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates to these choices.

Figure 51 shows the percent change in the reaction rates obtained when using SLO

E1 and Blatt-Weisskopf M1 strength functions. In both cases this choice results in
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Figure 51: Variations in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates arising
from the choice of E1 and M1 strength function shapes.
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Figure 52: Variations in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates with the
inclusion of the low energy E1 strength function enhancement.

a lower cross section and reaction rate, by roughly 8% in the case of 59Fe(n,γ)60Fe

and the order of 15-18% for 60Fe(n,γ)61Fe.

Recently an enhancement of the photon strength function for low energy gamma

rays was measured in iron isotopes [7]. Our preferred photon transmission coefficient

does not include this enhancement, though we desire to know roughly what the effect

would be were such an enhancement to be included in our calculations. Assuming

that the parameters for 57Fe given in [7] would also apply to heavier iron isotopes, we

obtain the result seen in Figure 52. Adding this enhancement to the photon strength

function increases the reaction rates by roughly 15-20% at low temperatures, with

the effect tapering for higher T9.
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Figure 53: Range in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates attainable
by varying input parameter prescriptions

7.2.6 Collective Variations

Figure 53 presents the range of variations in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe

reaction rates attainable by the collective substitution of input parameter prescrip-

tions. Included in this range are the prescriptions for the level density and discrete

levels, neutron optical potential, width fluctuation corrections, GDR parameters,

and photon strength function prescription. Additionally, the approximate system-

atic uncertainties on the average S-wave photon width of Section 7.1.3 have been
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included. The range of uncertainty is +(70-80)% to -(66-70)% for 59Fe(n,γ)60Fe and

+(190-230)% to -(85-92)% for 60Fe(n,γ)61Fe.

Note that some of the prescriptions used in developing these ranges of uncer-

tainty are based on more limited amounts of experimental data and in some cases

represent simpler models. As such, this second uncertainty range should not be

interpreted as an error in the calculated reaction rates, but rather a demonstra-

tion of the range attainable by varying input quantity prescriptions, of which some

variations are not well motivated.

As suggested in Figures 45 and 53, our rates for both reactions are always higher

than either CRSEC [5] or NONSMOKER [2], but tend to be closer to those from

NONSMOKER. We are now ready to investigate the effect of these newly modeled

reaction rates on the stellar synthesis of 60Fe.
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8 Parameterized Single-Zone Nucleosynthesis

We now investigate the effect of our newly evaluated 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe

rates will have on the production of 60Fe. Included in this analysis is an evalua-

tion of the significance of the uncertainties in our calculation. We simulate stellar

environments using a single zone nucleosynthesis code with an appropriate choice

of thermodynamic parameters. We choose this simple code over a more complex

stellar evolution code involving multiple zones, so as to eliminate effects due to

convection, mass loss, and other physics not directly related to the reaction rates.

The first part of this section outlines our reaction networks. The second part

describes the approximate thermodynamic conditions of various stages of stellar

evolution. In the third part, we detail our method of evaluating reaction rates in

nucleosynthesis calculations. The fourth part presents the results of our model-

ing. We conclude with an analysis of the sensitivity of 60Fe abundances relative to

uncertainties in the neutron capture rates.

8.1 Nuclear Reaction Networks

The abundance of a given isotope i can be expressed in terms of the mass fraction

Xi, defined as the decimal fraction of the total mass. A similar quantity is the mole

number, defined as

Yi =
Xi

Ai

(136)

where Ai is the mass number of species i. This quantity has units of mol/g. The

number density is then given by

ni = ρNAYi (137)

where NA is Avogadro’s number and ρ is the density of the stellar matter.
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When considering how the abundance of a particular species changes over time,

one must include all significant energetically accessible channels for the production

and destruction of the isotope. One should also consider all reactions producing

(or destroying) the isotopes that feed into the species of interest. As a result, the

synthesis of a particular isotope is described by a large set of reactions, which can

be represented as a set of coupled differential equations. For each isotope i included

in the reaction network, the production rate is given by

dYi
dt

= −
∑

j,k

ρYiYjλjk(i) +
∑

l,m

ρYlYmλmn(l) (138)

where again ρ is the density. The λjk are reaction rates as given in Equation 134.

In this expression, the first sum accounts for all possible reactions leading to the

destruction of species i. The rate at which i is destroyed depends not only on the

reaction rate itself, but also the molar abundances of i and the incident particle

j. The second sum accounts for all reactions producing i. In this sum, we require

l +m = i + n (i.e. we only include the target nuclei l for which the reaction rate

λmn is leading to species i).

The size of the reaction network will vary depending upon the specific applica-

tion. Omission of an important isotope (i.e. an isotope with large reaction rates

leading to its production in addition to large abundances of the proper targets)

should be avoided. As a general rule, the total mass should be conserved through-

out the evolution. This condition is given by
∑

i YiAi = 1. Any deviation from

unity indicates that an important species has been omitted from the network.

For very small reaction networks, consisting of only a few species and a handful

of reaction rates, the differential equations describing the nucleosynthesis may have

an approximate closed form solution. However, such small networks are rare and

of limited use. Generally, the nucleosynthesis must be modeled by numerically
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integrating the set of differential equations, using a forward differencing method to

avoid numerical instability [2].

Nuclear energy generation is also related to Equation 138. The energy released

during thermonuclear processes is equal to the differences between the total initial

and final binding energies, and thus

S = 9.647× 1017
∑

i

∆YiBEi(MeV) erg g−1 . (139)

The rate of energy production is then

dS

dt
= 9.647× 1017

∑

i

dYi
dt
BEi(MeV) erg g−1s−1 . (140)

This latter quantity will be important in discussing the typical thermodynamic

conditions of various nuclear burning stages.

On a final note, one should in principle include all binary reactions in Equation

138, and also all reactions corresponding to important fusion processes, such as

3He +3 He →6 Be, 3α →12 C, 12C +12 C →24 Mg, 12C +16 O →28 Si, and 16O +16

O →32 S. Each of these reactions produces a residual in an excited state, which

subsequently may shed excitation energy via the emission of particles or radiation.

In our study, these rates are taken from either [15] or [8], as will be described later.

Additionally, one must include rates to account for the radioactive decay of unstable

isotopes.

8.2 Thermodynamic Conditions of Burning Stages

Once the reaction rates have been determined, the time evolution of the reaction

network depends only on the initial compositions, the temperature, and the density

(density appears explicitly in Equation 138, while the reaction rates are a function
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of T9). The initial compositions of each burning stage will be given in Section 8.4,

as will be specific temperatures and densities. For the time being, we make a few

general statements regarding how the thermodynamic conditions are determined.

Hydrostatic Burning

We first consider pre-explosive processes where the stellar shells exist in approximate

hydrostatic equilibrium. The temperature and density can be determined by solving

the stellar structure equations. However, an assumption that stellar environments

are in equilibrium, combined with a mechanism for energy loss, makes it possible to

estimate the thermodynamic conditions in a zone without resorting to the solution

of stellar structure.

In the absence of convection and mass loss (which are not present in single

zone calculations), the only processes affecting the thermodynamic state are nu-

clear energy generation and energy losses. Maintaining hydrostatic equilibrium

requires that the additional energy generated through nuclear processing be dissi-

pated through some mechanism, such as luminosity or neutrino loss. In the early

burning stages (hydrogen and helium burning), neutrino losses are much too small

to counter the energy generation. For carbon burning and other advanced burning

stages, neutrino losses become the dominant mechanism for power loss, and one

may use the “balanced power” approximation [12]

dS

dt
≈ dεν

dt
(141)

where εν is the total neutrino energy. In cases where the abundance of nuclear fuel is

too low to account for all of the energy losses (specifically during Carbon and Neon

burning in very massive stars), additional energy may be provided by “gravitational
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energy release”, and Equation 141 is modified to read [2]

dS

dt
≈ εν

RS

GM
. (142)

The neutrino loss rate (RHS of Equation 141) can be approximated by a simple

expression depending only on the temperature [4, 2]. For low temperatures (T9 ≤ 1),

the approximation is based on the assumption that the neutrino pair process is the

dominant source of neutrino losses. In this case, the loss rate is roughly

dεν
dt
≈ 4.9× 1018 exp(−11.86/T9) erg cm−3sec−1 . (143)

For temperatures greater than T9 = 3, a relativistic approximation yields

dεν
dt
≈ 4.6× 1015 T 99 erg g−1sec−1 . (144)

Between these temperature ranges, the relativistic form is generally used.

Nuclear binding energy may be released by hundreds or even thousands of the

reactions in the network, but usually only a few account for the majority of the

nuclear energy produced at each stage. Thus dS/dt (Equation 140) may be approx-

imated by a function of a few reaction rates and the density.

Equating these approximations for the nuclear energy production and neutrino

losses, one may solve for a temperature or a relationship between the temperature

and density. In cases where the temperature is obtained, it is generally assumed that

density scales as the cube of the temperature. In cases where only a relationship

between ρ and T9 is obtained, one may use densities predicted by more complete

stellar models to obtain estimates of the temperature.
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Explosive Burning

During the explosion of a type II supernova stellar matter is ejected by an over-

pressure resulting from a shock. After the initial explosion, the ejecta is slowed by

gravitational acceleration. The explosion and subsequent cooling of the ejecta may

be modeled as a reverse free-fall. Such a free-fall is characterized by a hydrodynamic

time scale τHD, defined as the time during which the density decreases by a factor

of e, i.e.

ρ(t) = ρ0 exp(−t/τHD) . (145)

The temperature has a similar time dependence. If one assumes t is small, this

expression yields

τHD

(

d

dt
log ρ

)−1

. (146)

The density of a sphere is given by

ρ =
3M

4πr3
(147)

and we find

d

dt
log ρ = −3

r

dr

dt
. (148)

Now consider an object of mass m falling freely under the gravitational influence of

mass M . As the mass falls inward, the reduction in potential energy translates to

an increase in kinetic energy. Assuming m is initially at rest,

m

2
ṙ2 = GMm

(

1

r
− 1

r0

)

. (149)
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This expression may be solved for ṙ of a free falling mass (we are interested in the

reverse process, so we include an additional sign change). Now we find

d

dt
log ρ =

3

r

(

2GM

r
− 2GM

r0

)1/2

=
√

24πGρ0

[

ρ

ρ0

(

1− ρ0
ρ

1/3
)]1/2

. (150)

The term in square brackets varies slowly, and for ρ/ρ0 > 1/e is approximately

unity. Hence,

τHD ≈
1√

24πGρ0
=

466√
ρ0

. (151)

The shock is relatively weak, and the initial density ρ0 will not be much higher

than the pre-shock density. The peak temperature will depend on the supernova

energy (assumed to originate from the center of the star) and radius [14]. For our

investigation, we use the peak temperatures and densities given in [2].

8.3 Fitting Reaction Rates to Parameterized Forms

Before evolving the reaction network using the conditions in the previous section,

we should review which reaction rates are being used (our cross section modeling

will only provide the neutron capture rates most significant to the production of

60Fe) and how those rates are supplied.

Before proceeding, we must say a few words regarding modifications to Hauser-

Feshbach rates at high temperatures. In Equations 32 and 134, we have assumed

a target nucleus existing in the ground state, since this is most convenient for

comparisons to measured cross sections. However, the extreme conditions found in

stellar environments can thermally populate the excited states of the target. Thus

for stellar nucleosynthesis we should use rates derived from so-called “stellar cross

sections”, which account for the thermal population of excited states. If σ̄µjk is the
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cross section for a target in state µ (summed over final states), the stellar cross

section is

σ̄∗jk =

∑

µ(2J
µ + 1)σ̄µjk exp(−Eµ/kT )

∑

µ(2Jµ + 1) exp(−Eµ/kT )
. (152)

A related quantity is the “effective cross section”, given by

σ̄effjk =
∑

µ,ν

(2Jµ + 1)Eµ

(2J0 + 1)E0
σµνjk . (153)

The stellar reaction rate may be expressed in terms of either of these quantities.

For the reaction I(j, k)L

λ∗jk =
3.732× 1010

Â
1/2
j T

3/2
9

1

GI(T9)
∫ ∞

0

∑

µ

2Jµ + 1

2J0 + 1
σ̄µjkEj exp[−11.605 (Ej + Eµ)/T9]dEj cm

3mol−1sec−1

=
3.732× 1010

Â
1/2
j T

3/2
9

1

GI(T9)

∫ ∞

0
σ̄effjk Ej exp(−11.605 Ej/T9)dEj cm

3mol−1sec−1 .

(154)

GI(T9) is the partition function defined as

G(T9) =
1

2J0 + 1

[

ω
∑

µ=0

(2Jµ + 1) exp(−11.605 Eµ/T9) +

∑

J,Π

∫ ∞

Eω
(2J + 1) exp(−11.605 E ′/T9)ρ(E ′, J,Π)dE ′

]

(155)

where the sum extends through levels of known spin and parity and ρ(E ′, J,Π) is

the usual level density. The exponential factor in the integrand dominates at high

E ′, and the integral can be cut off at a finite temperature for a given T9. The sum

over spins may also be cut off at J ≈ J0+20, since the spin dependence of the level

density is suppressed by an exponential factor (see Equation 66).

The ratio of the stellar rate to the lab rate is referred to as the stellar enhance-
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ment factor (SEF). This quantity indicates the significance of including thermally

populated states in a given reaction. The STAPRE code does not calculate an

effective cross section, and we have not calculated stellar rates for either of the

59Fe(n,γ)60Fe or 60Fe(n,γ)61Fe reactions. However, for T9 < 4 the SEF for these re-

actions from both the CRSEC and NON-SMOKER codes do not vary significantly

from unity, as seen in Table 10. As will be seen shortly, 60Fe production is signifi-

cant primarily around T9 ∼ 2, and should therefore exhibit minimal sensitivity to

the inclusion of the SEF. We have verified this explicitly, with our results provided

in Table 11. In this table, the calculated mass fractions were generated using the

Rauscher and Thielemann rates [8] for all reactions except neutron capture onto

59,60Fe, for which our rates were used (this combination of rates is designated set 2c

in the next section). The first two columns indicate which burning stage is being

evaluated. The third and fourth columns give the thermodynamic conditions of the

zone (peak temperature and density in the case of explosive burning). The last

two columns give the resulting 60Fe abundances when the SEF are omitted and in-

cluded. The differences in 60Fe production when omitting the SEF are generally less

than 30%, and most deviations greater than 30% only occur when the production

is insignificant (mass fraction below 10−6). We conclude that we may use our lab

rates in lieu of stellar rates and only introduce errors on the order of 30%. This

error is small relative to errors introduced by the uncertainties in the cross sections

and stellar structure.

Once one has obtained a stellar rate for a given reaction, one may also determine

a reverse rate through detailed balance [2]. The relationship between the forward

and reverse rates (with the forward rate λjk including a particle in the exit channel)

is

λ∗kj =
gIgj
gLgk

GI
GL

(

AIAj

ALAk

)3/2

λ∗jk exp
(

−11.605 Qjk

T9

)

. (156)
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Table 10: Stellar enhancement factors for 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe

CRSEC NON-SMOKER
T9

59Fe(n,γ)60Fe 60Fe(n,γ)61Fe 59Fe(n,γ)60Fe 60Fe(n,γ)61Fe
0.1 1.000 1.000 1.000 1.000
0.2 1.000 1.000 1.000 1.000
0.5 0.999 1.000 1.000 1.000
1.0 0.983 1.006 0.985 1.000
2.0 0.879 1.050 0.880 0.996
3.0 0.784 1.016 0.796 0.986
4.0 0.738 0.965 0.754 0.992

In this expression, GI and GL are temperature dependent partition functions, AI ,

Aj, AL, and Ak are mass numbers, and gI , gj, gL, and gk are statistical factors

given by gi = 2Ji + 1. If the forward rate corresponds to a capture reaction, the

expression is somewhat modified. These photodisintegration rates are given by

λ∗γj = 9.8677× 109T
3/2
9

gIgj
gL

GI
GL

(

AIAj

AL

)3/2

λ∗jγ exp
(

−11.605 Qjγ

T9

)

. (157)

Detailed balance assumes that the cross sections obey reciprocity, which is true for

the effective cross section. Cross sections for targets in their ground states do not

obey reciprocity, and detailed balance should only be employed using stellar rates.

Given this relationship between forward and reverse rates, it is only necessary to

tabulate forward rates in nucleosynthesis codes. Hereafter we define forward rates

as those rates which increase charge or mass.

Ideally, one would provide rates to a reaction network code by evaluating Equa-

tion 134 over many representative temperatures, storing the results in tabular form,

and interpolating as needed. The large number of rates required (at least six per

isotope for potentially thousands of isotopes) make such a method impractical. The

preferred method for providing rates to a nucleosynthesis code is to fit the tabulated

rates to a parameterized form. Many such parameterizations exist. The ones used
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Table 11: Sensitivity of 60Fe production to inclusion of stellar enhancement factors

Primary Hydrostatic/ 60Fe Mass Fraction
Fuel Explosive T9 ρ (g/cm3) without SEF with SEF
H Hydrostatic 0.03 5.00× 100 1.009× 10−44 8.914× 10−45

He Hydrostatic 0.20 1.00× 103 3.627× 10−10 6.523× 10−10

He Explosive 1.00 1.00× 104 1.169× 10−09 3.072× 10−09

He Explosive 1.50 1.00× 104 1.621× 10−05 6.446× 10−06

He Explosive 2.00 1.00× 104 1.214× 10−18 2.211× 10−18

He Explosive 2.50 1.00× 104 1.945× 10−24 1.907× 10−24

C Hydrostatic 0.80 1.00× 105 7.617× 10−07 1.522× 10−06

C Hydrostatic 1.00 1.00× 105 1.620× 10−04 2.067× 10−04

C Hydrostatic 1.20 1.00× 105 3.499× 10−04 3.515× 10−04

C Hydrostatic 1.40 1.00× 105 4.805× 10−04 3.746× 10−04

C Hydrostatic 1.60 1.00× 105 7.183× 10−04 6.287× 10−04

C Hydrostatic 1.80 1.00× 105 6.521× 10−04 5.817× 10−04

C Hydrostatic 2.00 1.00× 105 3.892× 10−04 3.688× 10−04

C Hydrostatic 2.20 1.00× 105 8.116× 10−05 6.198× 10−05

C Explosive 1.60 1.00× 105 1.137× 10−07 3.177× 10−07

C Explosive 1.80 1.00× 105 5.630× 10−05 1.038× 10−04

C Explosive 2.00 1.00× 105 7.547× 10−04 7.267× 10−04

C Explosive 2.20 1.00× 105 8.106× 10−04 8.030× 10−04

Ne Hydrostatic 1.00 3.00× 105 7.428× 10−24 1.549× 10−23

Ne Hydrostatic 1.30 3.00× 105 6.892× 10−04 5.826× 10−04

Ne Hydrostatic 1.50 3.00× 105 6.869× 10−04 5.920× 10−04

Ne Hydrostatic 1.70 3.00× 105 6.780× 10−04 5.932× 10−04

Ne Hydrostatic 2.00 3.00× 105 4.876× 10−04 4.236× 10−04

Ne Hydrostatic 2.30 3.00× 105 1.764× 10−04 1.447× 10−04

Ne Hydrostatic 2.50 3.00× 105 4.399× 10−05 3.192× 10−05

Ne Explosive 1.80 2.33× 105 7.183× 10−04 6.287× 10−04

Ne Explosive 2.00 3.20× 105 7.178× 10−04 6.283× 10−04

Ne Explosive 2.20 4.26× 105 6.880× 10−04 6.020× 10−04

Ne Explosive 2.30 4.87× 105 5.560× 10−04 4.865× 10−04

Ne Explosive 2.40 5.53× 105 2.589× 10−04 2.234× 10−04

Ne Explosive 2.50 6.25× 105 6.721× 10−05 5.423× 10−05

Ne Explosive 2.70 7.78× 105 2.097× 10−06 3.309× 10−07

Ne Explosive 2.90 9.76× 105 1.629× 10−11 7.186× 10−12

Ne Explosive 3.20 1.31× 106 4.484× 10−13 2.654× 10−13

O Hydrostatic 2.00 5.00× 105 3.378× 10−21 3.385× 10−21

O Hydrostatic 2.20 5.00× 105 5.314× 10−21 5.741× 10−21

O Explosive 2.50 1.00× 106 6.520× 10−04 5.176× 10−04

O Explosive 3.00 1.00× 106 2.185× 10−10 1.162× 10−10
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Table 12: Fitting constants for parameterized neutron capture rates

Reaction c0 c1 c2 c3
59Fe(n,γ)60Fe 7.898×106 -1.515×10−1 4.782×10−3 1.005×10−2
60Fe(n,γ)61Fe 1.383×106 -7.129×10−3 -1.523×10−3 -6.087×10−4
59Fe(n,γ)60Fe (high) 1.268×107 -1.349×10−1 3.881×10−3 1.169×10−2
60Fe(n,γ)61Fe (high) 3.546×106 -1.420×10−2 -8.479×10−4 5.732×10−2
59Fe(n,γ)60Fe (low) 3.920×106 -1.711×10−1 6.279×10−3 -2.084×10−3
60Fe(n,γ)61Fe (low) 3.516×105 2.921×10−2 -4.055×10−3 -8.411×10−2
Reaction c6 c7 c9
59Fe(n,γ)60Fe 5.309×10−3 7.698×1010 1.024×102
60Fe(n,γ)61Fe 1.424×10−2 4.813×109 6.477×101
59Fe(n,γ)60Fe (high) 9.403×10−3 7.698×1010 1.024×102
60Fe(n,γ)61Fe (high) 7.860×10−3 4.813×109 6.477×101
59Fe(n,γ)60Fe (low) 4.933×10−3 7.698×1010 1.024×102
60Fe(n,γ)61Fe (low) 2.240×10−2 4.813×109 6.477×101

in the current study are given in [13] and [8]. We make particular mention of the

form used for neutron capture reactions:

λ∗nγ = c0ρ
(

T9
0.348

)c3

exp
[

c1 ∗ (T9 − 0.348) + c2 ∗ (T9 − 0.348)2
]

λ∗γn = λ∗nγc7
T
3/2
9

ρ
exp

[

− c9
T9

]

GI
GL

. (158)

Equation 157 indicates that c7 is proportional to a product of statistical factors and

masses and c9 is proportional to the reaction Q-value. The remaining constants

(c0 - c3) are determined by making a least squares fit to calculated reaction rates.

The differences between the calculated rates and the parameterized fits are generally

small. Our fits to our recommended 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates, presented

in Table 12, do not vary from the calculated rates by more than 4% for any given

T9. The constants c4, c5, and c8 of Equation 158 are zero for each of these fits.
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8.4 Nuclear Burning Stages

We now present the results of our nucleosynthesis calculations using ten sets of

reaction rates. All calculations were carried out using the single zone nucleosynthesis

code BURN [6]. This code embodies the single zone stellar physics discussed in

the previous sections. To investigate the sensitivity of 60Fe production to the two

capture rates, we consider the following rate sets

• Set 1a: The rates on which the 1995 GCE survey was based [15, 10, 9]. These

rates come primarily from [13] and [3]. An additional factor of 1.7 has been

applied to the 12C(α,n)15O rate as described in Section 1.4. We will refer to

this rate set as the WFHZ set. Sets 1b-1e are based on this set.

• Set 1b: The same as set 1a, except with our recommended rates for 59Fe(n,γ)60Fe

and 60Fe(n,γ)61Fe. The initial compositions used in this set are identical to

those used in set 1a (initial compositions are determined cumulatively for the

other WFHZ rate sets).

• Set 1c: The same as set 1a except with our recommended rates for 59Fe(n,γ)60Fe

and 60Fe(n,γ)61Fe. Initial compositions for this set and sets 1d and 1e are de-

termined cumulatively.

• Set 1d: Set 1a except using the upper uncertainty of our recommended rates

as shown in Figure 45.

• Set 1e: Set 1a except using the lower uncertainty of our recommended rates

as shown in Figure 45.

• Set 2a: The rates used in the more recent stellar evolution survey [7]. These

rates come primarily from [8]. An additional factor of 1.2 has been applied to

the 12C(α,n)15O rate as described in Section 1.4. We will refer to this rate set

as the RT set. Sets 2b-2e are based on this set.
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Table 13: Isotopes included in reaction networks

Element Masses Element Masses Element Masses Element Masses
H 1-3 Na 20-25 Sc 40-51 Ga 67-75
He 3-4 Mg 22-28 Ti 42-52 Ge 68-76
Li 6-7 Al 24-29 V 44-53 As 71-79
Be 7-9 Si 26-34 Cr 46-56 Se 72-82
B 9-11 P 28-35 Mn 48-57 Br 75-85
C 11-14 S 30-38 Fe 50-62 Kr 76-88
N 13-17 Cl 33-39 Co 53-65 Rb 81-89
O 14-20 Ar 34-42 Ni 56-68 Sr 82-90
F 17-21 K 36-43 Cu 61-71 Y 87-91
Ne 18-24 Ca 38-50 Zn 64-74 Zr 90-98

• Set 2b: The same as set 2a, except with our recommended rates for 59Fe(n,γ)60Fe

and 60Fe(n,γ)61Fe. The initial compositions used in this set are identical to

those used in set 2a. (initial compositions are determined cumulatively for

the other RT rate sets).

• Set 2c: The same as set 2a except with our recommended rates for 59Fe(n,γ)60Fe

and 60Fe(n,γ)61Fe. The initial compositions for this set and the two sets fol-

lowing are determined cumulatively.

• Set 2d: Set 2a except using the upper uncertainty of our recommended rates

as shown in Figure 45.

• Set 2e: Set 2a except using the lower uncertainty of our recommended rates

as shown in Figure 45.

Each of these calculations include the network of 336 isotopes presented in Table

13.

For advanced burning stages, we investigate nucleosynthesis over a range of

typical temperatures. In the 1995 survey [15], most of the 60Fe was produced in

neon burning shells, both pre- and post-explosively. Hence, we focus our attention

on these stages in particular, as well as carbon and oxygen burning.
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Table 14: 26Al and 60Fe from hydrostatic hydrogen burning

Set Evolution Time (sec) 26Al Mass Fraction 60Fe Mass Fraction
1a 2.717×1015 5.296×10−11 3.715×10−45
1b 2.717×1015 5.296×10−11 1.004×10−44
1c 2.717×1015 5.296×10−11 1.004×10−44
1d 2.717×1015 5.296×10−11 1.597×10−44
1e 2.717×1015 5.296×10−11 5.167×10−45
2a 2.715×1015 5.108×10−11 1.009×10−44
2b 2.715×1015 5.108×10−11 8.839×10−45
2c 2.715×1015 5.108×10−11 8.839×10−45
2d 2.715×1015 5.108×10−11 1.406×10−44
2e 2.715×1015 5.108×10−11 4.549×10−45

Hydrostatic Hydrogen Burning

We begin our single zone nucleosynthesis with thermodynamic conditions typical of

a hydrogen envelope. The nuclear fuel is processed hydrostatically at a temperature

of 0.03 × 109 K and a density of 5 g/cm3. The initial composition of the star is

70.6% 1H and 27.5% 4He, plus solar seeds from [1] (listed in Appendix F).

The primary nuclear processes that occur in hydrogen burning involve the fusion

of protons to other very light isotopes (deuterons, 3He, 4He, etc...). Hence the

largest nuclear flows result in the production of 4He from 1H. However, there are

also significant flows among the carbon and oxygen species producing 14N in the

classic CNO cycle. For our purposes, the burn is allowed to continue until the

hydrogen fuel is used up, i.e. the mass fraction of hydrogen (X1H) drops below

10−5. The evolution time and resulting mass fractions of 26Al and 60Fe are listed in

Table 14.

As expected, the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates have no detectable effect

on the 26Al abundances at this stage. Production of 60Fe is completely insignificant.

As explained earlier, 60Fe production will not be appreciable until we reach the

advanced nuclear burning stages.
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Hydrostatic Helium Burning

Following the depletion of hydrogen, we simulate a helium burning shell. We first

explore hydrostatic burning. Typical thermodynamic conditions for this nuclear

burning stage, as outlined in [2], consist of a temperature of 0.2 × 109 K and a

density of 103 g/cm3. For the initial composition of the helium shell, we take the

ashes of the previous respective hydrogen burning (except for rate sets 1b and 2b,

which use the hydrogen burning ashes from sets 1a and 2a).

The primary nuclear flow during helium burning is the 3α reaction making 12C,

which contributes heavily to the depletion of the helium fuel. Also significant is

the production of 16O by 12C(α,γ). 22Ne is also produced in smaller but significant

abundances.

The hydrostatic evolution is allowed to proceed until the helium is depleted to

a mass fraction less than 10−5. The resulting mass fractions of the two isotopes of

interest in the present study are listed in Table 15. Again, the mass fractions for

60Fe are comparatively small (less than ∼ 10−7), and varying the 59Fe(n,γ)60Fe and

60Fe(n,γ)61Fe rates has a negligible effect on the production of 26Al.

It is interesting to note that the 60Fe mass fractions are considerably, larger

than those for 26Al. Intuitively, one would suppose that the lighter isotopes would

be produced in greater abundances in the early burning stages. However, 26Al

lies on the proton rich side of stability, and cannot be made by the s-process. In

stellar environments 26Al is formed by charged particle induced reactions (primarily

25Mg(p,γ)26Al), and the low energy cross sections of such reactions are suppressed

by the Coulomb barrier. 60Fe, on the other hand, lies on the neutron rich side of

stability and is readily formed via neutron capture, which tends to have large cross

sections at low energies.
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Table 15: 26Al and 60Fe from hydrostatic helium burning

Set Evolution Time (sec) 26Al Mass Fraction 60Fe Mass Fraction
1a 4.231×1013 6.240×10−19 2.415×10−10
1b 4.231×1013 6.240×10−19 7.124×10−10
1c 4.231×1013 6.240×10−19 7.124×10−10
1d 4.231×1013 6.240×10−19 5.711×10−10
1e 4.231×1013 6.240×10−19 5.112×10−10
2a 4.166×1013 5.137×10−19 3.627×10−10
2b 4.166×1013 5.137×10−19 6.490×10−10
2c 4.166×1013 5.137×10−19 6.490×10−10
2d 4.166×1013 5.137×10−19 5.244×10−10
2e 4.166×1013 5.137×10−19 4.637×10−10

Explosive Helium Burning

Although 60Fe is not abundantly produced during hydrostatic helium burning, it

can be made explosively. As explained previously, we simulate explosive conditions

in our single zone calculations via the time dependence of the temperature and

density, which are assumed to have initial peak values as the shock enters the shell

and subsequently reduce exponentially. We investigate a range of peak temperatures

from T9 = 1 to T9 = 2.5, as suggested in [2]. We assume a peak density of 104 g/cm3.

The initial composition consists of the ashes of hydrogen burning. The evolution is

allowed to continue until the temperature drops below T9 = 0.1

The resulting abundances of 26Al and 60Fe are shown in Table 16. We note

that 26Al is produced in great amounts at T9 = 1.0, with the rate sets based on

RT (sets 2a-2e) producing roughly four times more than the WFHZ sets. 60Fe is

produced in greater abundance at T9 = 1.5. The rate sets based on RT produce

nearly 20 times less 60Fe. The production of 26Al is negligibly affected by the

59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates at this time. However, the sets that include

our recommended rates for these two reactions (1b, 1c, 2b, and 2c) result in 60Fe

abundances that are roughly a factor of two smaller that those from the WFHZ
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Table 16: 26Al and 60Fe from explosive helium burning

26Al Mass Fraction
Set T9 = 1.0 T9 = 1.5 T9 = 2.0 T9 = 2.5
1a 7.122×10−4 8.224×10−11 4.606×10−11 1.522×10−11
1b 7.122×10−4 8.276×10−11 4.766×10−11 1.541×10−11
1c 7.122×10−4 8.276×10−11 4.766×10−11 1.541×10−11
1d 7.122×10−4 8.270×10−11 4.840×10−11 1.543×10−11
1e 7.122×10−4 8.255×10−11 4.537×10−11 1.528×10−11
2a 2.546×10−3 8.898×10−10 1.168×10−10 7.780×10−10
2b 2.546×10−3 9.153×10−10 1.179×10−10 7.793×10−10
2c 2.546×10−3 9.153×10−10 1.179×10−10 7.793×10−10
2d 2.546×10−3 9.314×10−10 1.180×10−10 7.780×10−10
2e 2.546×10−3 8.702×10−10 1.130×10−10 7.682×10−10

60Fe Mass Fraction
Set T9 = 1.0 T9 = 1.5 T9 = 2.0 T9 = 2.5
1a 1.717×10−9 2.119×10−4 1.422×10−19 8.084×10−25
1b 8.887×10−9 1.154×10−4 1.027×10−19 7.180×10−25
1c 8.887×10−9 1.154×10−4 1.027×10−19 7.180×10−25
1d 1.390×10−8 3.698×10−5 1.206×10−19 7.155×10−25
1e 4.421×10−9 2.845×10−4 1.766×10−19 8.391×10−25
2a 1.169×10−9 1.621×10−5 1.214×10−18 1.945×10−24
2b 3.183×10−9 6.585×10−6 2.332×10−18 1.905×10−24
2c 3.183×10−9 6.585×10−6 2.332×10−18 1.905×10−24
2d 5.050×10−9 1.458×10−6 3.408×10−18 1.895×10−24
2e 1.567×10−9 2.916×10−5 1.881×10−18 2.071×10−24

and RT sets (1a and 2a). Using the upper and lower values of our rates results

in lower and higher abundances, respectively. This possibly suggests that at this

stage of nuclear burning the destruction reaction out of 60Fe is more significant (i.e.

When both rates are higher there is a greater production of 60Fe, but also a greater

depletion of 60Fe via 60Fe(n,γ)61Fe).

Hydrostatic Carbon Burning

In the carbon burning phase, the reaction of primary importance is the fusion of 12C

forming 24Mg in an excited state, which subsequently decays by particle emission

to 23Mg, 20Ne, or 23Na. The decay to 23Mg is endothermic, but could possibly be
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a significant source of neutrons. Other reactions of secondary importance occur at

this stage as well. The 23Na(p,α)20Ne converts most of the sodium produced by

carbon fusion into neon. The neon may then subsequently capture alpha particles

and produce 24Mg. These latter two nuclides, 20Ne and 24Mg, are the chief products

of carbon burning.

In our analysis, we consider a range of temperatures for hydrostatic carbon

burning from T9 = 1.2 to T9 = 2.2. The evolution continues until the mass fraction

of 12C drops below 10−3. The evolution time varies according to temperature.

For T9 = 1.2, carbon burning continues for a period of ∼ 2.9 × 107 seconds. At

T9 = 1.6, the time has reduced to ∼ 3.2 × 104 seconds. For every increase of

2×108 K in temperature thereafter, the evolution time drops by roughly an order of

magnitude, so that at T9 = 2.2 the whole process occurs in ∼ 37 seconds. Variations

in evolution time between the rate sets is always within 10% and usually within 5%.

Temperatures below T9 = 1.2 were also considered. These low temperatures resulted

in 60Fe abundances several orders of magnitude smaller than those at T9 = 1.2, and

are not included in the results presented here. We assume a density of 105 g/cm3

in all cases. Initial compositions are the ashes of the respective hydrostatic helium

burning, with the appropriate exceptions made for sets 1b and 2b. The results are

summarized in Table 17.

The 26Al abundances are similar for all rate sets, even between those based on

RT and WFHZ. Our recommended rates generally result in a slightly reduced abun-

dance of 60Fe at T9 = 1.5, where the production of 60Fe is most significant. Again

we note that the rate sets using the upper limits of uncertainty in our calculated

59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates (sets 1d and 2d) result in smaller abundances

of 60Fe, while the lower rates (sets 1e and 2e) result in larger abundances. Inter-

estingly enough, at T9 = 2.0, the production of 60Fe shows little sensitivity to the

59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates.
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Table 17: 26Al and 60Fe from hydrostatic carbon burning

26Al Mass Fraction
Set T9 = 1.2 T9 = 1.4 T9 = 1.6 T9 = 1.8 T9 = 2.0 T9 = 2.2
1a 3.94×10−10 3.10×10−8 9.11×10−6 6.52×10−5 1.71×10−5 6.15×10−7
1b 4.14×10−10 3.09×10−8 9.08×10−6 6.75×10−5 1.84×10−5 7.17×10−7
1c 4.14×10−10 3.09×10−8 9.08×10−6 6.75×10−5 1.84×10−5 7.17×10−7
1d 3.55×10−10 3.14×10−8 9.10×10−6 7.03×10−5 1.90×10−5 6.86×10−7
1e 3.77×10−10 3.12×10−8 9.17×10−6 6.51×10−5 1.88×10−5 7.06×10−7
2a 5.08×10−10 4.03×10−8 9.80×10−6 4.58×10−5 1.29×10−5 7.08×10−7
2b 4.97×10−10 3.85×10−8 9.74×10−6 4.78×10−5 1.22×10−5 6.71×10−7
2c 4.97×10−10 3.85×10−8 9.74×10−6 4.78×10−5 1.22×10−5 6.71×10−7
2d 4.92×10−10 4.12×10−8 9.69×10−6 4.79×10−5 1.23×10−5 7.39×10−7
2e 5.22×10−10 4.12×10−8 9.80×10−6 5.00×10−5 1.29×10−5 7.32×10−7

60Fe Mass Fraction
Set T9 = 1.2 T9 = 1.4 T9 = 1.6 T9 = 1.8 T9 = 2.0 T9 = 2.2
1a 2.64×10−6 2.35×10−4 4.70×10−4 5.81×10−4 4.12×10−4 1.49×10−4
1b 2.12×10−6 1.02×10−4 3.16×10−4 4.51×10−4 3.77×10−4 1.11×10−4
1c 2.12×10−6 1.02×10−4 3.16×10−4 4.51×10−4 3.77×10−4 1.11×10−4
1d 4.84×10−7 2.80×10−5 2.37×10−4 3.85×10−4 3.52×10−4 8.49×10−5
1e 3.65×10−6 3.11×10−4 5.84×10−4 6.51×10−4 4.46×10−4 1.40×10−4
2a 3.50×10−4 4.81×10−4 7.18×10−4 6.52×10−4 3.89×10−4 8.12×10−5
2b 3.56×10−4 3.80×10−4 6.31×10−4 5.82×10−4 3.68×10−4 5.89×10−5
2c 3.56×10−4 3.80×10−4 6.31×10−4 5.82×10−4 3.68×10−4 5.89×10−5
2d 1.79×10−4 1.67×10−4 5.17×10−4 5.26×10−4 3.53×10−4 4.51×10−5
2e 4.63×10−4 6.60×10−4 8.44×10−4 7.28×10−4 4.02×10−4 7.63×10−5

Explosive Carbon Burning

Any significant amount of 60Fe produced in hydrostatic carbon burning was made

within the first second. We should thus expect that the production of 60Fe in

explosive carbon burning will be similar to the maximum abundances produced in

the hydrostatic case. For these explosive calculations, we use the ashes of helium

burning as our initial composition. We consider peak temperatures ranging from

T9 = 1.6 to T9 = 2.2, with the peak density being 105 g/cm3 in all cases. The

evolution continues until the temperature drops to T9 = 0.1. Results are given in

Table 18.
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Table 18: 26Al and 60Fe from explosive carbon burning

26Al Mass Fraction
Set T9 = 1.6 T9 = 1.8 T9 = 2.0 T9 = 2.2
1a 2.450×10−6 2.823×10−6 6.205×10−5 2.070×10−4
1b 2.464×10−6 3.090×10−6 6.253×10−5 2.073×10−4
1c 2.464×10−6 3.090×10−6 6.253×10−5 2.073×10−4
1d 2.490×10−6 3.215×10−6 6.297×10−5 2.074×10−4
1e 2.457×10−6 2.904×10−6 6.179×10−5 2.071×10−4
2a 2.881×10−6 2.534×10−6 1.190×10−5 6.658×10−5
2b 2.882×10−6 2.566×10−6 1.223×10−5 6.665×10−5
2c 2.882×10−6 2.566×10−6 1.223×10−5 6.665×10−5
2d 2.883×10−6 2.591×10−6 1.248×10−5 6.667×10−5
2e 2.881×10−6 2.543×10−6 1.179×10−5 6.659×10−5

60Fe Mass Fraction
Set T9 = 1.6 T9 = 1.8 T9 = 2.0 T9 = 2.2
1a 1.276×10−6 1.806×10−4 6.987×10−4 7.397×10−4
1b 6.239×10−6 2.907×10−4 6.926×10−4 7.527×10−4
1c 6.239×10−6 2.907×10−4 6.926×10−4 7.527×10−4
1d 8.823×10−6 1.870×10−4 6.447×10−4 7.406×10−4
1e 3.338×10−6 3.249×10−4 8.292×10−4 7.925×10−4
2a 1.137×10−7 5.630×10−5 7.547×10−4 8.106×10−4
2b 3.396×10−7 1.082×10−4 7.280×10−4 8.025×10−4
2c 3.399×10−7 1.083×10−4 7.280×10−4 8.025×10−4
2d 5.391×10−7 1.048×10−4 6.793×10−4 7.963×10−4
2e 1.660×10−7 7.936×10−5 8.544×10−4 8.217×10−4

Again, we see no significant change in 26Al abundances when the 59Fe(n,γ)60Fe

and 60Fe(n,γ)61Fe rates are modified. More significant (though still relatively minor)

differences arise between the sets based on WFHZ and those based on RT, with

RT producing less 26Al at higher temperatures. The production of 60Fe is mostly

independent of the rate set for the two higher temperatures. For T9 = 1.6 and

T9 = 1.8, the RT sets produce less 60Fe than the WFHZ sets by factors of ∼ 10 and

∼ 2, respectively. In the previous burning stages, our recommended rates generally

led to smaller 60Fe abundances. In explosive carbon burning, this is no longer the

case. For the two higher temperatures, the production is roughly the same when

our rates are substituted. Using our rates at the lower temperatures results in more
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60Fe by a factor of 2-3.

Another interesting occurrence at these lower temperatures has to do with the

upper and lower limits of our recommended cross sections. In the previous stages,

the lower cross sections resulted in greater abundances of 60Fe and vice versa. The

T9 = 1.6 results show an opposite effect: the higher cross sections result in greater

abundances. Here it is more likely that the destruction of 60Fe by neutron capture

does not play as large a role.

We now should emphasize a key result. Although our recommended 59Fe(n,γ)60Fe

and 60Fe(n,γ)61Fe rates tend to result in somewhat smaller 60Fe abundances, the

differences arising from the base set of rates used (WFHZ v. RT) appear to be

more significant. In the hydrostatic stages where 60Fe production is significant (i.e.

carbon burning), RT based rates produce more 60Fe than WFHZ based rates. In

explosive nucleosynthesis the RT sets produce somewhat less 60Fe. This perhaps

implies that the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates are not the primary under-

lying cause of the disparity between the flux ratio calculated in the most recent

nucleosynthesis and observation. More will be said about this issue in Section 8.5

and the conclusions.

Additionally, in previous studies 60Fe was produced primarily in the neon burn-

ing shell [9]. What we are seeing here is 60Fe is being produced abundantly in

thermodynamic conditions typical of carbon burning.

Hydrostatic Neon Burning

The issue of initial compositions becomes somewhat more complex once we reach

neon burning. Since our primary goal is to study the uncertainties in 60Fe production

based on the two capture rates, and since the production of 26Al will show only a

minimal sensitivity to these rates, we would like to use the ashes of the hydrostatic

carbon burning that produced the greatest abundance of 60Fe. For all of the WFHZ
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based sets, these are the ashes from T9 = 1.8. However, for the RT set (2a), more

60Fe is produced at T9 = 1.6. We desire to maintain consistency between sets based

on RT and sets based on WFHZ, and thus use the ashes of T9 = 1.8 hydrostatic

carbon burning as initial compositions for the WFHZ based sets (1a-1e), and the

ashes of T9 = 1.6 for the RT based sets (2a-2e). This means a direct comparison

between all sets to gauge the effect of using WFHZ v. RT will no longer be possible.

However, we will still be able to investigate the sensitivity to our 59Fe(n,γ)60Fe and

60Fe(n,γ)61Fe rates.

The primary reactions in neon burning ultimately produce oxygen from neon.

At temperatures where oxygen fusion is not accessible, the 20Ne(γ,α)16O rate can

be significant, and this photodissociation augments the abundance of oxygen fuel.

The alpha particles produced may subsequently capture onto 16O or 20Ne, so that

24Mg will also be produced in abundance. Alpha particle capture onto magnesium

results in the synthesis of silicon.

For hydrostatic neon burning, we consider temperatures ranging from T9 = 1.3

to T9 = 2.5, and a density of 3 × 105 g/cm3. The composition evolves at these

temperatures and densities until the mass fraction of 20Ne drops below 10−3. Typical

timescales for this evolution range from 1010 seconds to 10−2 seconds, with the longer

times associated with the lower temperatures. Since the initial compositions of the

RT and WFHZ sets are different, the evolution times differ, though never by more

than 50%. Varying only the the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates changes the

evolution time by only ∼5%.

The abundances of 26Al and 60Fe following hydrostatic neon burning are shown

in Table 19. At low temperatures the abundances of 26Al are small. This is also

true for 60Fe in the WFHZ based sets, with 60Fe abundances not being significant

until T9 = 1.7. For T9 > 1.5 in the WFHZ sets and for all T9 in the RT sets, the

60Fe abundances are similar to those used in the initial compositions (see Table
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Table 19: 26Al and 60Fe from hydrostatic neon burning

26Al Mass Fraction
Set T9 = 1.3 T9 = 1.5 T9 = 1.7 T9 = 2.0 T9 = 2.3 T9 = 2.5
1a 5.00×10−13 7.24×10−10 3.39×10−7 7.51×10−5 5.99×10−5 4.35×10−5
1b 5.00×10−13 7.24×10−10 3.39×10−7 7.51×10−5 5.99×10−5 4.37×10−5
1c 4.80×10−13 7.48×10−10 3.37×10−7 7.69×10−5 6.34×10−5 4.47×10−5
1d 5.09×10−13 7.32×10−10 3.30×10−7 7.36×10−5 6.01×10−5 4.62×10−5
1e 4.90×10−13 7.62×10−10 3.36×10−7 7.51×10−5 6.23×10−5 4.41×10−5
2a 1.91×10−12 2.47×10−9 7.13×10−7 4.21×10−5 2.48×10−5 1.60×10−5
2b 1.91×10−12 2.47×10−9 7.23×10−7 4.21×10−5 2.46×10−5 1.59×10−5
2c 1.77×10−12 2.40×10−9 6.68×10−7 4.26×10−5 2.38×10−5 1.65×10−5
2d 1.80×10−12 2.70×10−9 7.66×10−7 4.42×10−5 2.43×10−5 1.67×10−5
2e 1.89×10−12 2.47×10−9 6.84×10−7 4.21×10−5 2.41×10−5 1.65×10−5

60Fe Mass Fraction
Set T9 = 1.3 T9 = 1.5 T9 = 1.7 T9 = 2.0 T9 = 2.3 T9 = 2.5
1a 1.52×10−16 1.27×10−13 3.07×10−4 5.48×10−4 4.99×10−4 4.38×10−4
1b 1.52×10−16 1.62×10−13 3.07×10−4 5.44×10−4 4.76×10−4 3.78×10−4
1c 7.20×10−17 7.19×10−14 2.37×10−4 4.22×10−4 3.68×10−4 2.91×10−4
1d 6.42×10−17 6.66×10−14 2.00×10−4 3.57×10−4 2.99×10−4 2.19×10−4
1e 1.08×10−16 9.83×10−14 3.43×10−4 6.13×10−4 5.50×10−4 4.65×10−4
2a 6.89×10−4 6.87×10−4 6.78×10−4 4.88×10−4 1.76×10−4 4.40×10−5
2b 6.66×10−4 6.81×10−4 6.82×10−4 4.86×10−4 1.65×10−4 3.52×10−5
2c 5.85×10−4 5.94×10−4 5.95×10−4 4.25×10−4 1.44×10−4 3.09×10−5
2d 4.25×10−4 4.77×10−4 4.88×10−4 3.47×10−4 1.11×10−4 2.09×10−5
2e 8.27×10−4 8.19×10−4 7.96×10−4 5.72×10−4 2.04×10−4 4.97×10−5

17). The general trend appears to be that the abundance of 60Fe does not change

much during the course of neon burning. The nuclide exists essentially in statistical

equilibrium, being produced and destroyed at roughly the same rate. In no case

has the abundance of 60Fe increased significantly. This again suggests that most of

the 60Fe is made in conditions typical of hydrostatic carbon burning.

Explosive Neon Burning

For explosive neon burning, we consider peak temperatures ranging from T9 = 1.8

to T9 = 3.2. In massive stars, the entropy in the convective neon burning shell is

roughly constant prior to and after the shock. This condition results in a relationship
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Table 20: 26Al and 60Fe from explosive neon burning

26Al Mass Fraction
Set T9 = 1.8 T9 = 2.0 T9 = 2.2 T9 = 2.3 T9 = 2.4
1a 6.503×10−5 6.540×10−5 7.604×10−5 1.040×10−4 1.251×10−4
1b 6.503×10−5 6.540×10−5 7.604×10−5 1.040×10−4 1.251×10−4
1c 6.734×10−5 6.772×10−5 7.868×10−5 1.073×10−4 1.285×10−4
1d 7.014×10−5 7.054×10−5 8.188×10−5 1.114×10−4 1.323×10−4
1e 6.489×10−5 6.526×10−5 7.588×10−5 1.038×10−4 1.252×10−4
2a 9.957×10−6 2.282×10−5 1.419×10−4 1.894×10−4 1.255×10−4
2b 9.957×10−6 2.282×10−5 1.420×10−4 1.893×10−4 1.255×10−4
2c 9.890×10−6 2.272×10−5 1.435×10−4 1.905×10−4 1.262×10−4
2d 9.844×10−6 2.265×10−5 1.445×10−4 1.917×10−4 1.268×10−4
2e 9.953×10−6 2.281×10−5 1.419×10−4 1.886×10−4 1.253×10−4

60Fe Mass Fraction
Set T9 = 1.8 T9 = 2.0 T9 = 2.2 T9 = 2.3 T9 = 2.4
1a 5.807×10−4 5.807×10−4 5.784×10−4 5.673×10−4 5.264×10−4
1b 5.807×10−4 5.807×10−4 5.783×10−4 5.660×10−4 5.175×10−4
1c 4.510×10−4 4.509×10−4 4.490×10−4 4.391×10−4 4.002×10−4
1d 3.849×10−4 3.849×10−4 3.831×10−4 3.738×10−4 3.357×10−4
1e 6.509×10−4 6.508×10−4 6.482×10−4 6.353×10−4 5.858×10−4
2a 7.183×10−4 7.178×10−4 6.880×10−4 5.560×10−4 2.589×10−4
2b 7.183×10−4 7.180×10−4 6.904×10−4 5.581×10−4 2.564×10−4
2c 6.307×10−4 6.303×10−4 6.039×10−4 4.880×10−4 2.239×10−4
2d 5.169×10−4 5.166×10−4 4.951×10−4 3.999×10−4 1.816×10−4
2e 8.437×10−4 8.432×10−4 8.079×10−4 6.538×10−4 3.041×10−4

between the peak temperature and density, where ρp = 4× 104 g/cm3K27 T 39p [14].

Initial compositions are the same as those for hydrostatic neon burning. The mass

fractions of 26Al and 60Fe resulting from these explosive runs are summarized in

Table 20. Note that there are two parts to this table for temperatures of T9 < 2.45

and T9 > 2.45.

While 26Al is being produced at lower temperatures (compare to the initial

compositions in Table 17, 60Fe abundances remain essentially unmodified up to

temperature of T9 = 2.4. Above T9 = 2.4, the 60Fe begins to be depleted.
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Table 20: (continued)

26Al Mass Fraction
Set T9 = 2.5 T9 = 2.7 T9 = 2.9 T9 = 3.2
1a 5.161×10−5 5.645×10−7 6.762×10−8 2.317×10−8
1b 5.181×10−5 5.643×10−7 6.817×10−8 2.274×10−8
1c 5.284×10−5 5.672×10−7 6.842×10−8 2.316×10−8
1d 5.432×10−5 5.677×10−7 6.819×10−8 2.325×10−8
1e 5.164×10−5 5.927×10−7 6.795×10−8 2.306×10−8
2a 4.582×10−5 2.907×10−7 3.452×10−8 1.487×10−8
2b 4.583×10−5 2.905×10−7 3.438×10−8 1.483×10−8
2c 4.599×10−5 2.865×10−7 3.457×10−8 1.513×10−8
2d 4.607×10−5 2.829×10−7 3.490×10−8 1.520×10−8
2e 4.592×10−5 2.912×10−7 3.444×10−8 1.479×10−8

60Fe Mass Fraction
Set T9 = 2.5 T9 = 2.7 T9 = 2.9 T9 = 3.2
1a 4.489×10−4 2.252×10−4 5.174×10−7 2.203×10−12
1b 4.036×10−4 2.248×10−5 2.813×10−10 1.019×10−12
1c 3.107×10−4 1.726×10−5 1.988×10−10 1.169×10−12
1d 2.418×10−4 2.689×10−6 1.471×10−10 8.159×10−13
1e 4.836×10−4 1.093×10−4 4.092×10−10 1.494×10−12
2a 6.721×10−5 2.097×10−6 1.629×10−11 4.484×10−13
2b 6.167×10−5 2.658×10−7 9.228×10−12 2.355×10−13
2c 5.375×10−5 2.282×10−7 6.927×10−12 2.420×10−13
2d 4.074×10−5 2.938×10−8 5.195×10−12 1.389×10−13
2e 7.801×10−5 1.479×10−6 1.133×10−11 3.663×10−13

Hydrostatic and Explosive Oxygen Burning

Little 60Fe has been produced beyond carbon burning in our investigation. Nuclear

stages beyond neon burning, such as oxygen and silicon burning, generally occur at

higher temperatures. As we have just seen in the neon burning analysis, 60Fe tends

to be destroyed at higher temperatures. Thus we can expect no 60Fe to be produced

in oxygen burning, and more than likely any existing abundances will be depleted.

The key nuclear process in oxygen burning is the fusion of two 16O to form 32S in

an excited state, which subsequently decays via particle emission to 31S, 31P, 30P, and

28Si. In explosive conditions the fusion of 16O and 12C may be of significance, as well

as the photodissociation of oxygen via 16O(γ,α)12C. Photodissociation also tends to
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destroy elements heavier than iron, and the chief remnants of both hydrostatic and

explosive oxygen burning will lie between silicon (Z=14) and chromium (Z=24).

Hydrostatic oxygen burning is considered for temperatures of T9 = 2.0 and

T9 = 2.2, using a density of 5×105 g/cm3. The explosive runs are taken at T9 = 2.5

and T9 = 3.0, using a density of 1× 106 g/cm3. Initial compositions for the WFHZ

based sets are the ashes of hydrostatic neon burning at T9 = 2.0, and the ashes

from the T9 = 1.3 hydrostatic neon run for the RT based sets. These compositions

were chosen because they are the most rich in 60Fe. Results are given in Table 21.

The only case with a significant remnant of 60Fe is explosive oxygen burning at

T9 = 2.5. In this case, the zone cools rapidly, reaching a temperature of T9 = 0.1 in

∼ 4 seconds. Essentially, there isn’t enough time to destroy the 60Fe. However, at

higher temperatures the destruction reactions exhaust any 60Fe abundance.

8.5 Analysis of Resulting 26Al and 60Fe Abundances

We now summarize the results of the various single zone nucleosynthesis calculations

and make some general statements regarding the abundances of 26Al and 60Fe.

We begin with the sensitivity of the production of 26Al to variations in the

59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe capture rates. We have already seen that this sen-

sitivity is low. The abundances of 26Al are presented graphically in Figures 54

and 55. Figure 54 includes all rate sets based on the WFHZ rates (sets 1a-1e),

and Figure 55 includes the RT based sets (sets 2a-2e). The nuclear burning stages

considered are listed on the horizontal axis. The stages are named by the primary

fuel, whether they are hydrostatic (h) or explosive (x), and the temperature in T9

(this is the peak temperature for explosive calculations). The lower panel in these

figures shows the mass fraction of 26Al resulting from the burning stage listed on the

ordinate axis. The upper panel shows the ratio of the 26Al mass fraction for a given

rate set compared to the mass fraction in the unmodified base set, i.e. the ratio of
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Table 21: 26Al and 60Fe from hydrostatic and explosive oxygen burning

26Al Mass Fraction
Hydrostatic Explosive

Set T9 = 2.0 T9 = 2.2 T9 = 2.5 T9 = 3.0
1a 1.756×10−14 5.015×10−13 1.556×10−5 4.057×10−8
1b 1.879×10−14 4.775×10−13 1.555×10−5 3.997×10−8
1c 1.823×10−14 5.023×10−13 1.588×10−5 3.992×10−8
1d 1.793×10−14 4.708×10−13 1.504×10−5 4.037×10−8
1e 1.795×10−14 4.940×10−13 1.555×10−5 4.027×10−8
2a 6.699×10−15 5.281×10−13 1.065×10−5 5.419×10−8
2b 7.295×10−15 5.172×10−13 1.050×10−5 5.424×10−8
2c 6.896×10−15 5.663×10−13 9.752×10−6 5.415×10−8
2d 7.025×10−15 5.623×10−13 1.003×10−5 5.409×10−8
2e 6.680×10−15 5.500×10−13 1.039×10−5 5.431×10−8

60Fe Mass Fraction
Hydrostatic Explosive

Set T9 = 2.0 T9 = 2.2 T9 = 2.5 T9 = 3.0
1a 2.905×10−16 1.539×10−18 5.272×10−4 2.097×10−10
1b 1.703×10−16 4.296×10−19 4.856×10−4 9.935×10−11
1c 1.736×10−16 4.691×10−19 3.739×10−4 7.963×10−11
1d 1.335×10−16 3.036×10−19 2.974×10−4 5.471×10−11
1e 2.312×10−16 7.884×10−19 5.718×10−4 1.362×10−10
2a 3.378×10−21 5.314×10−21 6.520×10−4 2.185×10−10
2b 3.434×10−21 5.094×10−21 6.030×10−4 1.413×10−10
2c 3.431×10−21 5.762×10−21 5.132×10−4 1.096×10−10
2d 3.509×10−21 6.149×10−21 3.462×10−4 5.930×10−11
2e 3.306×10−21 5.039×10−21 7.677×10−4 2.130×10−10

sets 1b-1e to 1a and sets 2b-2e to 2a. As expected, the production of 26Al is mostly

unmodified by variations in the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe capture rates. The

small variations that do occur can be attributed to changes in the neutron fluxes,

e.g. if the 60Fe neutron capture rate is large, there will be fewer neutrons available

to destroy 26Al via (n,p) reactions.

Worth noting is the difference in 26Al production in the unmodified WFHZ and

RT sets (1a and 2a). The mass fractions are presented in Figure 56, along with the

ratio of the RT mass fraction to that from the WFHZ set. In analyzing these results
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Figure 54: 26Al production using WFHZ based rate sets
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we must be careful to recall that the advanced burning stages (neon, oxygen) for the

two rate sets are using different initial compositions (the WFHZ set uses the ashes

of hydrostatic carbon burning at T9 = 1.8 to seed the neon burning runs, while

the RT set uses the ashes of hydrostatic carbon burning at T9 = 1.6). A similar

statement applies to the initial compositions for oxygen burning. Hence, a direct

comparison between the sets can only be made up through the carbon burning

stages. However, the abundance of 26Al in the neon and oxygen burning stages is

determined primarily by the initial abundance, so a few inferences can be made.

The primary result is that where 26Al is produced most abundantly (such as in

hydrostatic carbon burning around T9 = 1.8 and explosive carbon burning around

T9 = 2.0), the RT rates yield smaller abundances. The only exception is for explosive

neon burning around T9 = 2.3. The decrease can be as large as a factor of 1.5 in

the hydrostatic stages and a factor of 6 in the explosive stages. This is significant

because it implies that the RT rates will produce less 26Al, and that the resulting

60Fe/26Al flux ratio will be larger. More will be said regarding this issue in the

conclusions and summary. In any event, these results indicate that the abundance

of 26Al is significantly affected by the base set of rates (WFHZ v. RT), and negligibly

affected by the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe capture rates as expected.

We now turn our attention to 60Fe production. The results from the various

burning stages are summarized in Figures 57 and 58. The information displayed

on each of the panels is similar to that for Figures 54 and 55. A comparison of

the abundances resulting from the unmodified WFHZ and RT rate sets appears in

Figure 59.

Again we note that the initial compositions for neon and oxygen burning are

not consistent between these two sets. However, the abundance of 60Fe is generally

unmodified during the neon burning stages except at the highest or lowest temper-

atures, where it is destroyed. When the mass fraction at the end of a neon burning
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Figure 57: 60Fe production using WFHZ based rate sets
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stage is significant, it is only because the 60Fe produced during hydrostatic car-

bon burning remained in nuclear statistical equilibrium. Thus in the neon burning

stages the initial compositions have a greater effect on the 60Fe abundances than

the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates.

In the carbon burning phases, where the initial compositions of the WFHZ and

RT sets are similar, we note that RT tends to produce more 60Fe, in some cases

by several orders of magnitude (e.g. at T9 = 1.0). This again would result in RT

producing a larger 60Fe abundance and consequently a larger 60Fe/26Al flux ratio

than WFHZ.

When we insert our recommended 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates, the

resulting 60Fe abundance is smaller for both rate sets, as can be seen in Figures 57

and 58. Again, the 60Fe mass fraction at the end of any neon burning stage is pri-

marily determined by the initial abundance. This is most apparent in a comparison

of the results from the sets using our rates but the initial compositions from WFHZ

and RT (the dashed lines on Figures 57 and 58) and those using our rates and

initial compositions (the solid lines). Our neutron capture rates result in smaller

60Fe abundances by roughly the same factor for both base rate sets. This seems to

indicate that, while the neutron capture rates have a direct effect on the 60Fe abun-

dance, there are likely other rates not considered in this study that significantly

affect the overall production of 60Fe. These other rates would most likely affect the

production of 60Fe by modifying the flux of neutrons available for capture onto the

iron targets.

Last of all, we consider the ratio of 60Fe and 26Al mass fractions. Since the 26Al

mass fraction is essentially unaffected by the insertion of our capture rates, one

would expect that differences in the ratio will correlate directly with differences in

the 60Fe abundances. This is what is seen in Figures 60 and 61. The lower panel

shows the log of the ratio of 60Fe and 26Al mass fractions. The upper panel shows
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Figure 60: 60Fe/26Al production ratio using WFHZ based rate sets
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the ratio obtained using the indicated rate set divided by the ratio using the base

set of rates.

Considering primarily the burning stages for which the 60Fe/26Al is the largest,

we see that the use of our recommended rates (along with the initial compositions

resulting from those rates) lowers the 60Fe/26Al ratio by roughly a factor 1.5 with

respect to the WFHZ rates and by a factor of about 1.1 with respect to the RT

rates (see the solid lines in Figures 60 and 61). Although this is a move in the right

direction with regard to reconciling the RT nucleosynthesis with the observed flux

ratio, it also will lower the WFHZ flux ratio (0.16), which is only slightly higher

than the observation (0.11±0.03 from INTEGRAL [5]). Even so, the RT flux ratio

(∼0.6) exceeds the observation by more than a factor of four, and the reduction

in 60Fe abundance suggested in this study likely cannot entirely account for the

discrepancy. More will be said regarding these issues in the conclusions.

8.6 A Result From KEPLER

The process of parameterizing the thermodynamic conditions allows us to study

the direct effects of the rates on nucleosynthesis. However, there are aspects of

stellar environments that may affect the production of a given isotope which are

not accounted for in a single zone calculation. For instance, we have seen that the

initial composition can have a significant impact on the nucleosynthesis. In a true

stellar model, convection may carry stellar matter from one zone to another, which

could result in a continuous supply of, say perhaps, new 58Fe nuclei to seed the

production of 60Fe.

Stan Woosley has used our recommended capture rates, along with their up-

per and lower uncertainties, and modeled the production of 60Fe using the stellar

evolution code KEPLER [11]. The case chosen was a 25 M¯ star, which in pre-

vious studies had produced large amounts of 60Fe. Using the unmodified WFHZ
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rate set, this particular star produced a total of 2.61 × 10−4 M¯ of 60Fe. Using

our recommended rates, the same star produces 1.86× 10−4 M¯ of 60Fe – a factor

of 1.4 reduction. This is consistent with the single zone results shown in Figure

57. The upper and lower limits of our recommended rates produce 2.85× 10−4 and

2.27 × 10−4 M¯, respectively. Such non-monotonic behavior is likely due to the

fact that raising the rates will increase both the production and destruction of the

isotope. This also is consistent with the results in Figure 57 for carbon burning

around T9 = 1.4.

The range in 60Fe abundances resulting from modification of the 59Fe(n,γ)60Fe

and 60Fe(n,γ)61Fe capture rates is again too small to account for the discrepancy

between the predicted and observed flux ratios. It appears likely that other aspects

of nucleosynthesis, be it other reaction rates or stellar structure, will have a greater

impact on the 60Fe abundance [11].
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9 Summary and Conclusions

Recent nucleosynthesis studies have predicted a 60Fe/26Al flux ratio that is several

times greater than the observed fluxes [2, 4, 1]. An earlier study [5] had predicted

the flux ratio roughly in agreement with the observations. Since the more recent

calculations involved well-motivated changes to the stellar and nuclear physics, we

desire to know the cause of this discrepancy. Likely candidates in the nuclear aspects

of the problem are the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe reaction rates, which are the

primary production and destruction channels for 60Fe.

We have modeled the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe cross sections responsible

for the production and destruction of 60Fe in stellar environments. The modeling

effort includes the development of local systematics for a number of important input

quantities to the Hauser-Feshbach statistical model. These local systematics result

in calculations that reproduce measured cross sections to a relatively high degree

of accuracy (on average we reproduce recommended neutron capture Maxwellian

averaged cross sections to within 31.6%, while within a factor of two is generally

considered good). Additionally we have compared our results with calculations used

in previous nucleosynthesis studies, and have found better overall agreement with

measured data with our modeling effort. The accuracy with which we are able to

model measured cross sections gives us confidence that our modeled cross sections

for unstable nuclei are reasonable.

We have investigated the sensitivity of the 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe cross

sections to errors and variations in the statistical model input quantities. The cross

sections are most sensitive to the overall normalization of the photon transmission

coefficient, although significant sensitivities also arise from the nuclear level density

(with the associated discrete level scheme), the neutron transmission coefficient,

and the overall form of the photon strength function. For the latter two quantities,
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we have used modern prescriptions (Koning and Delaroche optical potential for

neutron transmission coefficient, enhanced generalized Lorentzian for E1 strength

function). Our level densities and photon transmission coefficient normalization are

based on local rather than global systematics. The cumulative sensitivity to these

input quantities leads us to a rough estimate of the uncertainty in our calculated

59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe cross sections and reaction rates. We find that the

more recent cross sections of Rauscher and Thielemann [3] are close to being within

this range of uncertainty for both reactions, as is the 60Fe(n,γ)61Fe cross section

of Woosley, et al [7]. In both cases our recommended rates are higher than the

previous ones.

We have also performed single-zone nucleosynthesis calculations using our rec-

ommended 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe rates along with their upper and lower

uncertainties. These calculations were carried out using the rates of two previous

nucleosynthesis studies as base sets. The abundance of 26Al is not significantly

affected by the capture rates, but is considerably affected by the base set. In the

conditions where 60Fe is produced most abundantly, our neutron capture rates re-

sult in a smaller 60Fe mass fraction, although the reduction is generally only on the

order of 20%. When we use the upper and lower limits of our recommended rates,

we see more variation in the 60Fe abundance. However, the uncertainties in these

rates can affect a change of no more than a factor of ∼1.5. Hence, the uncertainties

in these rates cannot be fully responsible for the discrepancy between the observed

60Fe/26Al flux ratio and the value predicted in the latest nucleosynthesis study.

Between the completion of this study and the preparation of this document,

other interesting results have come to light. The 26Al(n,p)26Mg rate (the primary

destruction reaction for 26Al) used in the latest nucleosynthesis is more than three

times larger than that used in the 1995 survey. This could have a significant impact

on the 26Al abundance, which in turn would impact the predicted flux ratio, ac-
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counting for as much as half of the discrepancy between the predicted and measured

values [6]. An initial investigation into this issue using parameterized single zone

calculations seems to indicate that this is not the case, and that increasing this rate

by a factor of three only has a minimal effect of the 26Al abundance. This particular

issue is still under investigation.

Additionally, aspects of the stellar models now appear to be likely causes of the

large 60Fe abundances. In particular, the opacities adopted in the latest modeled

nucleosynthesis [2] may be at fault. When used in complex stellar evolution codes,

the new opacities cause the helium convection zone to recede near the end of helium

burning, leaving behind a gradient of He/C. Eventually the helium ignites, produc-

ing a miniature convective helium shell that affects the structure of the core and

produces large amounts of 60Fe. This effect was not present in the 1995 calculation

[6].

In conclusion, the implementation of our newly modeled neutron capture rates

can lower the predicted flux ratio, but it now appears more likely that the apparent

overproduction of 60Fe in [2] is due primarily to issues pertaining to the stellar model

rather than the nuclear physics.
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A Ground State Nuclear Properties

In this table we present our adopted nuclear ground state spins and parities, as

explained in Section 3.1. We also list our adopted nuclear masses, binding energies,

and separation energies as explained in Section 3.2. The energies listed are in units

of MeV. Masses are in amu.

Table 22: Adopted ground state nuclear properties

Nucleus Jπ Mass BE Sn Sp Sα Sd
43Ca 3.5− 42.958767 369.828 7.933 10.676 7.590 15.985
44Ca 0+ 43.955482 380.960 11.131 12.164 8.852 19.583
45Ca 3.5− 44.956184 388.374 7.415 12.291 10.168 17.355
46Ca 0+ 45.953693 398.769 10.394 13.816 11.136 20.461
47Ca 3.5− 46.954544 406.045 7.276 14.211 12.754 18.868
45Sc 3.5− 44.955910 387.848 11.323 6.888 7.932 15.795
46Sc 4+ 45.955173 396.608 8.761 8.234 9.159 13.424
47Sc 3.5− 46.952408 407.255 10.646 8.486 10.162 16.656
48Sc 6+ 47.952232 415.490 8.235 9.445 11.110 14.497
49Sc 3.5− 48.950024 425.618 10.128 9.627 12.368 17.348
50Sc 5+ 49.952187 431.673 6.056 10.537 11.542 13.459
44Ti 0+ 43.959690 375.475 16.299 8.650 5.126 18.563
45Ti 3.5− 44.958126 385.003 9.529 8.479 6.292 15.954
46Ti 0+ 45.952633 398.192 13.189 10.345 8.000 19.443
47Ti 2.5− 46.951763 407.073 8.880 10.464 8.947 17.000
48Ti 0+ 47.947945 418.699 11.627 11.445 9.443 19.866
49Ti 3.5− 48.947868 426.842 8.142 11.352 10.170 17.363
50Ti 0+ 49.944790 437.781 10.939 12.163 10.715 20.066
51Ti 1.5− 50.946613 444.153 6.372 12.480 9.811 16.311
52Ti 0+ 51.946896 451.962 7.808 13.536 7.674 18.064
53Ti 1.5− 52.949726 457.397 5.435 13.761 7.963 16.746
54Ti 0+ 53.951054 464.234 6.837 15.260 8.447 18.374
45V 3.5− 44.965775 377.095 15.835 1.620 5.661 15.694
46V 0+ 45.960201 390.360 13.265 5.356 7.375 12.660
47V 1.5− 46.954910 403.360 13.000 5.168 8.238 16.132
48V 4+ 47.952255 413.905 10.545 6.832 9.083 13.488
49V 3.5− 48.948517 425.457 11.553 6.758 9.313 16.160
50V 6+ 49.947159 434.793 9.336 7.952 9.888 13.870
51V 3.5− 50.943958 445.845 11.051 8.064 10.293 16.778
52V 3+ 51.944775 453.156 7.311 9.002 9.369 13.150
53V 3.5− 52.944336 461.635 8.479 9.673 7.720 15.257
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Table 22: (continued)

Nucleus Jπ Mass BE Sn Sp Sα Sd
54V 3+ 53.946438 467.748 6.113 10.351 7.778 13.562
55V 3.5− 54.947235 475.080 7.332 10.846 8.357 15.458
56V 2+ 55.950531 480.080 5.000 11.699 8.147 13.622
57V 1.5− 56.952560 486.260 6.180 12.541 8.989 15.654
47Cr 1.5− 46.962898 395.134 13.156 4.774 7.661 15.815
48Cr 0+ 47.954033 411.466 16.332 8.106 7.694 18.882
49Cr 2.5− 48.951336 422.049 10.583 8.144 8.748 16.464
50Cr 0+ 49.946045 435.049 13.000 9.592 8.560 18.920
51Cr 3.5− 50.944767 444.310 9.261 9.516 8.940 16.628
52Cr 0+ 51.940506 456.349 12.039 10.504 9.353 19.331
53Cr 1.5− 52.940651 464.288 7.939 11.132 9.150 16.219
54Cr 0+ 53.938881 474.007 9.719 12.373 7.929 18.627
55Cr 1.5− 54.940838 480.254 6.246 12.505 7.803 16.394
56Cr 0+ 55.940651 488.499 8.245 13.419 8.240 18.526
57Cr 1.5− 56.943611 493.813 5.314 13.733 8.119 16.508
58Cr 0+ 57.944351 501.195 7.382 14.935 8.664 18.890
59Cr 1.5− 58.948586 505.323 4.128 14.972 8.645 16.839
60Cr 0+ 59.950077 512.007 6.684 16.726 9.991 19.431
48Mn 4+ 47.968521 397.188 15.132 2.054 7.631 12.985
49Mn 2.5− 48.959618 413.552 16.364 2.085 8.160 16.193
50Mn 0+ 49.954239 426.634 13.082 4.585 7.977 12.943
51Mn 2.5− 50.948212 440.320 13.686 5.271 8.663 16.047
52Mn 6+ 51.945564 450.855 10.535 6.546 8.654 13.582
53Mn 3.5− 52.941288 462.909 12.054 6.560 9.155 16.375
54Mn 3+ 53.940357 471.848 8.939 7.560 8.757 13.274
55Mn 2.5− 54.938046 482.074 10.227 8.067 7.933 15.562
56Mn 3+ 55.938904 489.345 7.270 9.091 7.892 13.113
57Mn 2.5− 56.938286 497.993 8.648 9.495 8.061 15.515
58Mn 3+ 57.939980 504.485 6.491 10.672 8.439 13.761
59Mn 1.5− 58.940441 512.129 7.644 10.934 8.752 16.091
60Mn 3+ 59.942909 517.898 5.770 12.575 9.521 14.479
61Mn 2.5− 60.944653 524.347 6.449 12.341 9.791 16.800
51Fe 2.5− 50.956818 431.518 13.818 4.884 8.087 15.742
52Fe 0+ 51.948112 447.699 16.181 7.379 7.936 18.841
53Fe 3.5− 52.945309 458.384 10.685 7.529 8.038 15.840
54Fe 0+ 53.939610 471.763 13.379 8.854 8.417 18.683
55Fe 1.5− 54.938293 481.061 9.298 9.213 8.454 15.927
56Fe 0+ 55.934937 492.258 11.197 10.184 7.612 18.186
57Fe 0.5− 56.935394 499.904 7.646 10.559 7.319 15.605
58Fe 0+ 57.933273 509.949 10.045 11.956 7.644 18.380
59Fe 1.5− 58.934875 516.530 6.581 12.045 7.979 16.312
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Table 22: (continued)

Nucleus Jπ Mass BE Sn Sp Sα Sd
60Fe 0+ 59.934071 525.350 8.820 13.221 8.554 18.641
61Fe 1.5− 60.936745 530.931 5.581 13.033 8.821 16.578
62Fe 0+ 61.936768 538.981 8.051 14.634 9.490 18.859
63Fe 2.5− 62.940369 543.698 4.716 14.796 10.078 17.126
52Co 1+ 51.963589 432.501 14.713 0.983 7.016 12.576
53Co 3.5− 52.954220 449.301 16.800 1.602 7.453 15.558
54Co 0+ 53.948460 462.737 13.436 4.353 7.806 12.814
55Co 3.5− 54.941998 476.827 14.089 5.064 8.210 16.218
56Co 4+ 55.939838 486.910 10.083 5.849 7.758 12.923
57Co 3.5− 56.936291 498.286 11.376 6.028 7.080 15.001
58Co 2+ 57.935753 506.859 8.573 6.955 6.714 12.376
59Co 3.5− 58.933193 517.313 10.454 7.364 6.941 15.184
60Co 5+ 59.933815 524.805 7.492 8.275 7.163 12.631
61Co 3.5− 60.932476 534.125 9.321 8.776 7.835 15.371
62Co 2+ 61.934052 540.730 6.604 9.799 7.948 13.156
63Co 3.5− 62.933613 549.210 8.480 10.229 8.784 16.055
64Co 1+ 63.935810 555.234 6.024 11.536 9.038 14.028
55Ni 3.5− 54.951328 467.352 14.196 4.615 7.537 15.826
56Ni 0+ 55.942131 483.992 16.639 7.165 7.996 19.030
57Ni 1.5− 56.939793 494.241 10.250 7.332 7.560 15.190
58Ni 0+ 57.935341 506.458 12.217 8.173 6.399 17.324
59Ni 1.5− 58.934345 515.458 8.999 8.599 6.100 14.947
60Ni 0+ 59.930786 526.845 11.388 9.533 6.290 17.762
61Ni 1.5− 60.931057 534.666 7.820 9.861 6.464 15.128
62Ni 0+ 61.928345 545.262 10.597 11.137 7.016 18.233
63Ni 0.5− 62.929668 552.100 6.838 11.370 7.273 15.750
64Ni 0+ 63.927967 561.758 9.658 12.548 8.111 18.804
65Ni 2.5− 64.930084 567.856 6.098 12.622 8.628 16.421
56Cu 3+ 55.958561 467.907 15.048 0.554 7.109 12.526
57Cu 1.5− 56.949211 484.687 16.780 0.695 7.088 15.110
58Cu 1+ 57.944538 497.110 12.424 2.869 6.076 10.894
59Cu 1.5− 58.939499 509.877 12.766 3.418 4.753 13.411
60Cu 2+ 59.937366 519.935 10.058 4.477 4.728 11.252
61Cu 1.5− 60.933456 531.646 11.711 4.800 5.063 13.964
62Cu 1+ 61.932583 540.531 8.885 5.866 5.375 11.461
63Cu 1.5− 62.929596 551.385 10.853 6.122 5.775 14.494
64Cu 1+ 63.929764 559.300 7.916 7.201 6.199 11.814
65Cu 1.5− 64.927788 569.211 9.911 7.453 6.789 14.887
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B Discrete Levels and Branching Ratios

The following table presents our adopted discrete levels (energies in MeV), along

with their spins, parities, and branching ratios. Isomers are indicated in the fourth

column (GS for ground state, M1 for first isomer, M2 for second isomer, etc...). The

branching ratios are given by the number of the level decayed to, followed by the

branching ratio in parenthesis. For example, a branching ratio of 1(56),3(23),4(21)

would indicate that the given level decays to level 1 56% of the time, to level 3 23%

of the time, and to level 4 21% of the time.

Table 23: Adopted discrete levels

AZ Energy Jπ M Branching Ratios
43Ca 1 0.00000 3.5− GS

2 0.37276 2.5− 1(100)
3 0.59339 1.5− 1(70), 2(30)
4 0.99026 1.5+ 2(87), 3(13)
5 1.39447 2.5+ 1(5), 2(75), 3(6), 4(14)
6 1.67780 5.5− 1(100)
7 1.90180 3.5+ 1(70), 4(13), 5(17)
8 1.93130 2.5− 1(58), 2(35), 3(7)
9 1.95740 0.5+ 3(78), 4(22)
10 2.04625 1.5− 1(63), 2(20), 3(8), 4(7), 5(2)
11 2.06730 3.5− 1(78), 2(22)
12 2.09390 4.5− 1(100)
13 2.10270 1.5− 1(25), 2(50), 3(25)
14 2.22400 1.5− 2(43), 3(57)
15 2.24900 4.5− 1(87), 2(11), 6(2)
16 2.27270 2.5+ 4(84), 5(16)
17 2.40980 4.5+ 1(45), 5(44), 7(11)

44Ca 1 0.00000 0+ GS
2 1.15705 2+ 1(100)
3 1.88351 0+ 2(100)
4 2.28314 4+ 2(100)
5 2.65650 2+ 1(11), 2(89)
6 3.04433 4+ 2(49), 4(51)
7 3.28500 6+ 4(100)
8 3.30130 2+ 1(31), 2(69)
9 3.30786 3− 2(71), 4(20), 5(9)
10 3.35720 3+ 2(12), 4(88)
11 3.58040 3+ 2(100)
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

12 3.66153 1− 1(67), 2(8), 3(25)
13 3.67607 2− 2(76), 5(6), 8(1), 9(17)
14 3.71180 4− 6(30), 9(70)
15 3.77620 2+ 2(93), 5(7)

45Ca 1 0.00000 3.5− GS
2 0.17427 2.5− 1(100)
3 1.43471 1.5− 1(33), 2(67)
4 1.55437 5.5− 1(100)

46Ca 1 0.00000 0+ GS
2 1.34600 2+ 1(100)
3 2.42310 0+ 2(100)
4 2.57470 4+ 2(100)
5 2.97390 6+ 4(100)
6 3.02260 2+ 1(39), 2(61)
7 3.61400 3− 2(100)

47Ca 1 0.00000 3.5− GS
2 2.01354 1.5− 1(100)
3 2.57834 1.5+ 1(30), 2(70)
4 2.59955 0.5+ 1(1), 2(99)

45Sc 1 0.00000 3.5− GS
2 0.01240 1.5+ M1
3 0.37650 1.5− 1(8), 2(92)
4 0.54306 2.5+ 1(37), 2(52), 3(11)
5 0.72012 2.5− 1(97), 2(3)
6 0.93924 0.5+ 2(83), 3(17)
7 0.97438 3.5+ 1(59), 2(31), 4(10)
8 1.06760 1.5− 1(3), 3(74), 5(23)
9 1.23670 5.5− 1(100)
10 1.30318 1.5+ 2(34), 3(21), 4(45)
11 1.40887 3.5− 1(89), 3(4), 5(7)
12 1.43348 4.5+ 1(11), 4(68), 7(18), 9(3)
13 1.47250 3.5+ 1(60), 2(30), 4(10)
14 1.55620 1.5− 3(5), 6(8), 8(87)
15 1.66200 4.5− 1(68), 5(10), 9(13), 11(9)
16 1.71600 2.5− 1(100)
17 1.80000 2.5+ 1(9), 2(40), 3(9), 4(24), 5(3), 8(3), 10(12)
18 1.90070 1.5− 8(100)
19 1.93060 1.5− 6(100)
20 1.93550 1.5+ 1(100)
21 1.93550 2.5+ 3(100)
22 2.03120 5.5+ 7(47), 9(6), 12(47)
23 2.09000 7.5− 9(100)
24 2.09300 2.5− 1(83), 3(7), 8(10)
25 2.10620 3.5− 8(100)
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

26 2.10627 7.5− 9(100)
27 2.13840 1.5− 1(71), 14(29)
28 2.15100 1.5+ 2(90), 10(10)
29 2.15200 0.5− 4(39), 8(21), 14(40)
30 2.22180 2.5+ 1(32), 2(68)
31 2.22420 2.5+ 4(29), 5(39), 10(10), 12(22)
32 2.28850 4.5− 1(42), 7(24), 9(34)
33 2.30380 2.5− 2(25), 3(32), 8(34), 15(9)
34 2.32150 1.5− 1(31), 2(69)
35 2.34100 3.5− 1(41), 5(18), 11(41)
36 2.35220 1.5− 1(2), 2(25), 5(43), 8(9), 14(21)

46Sc 1 0.00000 4+ GS
2 0.05201 6+ 1(100)
3 0.14253 1− M1
4 0.22777 3+ 1(100)
5 0.28070 5+ 1(6), 2(94)
6 0.28954 2− 3(99), 4(1)
7 0.44414 2+ 4(100)
8 0.58478 3− 1(32), 3(1), 6(67)
9 0.62743 4− 1(92), 4(8)
10 0.77402 5+ 1(55), 2(45)
11 0.83509 4+ 1(16), 5(84)
12 0.97700 7+ 2(75), 5(25)
13 0.99133 1+ 7(100)
14 1.08859 4+ 1(2), 4(36), 5(57), 10(5)
15 1.12423 4− 5(15), 8(83), 9(2)
16 1.14100 3− 1(75), 4(25)
17 1.27046 4− 1(41), 8(21), 9(38)
18 1.29800 2+ 3(40), 6(30), 8(30)
19 1.32112 3+ 11(100)
20 1.39418 2+ 4(79), 13(21)
21 1.42790 2+ 3(100)
22 1.52674 3+ 7(51), 9(49)
23 1.64268 4− 8(56), 9(44)
24 1.67700 5− 1(75), 2(25)
25 1.69220 3− 9(100)
26 1.70783 2− 1(21), 8(71), 17(8)

47Sc 1 0.00000 3.5− GS
2 0.76683 1.5+ 1(100)
3 0.80789 1.5− 1(100)
4 1.12300 2.5− 1(50), 2(50)
5 1.14500 0.5− 2(80), 3(20)
6 1.14699 5.5− 1(100)
7 1.29712 2.5− 1(90), 3(10)
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

8 1.31600 0.5− 2(75), 3(25)
9 1.39130 0.5+ 2(13), 3(87)
10 1.40440 2.5+ 1(72), 2(15), 3(13)
11 1.63900 3.5− 1(50), 2(50)
12 1.71700 3.5+ 1(100)
13 1.74500 2.5− 2(100)
14 1.79760 3.5− 3(52), 7(48)
15 1.79800 0.5+ 2(25), 3(75)
16 1.85710 2.5− 1(89), 2(9), 10(2)
17 1.87820 4.5− 1(69), 6(31)
18 2.00230 1.5+ 3(58), 7(20), 10(22)
19 2.14820 4.5− 6(100)
20 2.20750 3.5− 1(40), 3(44), 7(9), 17(7)
21 2.23200 3.5− 1(50), 3(50)
22 2.38130 2.5+ 1(38), 2(44), 3(18)
23 2.40860 3.5− 1(76), 6(24)
24 2.41030 3.5+ 2(39), 3(61)
25 2.49940 3.5− 1(27), 7(52), 17(21)
26 2.52940 0.5+ 2(31), 3(69)
27 2.64190 7.5− 19(100)

48Sc 1 0.00000 6+ GS
2 0.13094 5+ 1(100)
3 0.25235 4+ 2(100)
4 0.38800 4− 2(100)
5 0.62264 3+ 3(100)
6 1.09600 7+ 1(75), 2(25)
7 1.14258 2+ 5(100)
8 1.40170 2− 5(96), 7(4)
9 1.43200 1− 7(100)
10 1.89107 3− 3(50), 5(6), 7(7), 8(37)
11 2.06410 5+ 1(76), 3(24)
12 2.10360 4− 2(26), 3(23), 5(51)
13 2.16500 4− 2(30), 3(30), 5(40)
14 2.19046 3+ 3(78), 5(22)
15 2.19600 5+ 1(75), 3(25)
16 2.20200 3+ 3(75), 5(25)
17 2.27549 2+ 5(30), 7(70)
18 2.31000 3− 3(100)
19 2.39000 2+ 5(50), 7(50)
20 2.39070 4+ 3(47), 5(53)
21 2.51730 1+ 7(100)
22 2.56020 3− 3(42), 7(58)
23 2.61960 5+ 2(56), 3(44)
24 2.62600 2+ 5(50), 7(50)
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

25 2.64010 2− 8(100)
26 2.67030 1− 8(100)
27 2.72900 5+ 3(100)

49Sc 1 0.00000 3.5− GS
2 2.22810 0.5+ 1(100)
3 2.37130 1.5+ 1(93), 2(7)
4 3.08450 1.5− 1(100)
5 3.30000 2.5− 3(100)
6 3.51620 1.5− 2(40), 3(60)
7 3.55000 1.5+ 1(75), 2(25)
8 3.58100 3.5− 1(75), 3(25)
9 3.75500 2.5+ 1(100)
10 3.80840 3.5− 1(100)
11 3.92100 4.5− 1(100)
12 3.95100 1.5+ 4(75), 5(25)
13 3.99130 0.5+ 4(75), 6(25)
14 4.04100 4.5− 1(100)
15 4.07207 2.5− 1(99), 4(1)

50Sc 1 0.00000 5+ GS
2 0.25690 2+ M1
3 0.32845 3+ 2(100)

44Ti 1 0.00000 0+ GS
2 1.08299 2+ 1(100)
3 1.90430 0+ 2(100)
4 2.45433 4+ 2(100)
5 2.53060 2+ 1(25), 2(71), 3(4)
6 2.88660 2+ 1(59), 2(38), 3(3)
7 3.17580 3− 1(1), 2(97), 4(2)
8 3.36400 4+ 2(95), 5(5)
9 3.41530 3+ 2(98), 6(2)
10 3.64580 4− 4(4), 7(96)
11 3.75590 1− 1(72), 2(28)
12 3.94270 3− 2(95), 4(5)
13 3.98000 4+ 2(52), 4(15), 6(25), 7(4), 9(4)
14 4.01530 6+ 4(100)
15 4.06120 3− 4(50), 7(50)
16 4.11650 2+ 1(31), 2(47), 5(22)
17 4.22700 2− 2(6), 5(17), 6(29), 7(34), 9(5), 10(9)

45Ti 1 0.00000 3.5− GS
2 0.03674 1.5− 1(100)
3 0.03971 2.5− 1(100)
4 0.32950 1.5+ 2(99), 3(1)
5 0.74414 2.5+ 2(7), 3(3), 4(90)
6 1.22703 3.5+ 1(7), 3(10), 4(39), 5(44)
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AZ Energy Jπ M Branching Ratios

7 1.35363 4.5− 1(93), 3(7)
8 1.46816 5.5− 1(100)
9 1.52100 2.5− 1(26), 2(37), 3(37)
10 1.56560 0.5+ 2(13), 4(87)
11 1.79920 1.5− 2(50), 3(50)
12 1.88208 4.5+ 1(5), 5(70), 6(25)
13 1.95840 1.5+ 3(15), 5(85)
14 2.01600 4.5− 1(31), 2(34), 3(35)
15 2.25840 2.5+ 4(55), 5(40), 10(2), 13(3)
16 2.43210 3.5+ 1(66), 3(17), 2(17)
17 2.47480 5.5+ 6(69), 12(31)
18 2.50000 2.5− 1(40), 2(30), 3(30)
19 2.53160 2.5+ 10(100)
20 2.65649 6.5− 8(100)
21 2.84960 0.5+ 10(100)
22 2.89000 1.5+ 3(60), 5(40)
23 2.91190 3.5+ 5(46), 12(31), 13(23)
24 3.00000 1.5+ 3(60), 5(40)
25 3.01526 7.5− 8(80), 20(20)

46Ti 1 0.00000 0+ GS
2 0.88929 2+ 1(100)
3 2.00985 4+ 2(100)
4 2.61100 0+ 2(100)
5 2.96180 2+ 1(4), 2(96)
6 3.05860 3− 3(90), 5(10)
7 3.16818 1− 1(45), 2(55)
8 3.21300 2+ 2(100)
9 3.23570 2+ 1(16), 2(84)
10 3.29900 6+ 3(100)
11 3.33800 3+ 2(60), 3(40)
12 3.44120 4− 3(26), 6(74)
13 3.56940 3− 2(21), 3(79)
14 3.57170 0+ 2(100)
15 3.58200 2− 3(100)
16 3.60800 1+ 2(100)
17 3.67700 2− 3(100)
18 3.69600 2+ 1(20), 2(80)
19 3.72390 2+ 2(76), 3(24)
20 3.73100 1+ 2(100)
21 3.73790 1− 1(100)
22 3.78000 0+ 2(100)
23 3.82690 5− 6(50), 10(50)
24 3.84500 2+ 2(100)
25 3.84800 4+ 3(50), 6(100)
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AZ Energy Jπ M Branching Ratios

26 3.85240 5− 3(84), 6(12), 12(4)
27 3.85700 3− 3(100)

47Ti 1 0.00000 2.5− GS
2 0.15938 3.5− 1(100)
3 1.25060 1.5− 1(75), 2(25)
4 1.25210 4.5− 1(6), 2(94)
5 1.44425 5.5− 2(94), 4(6)
6 1.54980 1.5− 1(46), 2(54)
7 1.67000 2.5+ 1(50), 2(50)
8 1.79390 0.5− 1(67), 6(33)
9 1.82500 1.5+ 1(100)
10 2.16320 1.5− 1(95), 2(5)
11 2.16670 2.5− 2(100)
12 2.25950 2.5+ 1(82), 2(18)
13 2.29710 2.5− 1(78), 2(22)
14 2.34400 4.5+ 1(60), 2(40)
15 2.36490 0.5+ 9(100)
16 2.40620 4.5− 1(9), 2(63), 4(19), 5(9)
17 2.41630 1.5− 1(34), 6(23), 9(43)
18 2.49940 2.5+ 1(100)
19 2.52000 0.5+ 9(50), 15(50)
20 2.52580 1.5− 1(51), 2(49)
21 2.54820 1.5− 1(100)
22 2.57290 0.5+ 6(73), 9(27)
23 2.59960 1.5− 1(48), 2(39), 9(13)
24 2.61940 3.5− 1(18), 2(73), 4(7), 11(2)
25 2.66800 4.5+ 5(100)
26 2.68231 5.5− 4(69), 5(30), 16(1)

48Ti 1 0.00000 0+ GS
2 0.98352 2+ 1(100)
3 2.29563 4+ 2(100)
4 2.42102 2+ 1(5), 2(95)
5 2.46500 3− 3(75), 4(25)
6 2.99719 0+ 2(100)
7 3.06200 2+ 1(20), 2(80)
8 3.22392 3+ 2(73), 3(23), 4(4)
9 3.23974 4+ 3(100)
10 3.33318 6+ 3(100)
11 3.35880 3− 2(92), 3(7), 4(1)
12 3.37084 2+ 1(13), 2(87)
13 3.50854 6+ 3(24), 10(76)
14 3.61678 2+ 1(2), 2(90), 4(8)
15 3.63300 2+ 2(100)
16 3.69945 1− 1(35), 2(65)



225

Table 23: (continued)

AZ Energy Jπ M Branching Ratios

17 3.71100 2+ 2(100)
18 3.73850 1+ 1(65), 2(27), 4(8)
19 3.78244 3− 3(24), 8(3), 11(73)
20 3.80275 2− 2(100)
21 3.85200 0+ 2(100)
22 3.85223 3− 2(75), 3(20), 4(5)
23 4.03511 2+ 4(69), 8(31)
24 4.04600 5− 3(85), 9(9), 10(6)
25 4.07390 4+ 2(52), 3(10), 9(38)
26 4.07448 2+ 1(9), 2(54), 9(37)

49Ti 1 0.00000 3.5− GS
2 1.38177 1.5− 1(100)
3 1.54215 5.5− 1(100)
4 1.58597 1.5− 1(100)
5 1.61000 4.5− 1(50), 3(50)
6 1.62293 2.5− 1(100)
7 1.72347 0.5− 2(98), 4(2)
8 1.76201 2.5− 1(100)
9 2.26130 2.5− 1(35), 6(48), 8(17)
10 2.47140 2.5− 1(32), 6(47), 8(21)
11 2.50444 0.5+ 2(85), 6(15)
12 2.50550 7.5− 3(100)
13 2.51337 5.5− 1(100)
14 2.52010 2.5+ 2(100)
15 2.66434 1.5+ 6(35), 8(65)
16 2.72060 6.5+ 3(100)
17 2.72130 1.5− 4(92), 9(8)
18 2.98050 3.5− 6(100)
19 3.03868 2.5+ 7(100)
20 3.04250 4.5− 1(35), 3(25), 6(40)
21 3.17529 0.5− 2(68), 4(26), 7(6)
22 3.26070 1.5− 2(8), 4(7), 8(85)
23 3.29030 8.5− 12(100)
24 3.42829 1.5− 2(42), 4(50), 8(8)
25 3.45100 3.5− 6(75), 18(25)
26 3.46899 0.5− 4(100)

50Ti 1 0.00000 0+ GS
2 1.55378 2+ 1(100)
3 2.67491 4+ 2(100)
4 3.19871 6+ 3(100)
5 3.86279 3+ 2(100)
6 3.86820 0+ 2(100)
7 3.97490 4+ 3(100)
8 4.14700 3− 2(75), 3(25)
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AZ Energy Jπ M Branching Ratios

9 4.14719 4+ 3(100)
10 4.17197 3− 2(68), 3(32)
11 4.17250 2− 2(100)
12 4.30985 2+ 1(16), 2(84)
13 4.40999 3− 2(80), 3(20)
14 4.48671 2+ 1(15), 2(85)
15 4.53600 3− 2(75), 3(25)
16 4.57600 2+ 1(25), 2(75)
17 4.78995 2+ 1(10), 2(90)
18 4.88068 5+ 3(90), 4(8), 9(2)
19 4.92800 1− 1(50), 2(50)
20 4.94000 1+ 1(50), 2(50)
21 5.12500 4− 2(75), 3(25)
22 5.18607 4+ 2(29), 3(71)
23 5.19100 4− 1(50), 2(50)
24 5.33600 3− 2(75), 3(25)
25 5.37991 4+ 2(8), 3(59), 10(33)

51Ti 1 0.00000 1.5− GS
2 1.16670 0.5− 1(100)
3 1.43730 3.5− 1(100)
4 1.56750 2.5− 1(100)
5 2.14400 2.5− 1(86), 2(2), 3(3), 4(9)
6 2.19810 1.5− 1(66), 2(14), 4(20)
7 2.34460 5.5− 3(100)
8 2.69140 3.5− 1(11), 3(19), 4(70)
9 2.73120 3.5− 3(74), 4(4), 7(22)
10 2.75420 7.5− 7(100)
11 2.90580 0.5− 1(25), 2(47), 6(28)
12 2.91930 2.5− 1(11), 3(55), 4(18), 5(16)
13 3.06230 3.5− 3(25), 7(54), 9(21)
14 3.17380 1.5− 1(81), 2(8), 6(11)
15 3.23740 3.5− 3(100)
16 3.61850 2.5− 3(15), 4(64), 5(15), 9(6)
17 3.64410 6.5− 10(100)
18 3.77130 4.5+ 3(57), 7(43)
19 4.02200 2.5− 3(20), 4(60), 5(20)
20 4.09500 3.5− 7(35), 13(65)
21 4.17200 2.5+ 1(60), 3(40)
22 4.18660 2.5− 4(100)
23 4.47000 3.5− 1(30), 3(30), 4(40)
24 4.56900 1.5− 1(30), 2(30), 4(40)
25 4.60200 1.5+ 1(50), 4(50)

52Ti 1 0.00000 0+ GS
2 1.04973 2+ 1(100)
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AZ Energy Jπ M Branching Ratios

3 2.26420 2+ 1(12), 2(88)
4 2.31765 4+ 2(100)
5 2.43159 2+ 2(100)
6 3.02770 6+ 4(100)
7 3.14320 1+ 2(100)
8 3.34990 4+ 4(100)
9 3.45270 3− 4(100)
10 3.58870 2+ 1(8), 2(25), 3(55), 5(12)

53Ti 1 0.00000 1.5− GS
54Ti 1 0.00000 0+ GS
45V 1 0.00000 3.5− GS

2 0.05630 2.5− 1(100)
46V 1 0.00000 0+ GS

2 0.80152 3+ M1
3 0.91488 2+ 1(100)
4 0.99370 2+ 1(100)
5 1.17950 2− 2(100)
6 1.22502 5+ 2(100)
7 1.23600 0− 4(100)
8 1.25400 3− 2(60), 3(40)
9 1.26300 3− 2(80), 3(20)
10 1.36700 3+ 3(28), 4(72)
11 1.37600 3+ 3(100)
12 1.43180 1+ 1(100)
13 1.54070 6+ 6(100)
14 1.60442 7+ 6(100)
15 1.66560 1+ 3(100)
16 1.73000 6+ 6(20), 11(80)
17 1.79500 3+ 8(100)
18 1.83300 2+ 3(100)
19 1.94400 5− 6(40), 13(30), 16(30)
20 2.04900 2− 3(20), 10(80)
21 2.06250 3− 2(100)

47V 1 0.00000 1.5− GS
2 0.08753 2.5− 1(100)
3 0.14582 3.5− 2(100)
4 0.25949 1.5+ 1(93), 2(7)
5 0.66036 2.5+ 1(38), 2(14), 3(18), 4(30)
6 1.13855 3.5+ 2(38), 3(4), 4(33), 5(25)
7 1.27180 4.5− 2(18), 3(82)
8 1.29496 5.5− 3(100)
9 1.66062 0.5+ 1(25), 4(74), 5(1)
10 1.74696 4.5+ 3(36), 5(47), 6(17)
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AZ Energy Jπ M Branching Ratios

11 1.96892 1.5+ 1(3), 2(54), 4(9), 5(32), 6(1), 9(1)
12 2.08272 1.5− 1(28), 2(70), 3(2)
13 2.17586 2.5− 1(76), 2(22), 3(2)
14 2.21175 0.5− 1(81), 2(4), 4(14), 9(1)
15 2.41600 5.5+ 6(86), 7(3), 10(11)
16 2.43954 2.5+ 1(8), 2(2), 3(15), 4(36), 5(27), 9(1), 11(11)
17 2.54600 3.5− 1(60), 2(40)
18 2.55800 6.5− 7(62), 8(38)
19 2.61410 7.5− 8(98), 18(2)
20 2.72263 2.5− 1(55), 2(18), 3(20), 4(1), 6(5), 7(1)
21 2.74712 4.5− 2(7), 3(86), 7(5), 8(2)
22 2.76732 0.5− 1(100)
23 2.81004 3.5+ 2(43), 4(3), 5(23), 6(3), 7(11), 10(12), 11(3), 16(1)
24 2.98429 3.5− 1(1), 2(12), 3(58), 7(29)
25 3.00545 1.5− 1(35), 2(65)
26 3.05422 2.5− 2(43), 3(57)
27 3.24773 3.5− 1(18), 2(19), 3(18), 7(10), 8(12), 13(23)
28 3.27200 6.5+ 8(6), 10(79), 15(15)
29 3.30353 1.5+ 2(71), 4(8), 5(9), 11(7), 12(5)
30 3.35549 2.5+ 1(4), 4(78), 5(18)

48V 1 0.00000 4+ GS
2 0.30827 2+ 1(100)
3 0.42065 1+ 2(100)
4 0.42791 5+ 1(100)
5 0.51866 1− 2(66), 3(34)
6 0.61338 4+ 1(89), 4(11)
7 0.62729 6+ 1(59), 4(41)
8 0.74498 2− 2(5), 3(3), 5(92)
9 0.76496 3+ 1(44), 2(54), 6(2)
10 0.77620 5+ 1(100)
11 1.05577 3− 5(8), 8(91)
12 1.09918 4− 1(93), 6(7)
13 1.12080 3+ 1(66), 2(34)
14 1.25460 7+ 4(2), 7(98)
15 1.26459 5+ 6(75), 7(25)
16 1.52139 2+ 2(45), 3(35), 9(20)
17 1.55755 4− 8(19), 11(68), 12(14)
18 1.68547 5− 12(100)
19 1.69150 2+ 1(69), 5(31)
20 1.73000 6+ 1(60), 4(40)
21 1.78098 3+ 1(15), 2(43), 6(42)
22 1.99844 2− 8(60), 12(40)
23 2.06242 5− 6(26), 11(22), 17(52)

49V 1 0.00000 3.5− GS
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AZ Energy Jπ M Branching Ratios

2 0.09064 2.5− 1(100)
3 0.15293 1.5− 1(59), 2(41)
4 0.74827 1.5+ 2(46), 3(54)
5 1.02162 5.5− 1(100)
6 1.14053 2.5+ 1(53), 2(24), 3(17), 4(6)
7 1.15532 4.5− 1(75), 2(22), 5(3)
8 1.51454 2.5− 1(27), 2(9), 3(47), 4(17)
9 1.60268 3.5+ 1(27), 2(56), 4(8), 6(8), 7(1)
10 1.64319 1.5− 3(100)
11 1.64643 0.5+ 3(53), 4(47)
12 1.66140 1.5− 1(9), 2(52), 3(34), 4(5)
13 1.99470 1.5+ 2(21), 3(34), 4(16), 6(29)
14 2.17830 4.5+ 1(62), 5(10), 6(21), 9(7)
15 2.18200 3.5− 1(6), 2(71), 7(23)
16 2.23400 2.5+ 1(5), 2(64), 3(17), 12(14)
17 2.26330 7.5− 5(100)
18 2.26530 2.5− 3(95), 10(5)
19 2.30940 1.5− 1(20), 2(40), 3(33), 4(7)
20 2.35340 4.5− 1(57), 2(6), 5(32), 7(5)
21 2.38800 2.5+ 1(3), 2(8), 4(28), 6(3), 13(58)
22 2.40830 3.5− 1(57), 2(9), 5(4), 6(19), 7(11)
23 2.67100 5.5− 5(75), 7(25)
24 2.67130 5.5+ 1(6), 2(4), 5(90)
25 2.68000 3.5+ 5(50), 7(50)
26 2.72750 7.5− 5(50), 17(50)
27 2.74100 5.5+ 7(39), 9(48), 14(13)
28 2.78640 4.5− 1(24), 2(4), 5(45), 7(24), 9(3)
29 2.79660 4.5+ 1(62), 5(38)
30 2.80830 2.5+ 1(35), 3(30), 4(18), 6(8), 9(9)
31 2.81090 2.5− 1(32), 2(43), 6(11), 15(14)
32 2.86150 6.5− 7(78), 17(22)
33 3.01730 1.5+ 1(14), 2(37), 3(40), 9(9)
34 3.13390 4.5− 23(100)
35 3.13400 4.5+ 1(41), 2(22), 4(7), 5(14), 7(16)
36 3.15210 3.5− 5(38), 6(62)
37 3.22400 1.5+ 3(50), 12(50)
38 3.23950 3.5− 1(8), 2(61), 8(31)

50V 1 0.00000 6+ GS
2 0.22620 5+ 1(100)
3 0.32016 4+ 1(1), 2(99)
4 0.35540 3+ 2(1), 3(99)
5 0.38840 2+ 4(100)
6 0.83630 5+ 1(51), 3(49)
7 0.91000 7+ 1(100)
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8 0.91010 4+ 2(100)
9 1.30140 2+ 4(33), 5(67)
10 1.33150 1+ 5(100)
11 1.40190 3+ 3(14), 4(16), 5(58), 8(12)
12 1.49530 1+ 4(12), 5(88)
13 1.51840 2+ 4(18), 5(82)
14 1.56170 2+ 4(51), 5(49)
15 1.67720 3+ 4(20), 5(15), 9(54), 11(11)
16 1.70020 4+ 3(100)
17 1.70310 3+ 8(100)
18 1.71890 1+ 4(44), 5(56)
19 1.72460 8+ 1(36), 7(64)
20 1.72520 5+ 2(91), 3(9)
21 1.75150 5+ 2(40), 3(30), 4(30)
22 1.76150 6+ 1(60), 7(40)
23 1.76230 3− 6(100)
24 1.81080 3+ 3(30), 4(25), 5(25), 9(20)
25 1.88240 5+ 6(100)

51V 1 0.00000 3.5− GS
2 0.32008 2.5− 1(100)
3 0.92866 1.5− 1(86), 2(14)
4 1.60923 5.5− 1(100)
5 1.81324 4.5− 1(75), 2(24), 4(1)
6 2.41078 1.5− 1(19), 2(72), 3(9)
7 2.54740 0.5+ 3(100)
8 2.67743 1.5+ 3(100)
9 2.69962 7.5− 4(100)
10 2.79000 2.5− 1(100)
11 3.08362 2.5− 1(23), 2(40), 3(31), 6(6)
12 3.15000 1.5− 1(60), 2(40)
13 3.21480 1.5− 2(16), 3(54), 6(30)
14 3.26403 2.5− 2(89), 3(10), 6(1)
15 3.27999 2.5− 2(52), 3(34), 6(14)
16 3.37200 1.5− 1(100)
17 3.37772 4.5− 1(88), 2(12)
18 3.38110 1.5− 1(100)
19 3.38320 4.5+ 1(61), 4(26), 5(13)
20 3.38558 6.5− 4(96), 5(1), 9(3)
21 3.39502 6.5− 4(44), 5(56)
22 3.41220 3.5+ 2(100)
23 3.44392 2.5+ 3(100)
24 3.45409 4.5− 1(38), 2(62)
25 3.51702 4.5− 1(71), 2(22), 5(7)
26 3.55480 4.5− 1(100)
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27 3.56260 2.5− 1(100)
28 3.56820 3.5− 2(100)
29 3.57663 1.5− 1(60), 2(40)
30 3.61405 4.5− 1(3), 4(75), 5(22)
31 3.62370 2.5+ 1(16), 2(61), 3(23)

52V 1 0.00000 3+ GS
2 0.01716 3+ 1(100)
3 0.02276 5+ 1(100)
4 0.14161 1+ 2(100)
5 0.14785 4+ 1(14), 3(86)
6 0.43663 2+ 1(46), 2(32), 4(22)
7 0.79355 3+ 1(21), 2(1), 5(77), 6(1)
8 0.84594 4+ 1(41), 3(52), 5(7)
9 0.88100 1+ 1(60), 2(40)
10 1.28985 1+ 2(74), 4(26)
11 1.41881 3+ 1(39), 2(40), 5(7), 6(11), 8(3)
12 1.49306 7+ 3(100)
13 1.55885 4+ 1(84), 3(1), 5(2), 8(13)
14 1.57916 3− 1(100)
15 1.66400 1+ 1(60), 2(40)
16 1.73257 5+ 1(32), 3(25), 4(1), 5(7), 8(35)
17 1.75962 3+ 2(13), 4(2), 5(44), 6(40), 7(1)
18 1.77017 3+ 3(18), 5(38), 6(44)
19 1.79512 2+ 1(3), 2(42), 4(1), 6(38), 7(14), 10(2)
20 1.84300 4+ 1(50), 3(50)
21 2.10083 3+ 1(11), 2(14), 5(26), 6(20), 7(14), 8(9), 11(6)
22 2.15100 6+ 12(50), 16(50)
23 2.15200 1+ 1(60), 2(40)
24 2.16864 4+ 1(5), 2(2), 3(69), 5(10), 7(4), 8(10)
25 2.31803 3+ 1(26), 2(10), 5(23), 7(13), 8(12), 11(16)

53V 1 0.00000 3.5− GS
2 0.12760 2.5− 1(100)
3 0.22841 1.5− 1(66), 2(34)
4 1.09124 5.5− 1(100)
5 1.26600 4.5− 1(63), 2(28), 4(9)
6 1.54960 1.5− 2(64), 3(36)
7 1.65300 4.5− 1(100)

54V 1 0.00000 3+ GS
55V 1 0.00000 3.5− GS
56V 1 0.00000 2+ GS
57V 1 0.00000 1.5− GS
47Cr 1 0.00000 1.5− GS

2 0.09940 0.5− 1(100)
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

3 0.17510 0.5− 1(1), 2(99)
48Cr 1 0.00000 0+ GS

2 0.75216 2+ 1(100)
3 1.85839 4+ 2(100)

49Cr 1 0.00000 2.5− GS
2 0.27193 3.5− 1(100)
3 1.08250 4.5− 1(6), 2(94)
4 1.56130 5.5− 2(49), 3(51)
5 1.70340 0.5− 1(100)
6 1.74140 1.5− 1(71), 2(29)
7 1.98220 1.5+ 1(71), 2(11), 5(18)
8 2.16860 2.5− 1(55), 2(45)
9 2.43210 2.5+ 1(40), 2(17), 7(43)
10 2.49810 6.5− 3(10), 4(90)
11 2.50400 3.5− 1(67), 2(33)
12 2.57830 0.5+ 5(38), 6(62)
13 2.61320 1.5− 1(41), 2(59)

50Cr 1 0.00000 0+ GS
2 0.78330 2+ 1(100)
3 1.88129 4+ 2(100)
4 2.92450 2+ 1(8), 2(92)
5 3.16110 2+ 2(100)
6 3.16369 6+ 3(100)
7 3.32457 4+ 3(100)
8 3.59455 4+ 2(59), 3(41)

51Cr 1 0.00000 3.5− GS
2 0.74910 1.5− 1(100)
3 0.77695 0.5− 2(100)
4 1.16459 4.5− 1(100)
5 1.35265 2.5− 1(35), 2(56), 3(9)
6 1.48007 5.5− 1(52), 4(48)
7 1.55726 3.5− 1(15), 2(80), 5(5)
8 1.89920 1.5− 1(72), 2(21), 3(7)
9 2.00191 2.5− 1(100)
10 2.25550 7.5− 6(100)
11 2.31258 3.5− 1(14), 4(86)
12 2.37946 4.5− 1(28), 4(14), 5(26), 6(19), 7(13)
13 2.38540 6.5− 6(100)

52Cr 1 0.00000 0+ GS
2 1.43409 2+ 1(100)
3 2.36963 4+ 2(100)
4 2.64690 0+ 2(100)
5 2.76776 4+ 2(98), 3(2)
6 2.96478 2+ 1(1), 2(99)
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AZ Energy Jπ M Branching Ratios

7 3.11386 6+ 3(99), 5(1)
8 3.16174 2+ 1(9), 2(91)
9 3.41531 4+ 2(7), 3(14), 5(79)
10 3.47224 3+ 2(22), 5(78)
11 3.61592 5+ 3(53), 5(43), 7(3), 9(1)
12 3.77172 2+ 1(21), 2(79)
13 3.94900 5+ 3(100)
14 3.95120 2+ 1(100)
15 4.01550 5+ 3(5), 5(36), 7(4), 9(38), 11(17)
16 4.03920 4+ 10(100)

53Cr 1 0.00000 1.5− GS
2 0.56403 0.5− 1(100)
3 1.00627 2.5− 1(100)
4 1.28952 3.5− 1(94), 3(6)
5 1.53662 3.5− 1(9), 3(65), 4(26)
6 1.97366 2.5− 1(84), 4(16)
7 2.17233 5.5− 4(100)
8 2.23316 4.5− 5(100)
9 2.32071 1.5− 1(100)
10 2.45310 0.5− 3(60), 4(40)
11 2.65640 2.5− 1(5), 3(68), 4(27)
12 2.66990 0.5− 1(60), 2(40)
13 2.70587 5.5− 7(100)
14 2.70850 1.5− 1(11), 2(46), 3(29), 6(14)

54Cr 1 0.00000 0+ GS
2 0.83486 2+ 1(100)
3 1.82392 4+ 2(100)
4 2.61968 2+ 1(4), 2(96)
5 2.82962 0+ 2(100)
6 3.07407 2+ 1(1), 2(99)
7 3.15956 4+ 2(47), 3(53)
8 3.22228 6+ 3(100)
9 3.39341 1− 1(37), 2(63)
10 3.43688 2+ 2(97), 4(3)

55Cr 1 0.00000 1.5− GS
2 0.24191 0.5− 1(100)
3 0.51770 2.5− 1(100)
4 0.56591 1.5− 1(88), 2(12)
5 0.88071 2.5− 1(88), 3(7), 4(5)
6 1.13100 2.5+ 3(100)
7 1.21475 2.5− 1(65), 3(8), 5(27)
8 1.43882 4.5− 3(81), 7(19)
9 1.47420 0.5− 1(44), 2(6), 4(50)
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AZ Energy Jπ M Branching Ratios

10 1.47903 3.5− 3(100)
56Cr 1 0.00000 0+ GS

2 1.00661 2+ 1(100)
3 1.83160 2+ 1(15), 2(85)
4 2.07660 1+ 2(100)
5 2.32680 2+ 2(100)
6 2.68170 4+ 3(100)
7 3.16500 3− 2(100)
8 3.25200 4− 4(100)

58Cr 1 0.00000 0+ GS
60Cr 1 0.00000 0+ GS
48Mn 1 0.00000 4+ GS
49Mn 1 0.00000 2.5− GS

2 0.26100 3.5− 1(100)
3 1.05890 4.5− 2(100)
4 1.54110 5.5− 2(49), 3(51)
5 2.48070 6.5− 3(17), 4(83)
6 3.18890 7.5− 4(40), 5(60)
7 4.24980 8.5− 5(35), 6(65)

50Mn 1 0.00000 0+ GS
2 0.22900 5+ M1

51Mn 1 0.00000 2.5− GS
2 0.23730 3.5− 1(100)
3 1.13980 4.5− 1(14), 2(86)
4 1.48800 5.5− 1(1), 2(64), 3(35)
5 1.81710 1.5+ 1(98), 2(2)
6 1.82460 1.5− 1(96), 2(4)
7 1.95910 0.5− 1(100)
8 2.14040 1.5− 1(98), 2(2)
9 2.25570 2.5− 1(31), 2(69)
10 2.27590 0.5+ 1(2), 5(58), 6(10), 7(16), 8(14)
11 2.31000 2.5− 1(14), 2(76), 5(10)
12 2.41590 3.5− 1(6), 2(34), 3(37), 5(15), 8(8)

52Mn 1 0.00000 6+ GS
2 0.37775 2+ M1
3 0.54644 1+ 2(100)
4 0.73164 4+ 1(91), 2(9)
5 0.82520 3+ 2(100)
6 0.86990 7+ 1(100)
7 0.88420 3+ 2(97), 4(3)
8 0.88690 2+ 2(90), 3(10)
9 1.23230 3+ 2(61), 4(27), 8(12)
10 1.25360 5+ 1(81), 4(19)
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AZ Energy Jπ M Branching Ratios

11 1.27900 4+ 5(60), 7(40)
12 1.68380 5+ 1(69), 4(21), 11(10)
13 1.95600 6+ 1(100)
14 2.04410 4+ 5(100)
15 2.13000 3+ 2(50), 4(50)
16 2.24000 7+ 1(50), 6(50)
17 2.25260 4+ 4(50), 5(50)
18 2.26100 2+ 2(50), 3(50)
19 2.28598 8+ 1(4), 6(96)
20 2.33720 3+ 5(51), 8(49)
21 2.63120 1+ 3(100)
22 2.67700 2+ 2(50), 3(50)
23 2.71100 5+ 1(90), 4(10)
24 2.78800 3+ 2(60), 3(30), 4(10)
25 2.79600 1+ 2(50), 3(50)
26 2.90770 9+ 6(29), 19(71)
27 2.92600 0+ 3(100)
28 2.97300 6+ 1(80), 6(20)
29 3.02200 4+ 4(20), 12(80)
30 3.08000 5− 4(100)
31 3.09700 3+ 4(20), 12(80)
32 3.10600 2+ 3(70), 15(30)
33 3.19900 6+ 1(40), 12(60)

53Mn 1 0.00000 3.5− GS
2 0.37789 2.5− 1(100)
3 1.28967 1.5− 1(54), 2(46)
4 1.44112 5.5− 1(100)
5 1.62120 4.5− 1(90), 2(10)
6 2.27377 2.5− 1(74), 2(22), 3(4)
7 2.40700 1.5− 1(40), 2(13), 3(47)
8 2.44800 3.5− 2(100)
9 2.56285 6.5− 4(100)
10 2.57320 3.5− 1(38), 2(62)
11 2.67110 0.5− 2(46), 3(31), 7(23)
12 2.68650 3.5− 1(78), 2(13), 3(9)
13 2.69264 7.5− 4(94), 9(6)
14 2.69797 5.5− 4(35), 5(65)
15 2.70640 0.5+ 3(100)
16 2.76100 4.5+ 2(100)
17 2.87560 1.5− 1(14), 2(83), 3(2), 7(1)
18 2.91260 1.5− 2(30), 3(70)
19 2.94690 4.5− 1(100)
20 2.96730 2.5+ 1(100)
21 2.97810 4.5− 1(100)
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AZ Energy Jπ M Branching Ratios

22 3.00720 2.5+ 1(14), 2(36), 3(50)
54Mn 1 0.00000 3+ GS

2 0.05487 2+ 1(100)
3 0.15630 4+ 1(100)
4 0.36829 5+ 1(1), 3(99)
5 0.40755 3+ 1(29), 2(9), 3(62)
6 0.83891 4+ 1(54), 3(10), 4(36)
7 1.00962 3+ 2(56), 3(44)
8 1.07330 6+ 3(1), 4(99)
9 1.13674 5+ 3(34), 4(59), 6(7)
10 1.37499 2+ 1(63), 2(17), 5(20)
11 1.37558 3+ 1(94), 7(6)
12 1.39100 1+ 2(100)
13 1.45440 1+ 1(5), 2(95)
14 1.46080 4+ 8(100)
15 1.50840 2+ 1(67), 2(25), 6(8)
16 1.54400 2+ 1(100)
17 1.63420 3+ 2(49), 3(10), 5(41)
18 1.65110 1+ 2(100)

55Mn 1 0.00000 2.5− GS
2 0.12595 3.5− 1(100)
3 0.98426 4.5− 1(5), 2(95)
4 1.28910 5.5− 2(10), 3(90)
5 1.29212 5.5− 2(75), 3(25)
6 1.29300 0.5− 1(100)
7 1.52836 1.5− 1(97), 2(3)
8 1.88408 3.5− 1(64), 2(36)
9 2.01520 3.5− 1(8), 3(92)
10 2.19843 3.5− 1(61), 2(6), 3(33)
11 2.21500 3.5− 1(100)
12 2.25245 1.5− 1(100)
13 2.26689 2.5− 1(73), 7(27)

56Mn 1 0.00000 3+ GS
2 0.02661 2+ 1(100)
3 0.11050 1+ 2(100)
4 0.21203 4+ 1(100)
5 0.21513 2+ 1(8), 2(16), 3(76)
6 0.33553 5+ 1(42), 4(58)
7 0.34099 3+ 1(6), 2(93), 4(1)
8 0.45434 3+ 1(96), 4(2), 7(2)
9 0.48631 3+ 1(3), 2(20), 4(6), 5(71)

57Mn 1 0.00000 2.5− GS
2 0.08319 3.5− 1(100)
3 0.85007 1.5− 1(96), 2(4)
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AZ Energy Jπ M Branching Ratios

4 1.05583 2.5− 1(20), 3(80)
5 1.07290 0.5− 1(6), 2(94)
6 1.22750 1.5− 2(92), 5(8)
7 1.37500 1.5− 2(72), 3(28)

58Mn 1 0.00000 1+ GS
2 0.07178 4+ M1

60Mn 1 0.00000 0+ GS
2 0.27180 3+ M1

61Mn 1 0.00000 2.5− GS
51Fe 1 0.00000 2.5− GS
52Fe 1 0.00000 0+ GS

2 0.84960 2+ 1(100)
3 2.38570 4+ 2(100)
4 2.75980 2+ 1(76), 2(24)
5 3.58670 4+ 2(100)
6 4.14580 0+ 2(100)

53Fe 1 0.00000 3.5− GS
2 0.74111 1.5− 1(100)
3 0.77442 0.5− 2(100)
4 1.32801 4.5− 1(100)
5 1.42350 2.5− 2(79), 3(21)
6 1.69632 3.5− 2(100)

54Fe 1 0.00000 0+ GS
2 1.40819 2+ 1(100)
3 2.53810 4+ 2(100)
4 2.56130 0+ 2(100)
5 2.94920 6+ 3(100)
6 2.95900 2+ 1(55), 2(45)
7 3.16600 2+ 1(81), 2(19)
8 3.29480 4+ 2(16), 3(84)
9 3.34480 3+ 2(57), 3(43)
10 3.43740 4+ 3(17), 5(83)
11 3.79380 5− 5(100)
12 3.83320 4+ 2(89), 3(9), 8(2)
13 3.84100 4− 2(100)
14 4.03090 4+ 3(16), 8(84)
15 4.04780 4+ 2(17), 3(8), 6(3), 9(72)
16 4.07160 4+ 2(92), 3(8)
17 4.09970 4+ 8(100)
18 4.10340 6+ 5(100)
19 4.26780 4+ 2(20), 3(80)
20 4.29080 0+ 2(100)
21 4.57850 2+ 1(30), 2(70)



238

Table 23: (continued)

AZ Energy Jπ M Branching Ratios

22 4.65430 0+ 8(50), 15(50)
23 4.69600 1+ 2(100)
24 4.70010 3− 2(15), 3(40), 9(45)
25 4.78190 3− 2(54), 3(17), 8(18), 9(11)
26 4.94870 4+ 2(35), 3(55), 5(10)

55Fe 1 0.00000 1.5− GS
2 0.41142 0.5− 1(100)
3 0.93129 2.5− 1(98), 2(2)
4 1.31654 3.5− 1(93), 3(7)
5 1.40845 3.5− 1(44), 3(52), 4(4)
6 1.91830 0.5− 1(68), 2(32)

56Fe 1 0.00000 0+ GS
2 0.84678 2+ 1(100)
3 2.08508 4+ 2(100)
4 2.65756 2+ 1(3), 2(97)
5 2.94170 0+ 2(100)
6 2.95992 2+ 1(2), 2(98)
7 3.07000 3− 2(60), 3(40)
8 3.11960 1− 2(100)
9 3.12293 4+ 2(1), 3(99)
10 3.36974 2+ 1(15), 2(85)
11 3.38849 6+ 3(99), 9(1)
12 3.44531 3+ 2(79), 3(20), 4(1)
13 3.44930 2− 1(50), 2(50)
14 3.59780 0+ 2(100)
15 3.60200 2+ 1(65), 2(35)
16 3.60700 0− 2(100)
17 3.74800 2+ 1(65), 2(35)
18 3.75562 6+ 3(80), 9(2), 11(18)
19 3.75960 4+ 2(65), 4(35)
20 3.83200 2+ 1(11), 2(63), 4(26)
21 3.85645 3+ 2(6), 3(92), 6(1), 9(1)
22 4.04883 3+ 2(81), 3(18), 6(1)
23 4.10031 4+ 2(62), 3(24), 4(1), 6(1), 9(12)
24 4.11987 3+ 2(18), 3(79), 4(1), 6(1), 9(1)
25 4.29804 4+ 2(25), 3(11), 4(2), 9(61), 12(1)
26 4.30090 0+ 2(100)
27 4.32000 2+ 1(65), 2(35)
28 4.37000 3− 2(60), 3(40)
29 4.39483 3+ 2(88), 9(12)
30 4.40110 2+ 2(78), 5(6), 12(16)
31 4.44760 3− 2(100)
32 4.45853 4+ 2(4), 3(38), 9(58)
33 4.51000 3− 2(31), 3(16), 4(50), 12(3)
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AZ Energy Jπ M Branching Ratios

34 4.53950 2+ 1(13), 4(30), 6(57)
57Fe 1 0.00000 0.5− GS

2 0.01441 1.5− 1(100)
3 0.13647 2.5− 1(12), 2(88)
4 0.36676 1.5− 1(14), 2(79), 3(7)
5 0.70642 2.5− 1(5), 2(85), 3(9), 4(1)
6 1.00713 3.5− 2(33), 3(64), 4(3)
7 1.13990 0.5− 1(60), 2(40)
8 1.19781 4.5− 3(100)
9 1.26552 0.5− 1(3), 2(4), 4(93)
10 1.35683 3.5− 2(22), 4(23), 5(55)
11 1.62726 1.5− 1(2), 2(61), 4(28), 5(9)
12 1.72538 1.5− 1(68), 2(3), 4(10), 5(19), 9(100)
13 1.97663 2.5− 1(16), 3(67), 12(17)
14 1.98966 4.5− 5(41), 6(32), 8(27)
15 1.99100 1.5− 1(60), 2(40)
16 2.11311 1.5− 1(79), 9(21)
17 2.11860 2.5− 2(35), 5(50), 6(15)
18 2.20688 2.5− 1(36), 2(43), 6(18), 9(3)
19 2.21766 2.5+ 2(44), 3(35), 4(21)
20 2.22020 3.5− 2(49), 3(46), 4(5)
21 2.33041 1.5− 11(100)
22 2.35596 5.5− 6(71), 8(29)
23 2.45555 4.5− 6(100)
24 2.50529 2.5+ 2(10), 3(26), 4(55), 5(6), 12(3)
25 2.56422 1.5− 1(36), 12(64)
26 2.57450 2.5− 1(72), 4(28)
27 2.59360 2.5− 1(9), 5(50), 6(41)
28 2.59940 1.5+ 1(30), 3(70)
29 2.69717 0.5− 1(35), 2(53), 4(8), 5(4)
30 2.75830 2.5− 4(79), 9(21)
31 2.82107 1.5+ 6(31), 19(69)
32 2.83589 1.5+ 1(15), 2(6), 4(36), 5(40), 6(2), 16(1)

58Fe 1 0.00000 0+ GS
2 0.81078 2+ 1(100)
3 1.67475 2+ 1(43), 2(57)
4 2.07654 4+ 2(100)
5 2.13391 3+ 2(74), 3(26)
6 2.25796 0+ 2(100)
7 2.60042 4+ 2(30), 3(18), 4(39), 5(13)
8 2.78214 1+ 1(22), 2(48), 3(22), 6(8)
9 2.86472 2+ 7(100)
10 2.87646 2+ 1(47), 2(53)
11 2.96200 5− 4(60), 7(40)
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12 3.08371 2+ 2(100)
13 3.13500 4+ 2(40), 3(20), 4(40)
14 3.23328 2+ 2(35), 3(16), 4(32), 7(17)
15 3.24411 0+ 2(100)
16 3.38300 2+ 2(40), 3(20), 4(40)
17 3.44980 4+ 5(31), 7(69)
18 3.53799 1+ 1(17), 2(68), 3(15)
19 3.59690 6+ 4(100)
20 3.62960 2+ 1(8), 2(92)
21 3.70300 4+ 5(30), 7(70)
22 3.75430 4+ 4(100)
23 3.78951 5− 4(100)
24 3.85400 2+ 2(40), 3(40), 4(20)
25 3.86080 3− 3(100)
26 3.88010 1+ 1(41), 2(47), 8(12)
27 3.88639 6+ 4(61), 7(5), 17(6), 19(28)
28 3.90164 3+ 2(2), 3(7), 5(75), 7(16)
29 4.00600 1− 1(100)
30 4.01080 2+ 1(10), 2(90)
31 4.01500 1+ 2(100)
32 4.08851 4+ 7(100)
33 4.13938 1+ 1(100)

59Fe 1 0.00000 1.5− GS
2 0.28702 0.5− 1(100)
3 0.47274 2.5− 1(100)
4 0.57087 2.5− 1(100)
5 0.61305 0.5+ 1(100)
6 0.64280 3.5− 1(100)
7 0.72643 1.5− 1(96), 2(4)
8 1.02315 3.5− 1(55), 3(5), 4(40)
9 1.07781 1.5− 5(100)
10 1.16210 1.5− 1(10), 2(20), 3(2), 4(68)
11 1.21133 0.5− 1(100)
12 1.51724 4.5+ 8(100)
13 1.56990 2.5− 1(100)
14 1.64800 2.5+ 1(100)
15 1.74978 2.5− 1(67), 11(33)
16 1.91892 2.5+ 1(77), 7(10), 9(10), 10(3)
17 1.96197 0.5− 1(25), 5(7), 7(68)
18 2.16190 0.5+ 5(100)
19 2.27790 2.5− 1(45), 7(55)
20 2.31225 6.5+ 12(100)
21 2.32240 1.5+ 1(100)
22 2.34820 3.5− 11(100)
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23 2.39000 1.5+ 1(100)
24 2.44727 1.5+ 1(7), 2(63), 7(19), 15(11)
25 2.49380 3.5− 1(100)
26 2.56990 1.5− 5(100)
27 2.73500 1.5+ 1(100)
28 2.75690 2.5+ 11(100)
29 2.81028 0.5− 7(19), 9(11), 11(60), 15(10)

60Fe 1 0.00000 0+ GS
2 0.82363 2+ 1(100)
3 1.97380 0+ 2(100)
4 2.11450 4+ 2(100)
5 2.29940 2+ 1(55), 2(45)
6 2.35800 0+ 2(100)
7 2.67300 2+ 2(100)
8 2.75600 2+ 2(100)
9 2.79240 3+ 2(72), 4(3), 5(25)
10 3.03900 2+ 2(100)
11 3.07240 4+ 2(65), 4(35)
12 3.29300 3− 2(50), 4(25), 5(25)
13 3.30800 3+ 2(50), 7(50)
14 3.50200 4+ 2(65), 4(35)
15 3.51610 5− 4(100)
16 3.52000 4+ 2(65), 5(35)
17 3.56200 3− 2(50), 4(25), 5(25)
18 3.63500 2+ 2(100)
19 3.64800 4+ 2(100)
20 3.69800 0+ 2(100)
21 3.71400 3+ 2(100)
22 3.86700 3− 2(50), 4(25), 5(25)
23 3.87500 4− 12(50), 15(50)
24 3.92900 2+ 2(100)
25 3.95440 6+ 15(100)

61Fe 1 0.00000 1.5− GS
2 0.20676 2.5− 1(100)
3 0.39099 0.5− 1(100)
4 0.62866 1.5− 1(93), 2(4), 3(3)
5 0.86100 4.5+ 2(100)
6 1.69000 2.5− 1(50), 2(50)
7 2.13000 3.5− 2(100)

62Fe 1 0.00000 0+ GS
2 0.87680 2+ 1(100)
3 1.81880 0+ 2(100)
4 2.01600 2+ 1(100)
5 2.17590 4+ 2(100)
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6 3.63360 2+ 3(59), 5(41)
63Fe 1 0.00000 2.5− GS
53Co 1 0.00000 3.5− GS

2 3.19000 9.5− M1
54Co 1 0.00000 0+ GS

2 0.19900 7+ M1
3 0.93720 1+ 1(100)

55Co 1 0.00000 3.5− GS
2 2.16589 1.5− 1(100)
3 2.56585 1.5− 1(100)
4 2.65947 2.5− 1(100)
5 2.91857 3.5− 1(100)
6 2.92223 0.5+ 2(100)
7 2.93909 0.5− 2(74), 3(26)
8 2.96010 1.5− 1(38), 2(62)
9 2.97310 5.5− 1(100)
10 2.97633 4.5− 1(100)

56Co 1 0.00000 4+ GS
2 0.15838 3+ 1(100)
3 0.57650 5+ 1(100)
4 0.82961 4+ 1(25), 2(74), 3(1)
5 0.97023 2+ 2(100)
6 1.00913 5+ 1(89), 3(6), 4(5)
7 1.11451 3+ 1(84), 2(5), 4(11)
8 1.45068 0+ 5(100)

57Co 1 0.00000 3.5− GS
2 1.22401 4.5− 1(100)
3 1.37765 1.5− 1(100)
4 1.50481 0.5− 3(100)
5 1.68940 5.5− 1(46), 2(54)
6 1.75758 1.5− 1(99), 3(1)
7 1.89745 3.5− 1(47), 2(53)
8 1.91955 2.5− 1(100)

58Co 1 0.00000 2+ GS
2 0.02495 5+ M1
3 0.05315 4+ M2
4 0.11176 3+ 1(58), 3(42)
5 0.36566 3+ 1(99), 4(1)
6 0.37393 5+ 2(6), 3(94)
7 0.45750 4+ 2(82), 3(1), 4(16), 5(1)
8 0.88563 3+ 2(16), 3(6), 4(53), 5(25)
9 1.04012 3+ 1(30), 5(23), 7(47)
10 1.04426 3+ 1(82), 4(18)
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

11 1.05019 1+ 1(61), 4(36), 5(3)
12 1.07550 6+ 6(100)

59Co 1 0.00000 3.5− GS
2 1.09926 1.5− 1(100)
3 1.19045 4.5− 1(100)
4 1.29161 1.5− 1(93), 2(7)
5 1.43426 0.5− 2(21), 4(79)
6 1.45952 5.5− 1(93), 3(7)
7 1.48173 2.5− 1(76), 2(23), 4(1)
8 1.74469 3.5− 1(55), 3(34), 7(11)
9 2.06176 3.5− 1(8), 3(47), 7(41), 8(4)
10 2.08720 2.5− 1(45), 4(39), 8(16)
11 2.15362 4.5− 6(100)
12 2.18350 5.5− 1(10), 3(90)
13 2.20478 2.5− 1(7), 3(22), 4(26), 5(9), 7(36)
14 2.39480 4.5− 1(33), 6(18), 8(44), 9(5)
15 2.47870 2.5− 1(87), 13(13)
16 2.54040 3.5+ 1(14), 3(14), 8(72)
17 2.58171 3.5− 1(100)
18 2.58580 3.5− 1(58), 3(42)
19 2.71310 0.5+ 2(100)
20 2.72240 4.5+ 12(100)
21 2.77020 1.5− 1(80), 8(10), 9(10)
22 2.78170 2.5− 1(85), 2(15)
23 2.81680 2.5− 1(100)
24 2.82420 6.5+ 1(56), 10(24), 11(20)
25 2.82620 3.5− 1(32), 2(62), 3(6)
26 2.82910 2.5− 2(100)
27 2.91200 1.5− 1(71), 9(29)
28 2.91460 3.5+ 3(47), 10(25), 14(28)
29 2.95790 1.5− 2(50), 13(17), 18(33)
30 2.96310 5.5+ 1(50), 3(25), 6(25)
31 2.96590 1.5− 1(61), 2(8), 5(8), 12(23)
32 2.97300 1.5+ 8(100)

60Co 1 0.00000 5+ GS
2 0.05859 2+ M1
3 0.27720 4+ 1(100)
4 0.28840 3+ 2(100)
5 0.43571 5+ 1(39), 3(61)
6 0.50620 3+ 2(99), 4(1)
7 0.54282 2+ 2(38), 4(62)
8 0.61455 3+ 2(96), 3(4)
9 0.73880 1+ 2(58), 7(42)
10 0.78571 4+ 1(53), 4(44), 5(2), 8(1)
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

11 0.94000 3− 2(60), 3(40)
12 1.00391 3+ 2(49), 3(23), 4(2), 7(26)
13 1.00580 4+ 1(6), 4(40), 8(52), 10(2)
14 1.13198 2+ 9(100)
15 1.15070 2+ 4(100)
16 1.20783 5+ 1(29), 3(71)
17 1.21645 6+ 1(74), 5(26)
18 1.21685 4− 4(19), 6(81)
19 1.34186 3+ 1(4), 2(62), 7(34)
20 1.37974 6+ 5(84), 16(16)
21 1.38097 3+ 3(100)
22 1.45121 4+ 7(58), 10(42)
23 1.50830 2+ 6(100)
24 1.51000 7+ 1(50), 5(25), 17(25)
25 1.51580 4+ 1(78), 3(9), 8(13)
26 1.56594 2− 2(70), 4(20), 19(10)
27 1.63984 4+ 3(30), 10(70)
28 1.66900 6+ 1(50), 5(25), 16(25)
29 1.68621 1+ 9(100)
30 1.70968 1− 2(100)
31 1.74929 3+ 2(36), 3(33), 7(12), 10(19)
32 1.78762 5+ 1(30), 13(70)
33 1.80022 6− 1(93), 17(6), 20(1)
34 1.80863 3− 1(100)
35 1.83080 4+ 1(93), 3(7)
36 1.83323 3+ 2(100)
37 1.85271 4+ 1(100)
38 1.87715 2+ 2(100)
39 1.88890 4+ 1(27), 8(53), 13(20)
40 1.92429 5+ 3(100)
41 1.98120 4− 4(100)
42 1.98352 2− 34(100)
43 2.03271 3+ 16(100)
44 2.04542 5− 6(65), 16(35)
45 2.08077 2+ 2(100)
46 2.12182 3+ 1(21), 12(79)
47 2.13223 7− 17(18), 33(82)
48 2.13344 3+ 2(59), 4(41)
49 2.15190 3− 13(100)
50 2.18310 3+ 26(100)

61Co 1 0.00000 3.5− GS
2 1.02748 1.5− 1(100)
3 1.20509 1.5− 1(96), 2(4)

62Co 1 0.00000 2+ GS
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

2 0.02200 5+ M1
63Co 1 0.00000 3.5− GS

2 0.99492 1.5− 1(100)
64Co 1 0.00000 1+ GS
55Ni 1 0.00000 3.5− GS
56Ni 1 0.00000 0+ GS

2 2.70060 2+ 1(100)
3 3.92360 4+ 2(100)
4 3.95660 0+ 2(100)
5 4.93200 5− 3(100)
6 5.00370 0+ 2(100)
7 5.31570 6+ 3(100)
8 5.35250 2+ 1(90), 2(10)
9 5.48370 3+ 2(100)
10 5.66800 3+ 3(100)
11 5.67900 6+ 3(100)
12 5.79900 3+ 2(50), 3(50)
13 5.98500 4+ 2(75), 3(25)
14 6.00000 0+ 2(100)
15 6.01100 1− 2(100)
16 6.23600 2+ 1(75), 2(25)
17 6.31970 2+ 2(100)
18 6.32700 3− 2(75), 3(25)
19 6.40580 2+ 2(100)
20 6.43600 4+ 2(75), 3(25)
21 6.51700 2+ 2(100)
22 6.55460 2+ 2(100)
23 6.57200 2+ 2(100)
24 6.65480 0+ 2(100)

57Ni 1 0.00000 1.5− GS
2 0.76850 2.5− 1(100)
3 1.11260 0.5− 1(100)
4 2.44310 2.5− 1(100)
5 2.57760 3.5− 1(100)
6 3.00710 1.5− 1(100)
7 3.00900 3.5+ 2(50), 4(50)
8 3.23400 3.5− 1(40), 2(60)
9 3.31100 2.5− 1(100)
10 3.37000 3.5− 2(50), 5(50)
11 3.70000 2.5− 2(70), 5(30)
12 3.71500 1.5+ 4(40), 5(30), 8(30)
13 3.72600 2.5+ 1(100)
14 3.84000 1.5− 1(80), 3(10), 5(10)
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

15 3.86500 5.5− 5(100)
16 3.88200 2.5− 2(70), 5(30)
17 4.02100 4.5+ 2(100)
18 4.04400 2.5− 2(70), 5(30)
19 4.07300 4.5− 5(100)
20 4.23000 3.5− 1(2), 2(64), 5(34)
21 4.37200 1.5+ 2(50), 4(50)
22 4.37400 2.5− 1(70), 2(30)
23 4.46100 1.5− 1(70), 2(30)
24 4.54400 2.5+ 1(100)
25 4.57600 3.5− 1(65), 2(35)

58Ni 1 0.00000 0+ GS
2 1.45400 2+ 1(100)
3 2.45910 4+ 2(100)
4 2.77520 2+ 1(4), 2(96)
5 2.90180 1+ 1(6), 2(94)
6 2.94240 0+ 2(10), 4(10), 5(80)
7 3.03760 2+ 1(40), 2(59), 4(1)
8 3.26340 2+ 1(60), 2(39), 3(1)
9 3.42030 3+ 2(2), 3(90), 4(1), 5(1), 6(1), 7(5)
10 3.52400 4+ 2(60), 4(40)
11 3.53090 0+ 2(92), 3(3), 4(2), 5(1), 6(1), 7(1)
12 3.55800 3− 2(40), 3(30), 4(30)
13 3.59340 2+ 1(63), 2(11), 3(2), 4(17), 6(5), 7(1), 8(1)
14 3.62000 4+ 2(20), 3(80)
15 3.77440 3+ 2(14), 3(58), 7(9), 9(19)
16 3.87000 2− 2(40), 4(30), 5(30)
17 3.89830 2+ 1(24), 2(76)
18 3.93210 6+ 3(100)
19 4.02000 3+ 2(40), 3(30), 4(30)
20 4.10770 2+ 1(47), 2(40), 4(6), 5(5), 9(2)
21 4.26000 2+ 1(50), 2(50)
22 4.29400 4+ 2(50), 3(50)
23 4.34800 1− 2(100)
24 4.35500 2+ 1(50), 2(50)
25 4.38000 5+ 3(29), 14(71)
26 4.40480 4+ 2(100)
27 4.45000 2+ 4(10), 5(9), 13(81)
28 4.47530 3− 2(80), 4(20)
29 4.51800 4+ 2(50), 3(50)
30 4.53830 0+ 2(100)

59Ni 1 0.00000 1.5− GS
2 0.33942 2.5− 1(100)
3 0.46498 0.5− 1(100)



247

Table 23: (continued)

AZ Energy Jπ M Branching Ratios

4 0.87795 1.5− 1(99), 2(1)
5 1.18879 2.5− 1(90), 2(4), 3(1), 4(5)
6 1.30141 0.5− 1(75), 3(11), 4(14)
7 1.33789 3.5− 1(29), 2(71)
8 1.67970 2.5− 1(14), 2(82), 3(2), 4(2)
9 1.69500 1.5− 1(50), 2(50)
10 1.73472 1.5− 1(58), 2(18), 3(12), 5(12)
11 1.73924 4.5− 2(100)
12 1.74610 3.5− 1(100)
13 1.76745 4.5− 2(91), 7(9)
14 1.94793 3.5− 1(49), 2(31), 4(2), 5(12), 7(6)
15 2.33000 3.5− 1(50), 2(50)
16 2.41497 1.5− 1(14), 2(2), 3(49), 4(21), 5(13), 6(1)
17 2.42800 4.5+ 2(50), 5(50)
18 2.48000 1.5+ 1(60), 2(40)
19 2.53040 4.5− 2(22), 5(54), 7(24)
20 2.53550 5.5− 11(100)
21 2.55340 0.5+ 2(100)
22 2.62707 3.5− 1(57), 2(43)
23 2.64000 0.5− 1(40), 3(30), 4(30)
24 2.68140 1.5− 1(57), 4(43)
25 2.69200 1.5− 1(60), 4(40)
26 2.70502 5.5− 7(90), 13(10)
27 2.71300 3.5+ 4(100)
28 2.89362 1.5− 2(61), 3(11), 4(19), 5(4), 6(2), 8(3)
29 3.02583 1.5− 1(49), 3(2), 4(47), 5(2)
30 3.03750 3.5− 2(100)
31 3.05433 4.5+ 7(34), 14(65), 26(1)
32 3.06100 3.5− 2(100)
33 3.12543 3.5− 1(14), 2(86)

60Ni 1 0.00000 0+ GS
2 1.33252 2+ 1(100)
3 2.15864 2+ 1(15), 2(85)
4 2.28487 0+ 2(100)
5 2.50577 4+ 2(100)
6 2.62608 3+ 2(33), 3(63), 5(4)
7 3.11970 4+ 2(92), 6(8)
8 3.12402 2+ 1(9), 2(86), 3(1), 4(1), 6(3)
9 3.18602 3− 2(33), 3(36), 5(31)
10 3.19402 1+ 1(16), 2(38), 3(30), 4(16)
11 3.26938 2+ 1(15), 2(43), 3(21), 4(2), 6(19)
12 3.31870 0+ 2(100)
13 3.38100 3− 3(100)
14 3.39350 2+ 1(6), 2(83), 3(11)
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

15 3.58810 0+ 2(26), 3(57), 10(17)
16 3.61955 3− 5(30), 6(70)
17 3.62290 1− 1(100)
18 3.67071 4+ 5(100)
19 3.70000 4+ 7(100)
20 3.73067 2− 2(60), 5(40)
21 3.73610 2+ 1(3), 2(78), 4(17), 8(2)
22 3.87500 2+ 2(33), 3(27), 6(14), 8(16), 13(10)
23 3.88780 3+ 2(100)
24 3.89500 1− 2(60), 6(40)
25 3.92580 3+ 3(32), 5(40), 9(28)
26 4.00790 2+ 1(34), 2(56), 14(10)
27 4.02045 2+ 1(56), 2(31), 4(4), 8(9)
28 4.03500 0+ 1(50), 2(50)
29 4.03967 3− 2(70), 3(30)
30 4.07854 2+ 1(3), 2(59), 3(38)
31 4.11600 2+ 1(25), 2(26), 5(25), 8(24)
32 4.16541 5+ 5(80), 6(20)
33 4.19100 2+ 6(57), 16(43)
34 4.26513 6+ 5(95), 7(5)
35 4.29450 2− 2(60), 5(40)

61Ni 1 0.00000 1.5− GS
2 0.06741 2.5− 1(100)
3 0.28296 0.5− 1(100)
4 0.65601 0.5− 1(77), 2(8), 3(15)
5 0.90862 2.5− 1(81), 2(16), 3(3)
6 1.01517 3.5− 1(24), 2(73), 4(3)
7 1.09962 1.5− 1(41), 2(7), 3(52)
8 1.13233 2.5− 1(61), 2(32), 6(7)
9 1.18524 1.5− 1(88), 2(1), 3(2), 4(9)
10 1.45460 3.5− 1(71), 2(23), 6(6)
11 1.60964 2.5− 1(42), 2(49), 5(5), 8(4)
12 1.72947 1.5− 1(27), 2(27), 3(23), 4(16), 5(1), 9(6)
13 1.80770 4.5− 2(89), 6(11)
14 1.98799 4.5− 2(57), 5(18), 6(12), 10(13)
15 1.99760 2.5− 1(68), 2(5), 5(16), 6(11)
16 2.01800 3.5− 2(90), 5(10)
17 2.12000 1.5− 1(100)
18 2.12163 4.5+ 6(100)
19 2.12348 0.5− 1(100)
20 2.12923 5.5− 6(100)
21 2.40970 4.5− 2(62), 6(9), 8(12), 10(17)
22 2.41000 1.5− 1(100)
23 2.46400 3.5− 2(75), 5(25)



249
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AZ Energy Jπ M Branching Ratios

24 2.52600 2.5− 1(50), 2(50)
25 2.59200 3.5− 2(75), 5(25)
26 2.63990 1.5− 1(100)
27 2.69700 2.5+ 1(100)
28 2.71700 1.5− 1(100)
29 2.76500 1.5− 1(100)

62Ni 1 0.00000 0+ GS
2 1.17291 2+ 1(100)
3 2.04860 0+ 2(100)
4 2.30180 2+ 1(61), 2(39)
5 2.33635 4+ 2(100)
6 2.89120 0+ 2(100)
7 3.05851 2+ 1(11), 2(39), 4(35), 5(15)
8 3.15798 2+ 1(27), 2(65), 4(8)
9 3.17650 4+ 2(93), 4(7)
10 3.25768 2+ 1(3), 2(97)
11 3.26200 2+ 2(75), 4(25)
12 3.26992 1+ 1(11), 2(50), 3(36), 4(3)
13 3.27746 4+ 2(100)
14 3.37026 2+ 1(59), 3(11), 4(14), 6(16)
15 3.37800 4− 2(100)
16 3.46200 3+ 2(100)
17 3.48600 1+ 4(100)
18 3.50000 2+ 2(75), 4(25)
19 3.51850 2+ 1(6), 2(80), 3(8), 7(6)
20 3.52287 2+ 4(56), 5(27), 7(16), 10(1)
21 3.75700 3− 2(56), 4(44)
22 3.84400 2+ 2(75), 4(25)
23 3.84934 0+ 4(48), 12(52)
24 3.85300 2+ 2(75), 4(25)
25 3.86000 2+ 1(75), 6(25)
26 3.96700 2+ 4(100)
27 3.97290 2+ 1(37), 2(56), 12(6), 20(1)
28 3.99700 4+ 2(100)
29 4.01871 6+ 5(100)
30 4.03500 2+ 2(75), 4(25)
31 4.05508 4+ 2(11), 4(6), 5(66), 13(17)
32 4.06250 1+ 1(47), 4(53)
33 4.14400 2− 4(100)
34 4.15120 2+ 4(31), 5(21), 7(48)
35 4.15410 4+ 5(100)
36 4.16007 5− 5(78), 11(22)
37 4.17900 3+ 9(100)
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

38 4.20140 3− 20(100)
63Ni 1 0.00000 0.5− GS

2 0.08715 2.5− 1(100)
3 0.15555 1.5− 1(100)
4 0.51755 1.5− 1(10), 2(2), 3(88)
5 1.00110 0.5− 1(3), 3(51), 4(46)
6 1.06899 2.5− 1(29), 2(57), 3(14)
7 1.25110 2.5+ 2(70), 3(30)
8 1.29183 4.5+ 2(100)
9 1.32404 1.5− 1(25), 2(16), 3(59)
10 1.45170 2.5− 2(100)
11 1.65700 1.5+ 1(50), 2(50)
12 1.67700 2.5− 2(100)
13 1.78700 3.5− 2(100)
14 1.89900 2.5− 2(100)
15 2.14900 1.5− 1(50), 2(25), 3(25)
16 2.18350 5.5+ 8(100)
17 2.26170 2.5− 2(61), 3(39)
18 2.29700 2.5+ 3(50), 4(50)
19 2.35310 0.5+ 1(81), 2(19)
20 2.51900 4.5+ 2(100)
21 2.57300 4.5+ 2(100)
22 2.67500 2.5+ 3(50), 4(50)
23 2.69660 0.5− 1(32), 3(68)
24 2.81450 5.5+ 8(61), 16(39)

64Ni 1 0.00000 0+ GS
2 1.34575 2+ 1(100)
3 2.27656 2+ 2(100)
4 2.48500 2+ 1(25), 2(75)
5 2.61010 4+ 2(100)
6 2.86730 0+ 2(100)
7 2.97208 2+ 1(41), 2(59)
8 3.02583 0+ 2(96), 3(4)
9 3.16610 4+ 2(100)
10 3.27598 2+ 1(74), 2(26)
11 3.39570 4+ 2(55), 5(45)
12 3.46361 2− 2(16), 3(84)
13 3.48200 2+ 1(25), 2(75)
14 3.56040 3− 1(8), 2(72), 3(20)
15 3.64798 1+ 1(35), 2(65)
16 3.74900 2+ 1(23), 2(77)
17 3.74940 4+ 9(25), 14(75)
18 3.79700 1+ 1(40), 2(60)
19 3.80800 1+ 1(40), 2(60)
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AZ Energy Jπ M Branching Ratios

20 3.84890 5− 5(86), 11(10), 17(4)
21 3.96500 2− 2(50), 3(50)
22 4.08520 4+ 5(67), 20(33)
23 4.13700 2− 2(50), 3(50)
24 4.17230 6− 20(100)

65Ni 1 0.00000 2.5− GS
2 0.06337 0.5− M1
3 0.31008 1.5− 1(98), 2(2)
4 0.69323 1.5− 1(10), 2(81), 3(9)
5 1.01701 4.5+ 1(100)
6 1.14170 2.5− 1(100)
7 1.27410 0.5− 1(27), 2(28), 3(45)
8 1.41760 0.5− 1(24), 3(43), 4(33)
9 1.55600 3.5+ 1(100)
10 1.59400 3.5− 1(40), 3(30), 4(30)
11 1.77200 1.5− 1(60), 2(40)
12 1.92040 2.5+ 3(100)
13 2.09600 2.5+ 1(50), 3(50)
14 2.14680 1.5− 1(51), 2(49)
15 2.16300 0.5+ 1(40), 2(40), 3(10), 4(10)
16 2.18574 5.5+ 5(100)
17 2.30200 1.5+ 1(50), 2(50)
18 2.32470 3.5− 1(40), 3(30), 4(30)
19 2.33600 3.5+ 1(40), 5(40), 6(20)
20 2.51000 3.5+ 1(40), 5(40), 6(20)
21 2.51934 6.5+ 5(100)
22 2.52000 2.5+ 1(50), 3(50)
23 2.57400 0.5− 1(40), 2(30), 3(30)
24 2.69800 3.5− 1(40), 3(30), 4(30)
25 2.71150 1.5+ 2(28), 3(72)

56Cu 1 0.00000 3+ GS
57Cu 1 0.00000 1.5− GS
58Cu 1 0.00000 1+ GS

2 0.20300 0+ 1(100)
3 0.44468 3+ 1(100)
4 1.05152 1+ 2(100)
5 1.42780 2+ 1(100)
6 1.55010 4+ 3(100)

59Cu 1 0.00000 1.5− GS
2 0.49109 0.5− 1(100)
3 0.91398 2.5− 1(99), 2(1)
4 1.39851 3.5− 1(88), 3(12)
5 1.86524 3.5− 1(30), 3(55), 4(15)
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AZ Energy Jπ M Branching Ratios

6 1.98780 2.5+ 1(100)
7 2.26630 1.5+ 1(52), 2(48)
8 2.31810 2.5− 1(83), 2(17)
9 2.32385 1.5+ 1(90), 3(10)

60Cu 1 0.00000 2+ GS
2 0.06220 1+ 1(100)
3 0.28720 2+ 1(30), 2(70)
4 0.33580 2− 2(100)
5 0.36460 1+ 1(100)
6 0.45380 3+ 1(99), 3(1)
7 0.55750 4+ 1(57), 3(11), 6(32)

61Cu 1 0.00000 1.5− GS
2 0.47510 0.5− 1(100)
3 0.97006 2.5− 1(99), 2(1)
4 1.31055 3.5− 1(94), 3(6)
5 1.39420 2.5− 1(85), 2(12), 3(3)
6 1.66046 1.5− 1(65), 2(14), 3(16), 5(5)
7 1.73261 3.5− 1(62), 3(14), 4(22), 5(2)
8 1.90418 2.5− 1(36), 3(42), 4(22)
9 1.93266 1.5− 1(67), 2(25), 3(8)
10 1.94249 3.5− 1(10), 3(61), 4(19), 7(10)
11 2.08886 0.5− 1(68), 2(32)
12 2.20340 2.5− 2(23), 3(47), 4(19), 7(11)
13 2.29509 4.5− 3(12), 4(34), 5(26), 7(20), 10(8)
14 2.33646 4.5− 3(75), 4(22), 5(1), 10(2)
15 2.35819 1.5− 1(24), 2(34), 6(31), 9(11)
16 2.39902 3.5− 3(58), 4(42)
17 2.47246 1.5− 1(6), 2(84), 3(10)
18 2.58375 2.5+ 7(82), 10(18)
19 2.58460 2.5+ 1(100)
20 2.61175 4.5− 4(10), 7(59), 10(30), 13(1)
21 2.62715 3.5− 4(95), 13(3), 14(2)
22 2.68413 1.5− 1(43), 2(54), 5(3)
23 2.72077 4.5+ 4(56), 7(37), 10(1), 16(1), 20(5)
24 2.72834 3.5− 3(60), 4(33), 12(4), 16(3)
25 2.79263 2.5− 1(45), 4(45), 6(10)
26 2.84049 1.5− 1(44), 11(56)
27 2.85710 1.5− 1(80), 2(20)
28 2.92420 2.5− 7(78), 10(9), 13(3), 16(4), 20(2), 21(4)
29 2.93274 1.5− 1(11), 2(79), 5(10)
30 3.00161 2.5− 1(60), 5(26), 12(14)
31 3.01569 3.5− 4(73), 13(13), 14(14)
32 3.01930 1.5− 1(29), 2(71)

62Cu 1 0.00000 1+ GS
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

2 0.04084 2+ 1(100)
3 0.24345 2+ 1(100)
4 0.28782 2+ 2(100)
5 0.39021 4+ 2(96), 3(4)
6 0.42614 3+ 2(100)
7 0.54832 1+ 1(48), 2(47), 3(1), 4(4)
8 0.63747 1+ 1(1), 2(89), 3(8), 4(2)
9 0.64450 2+ 1(100)
10 0.67508 3+ 2(37), 3(44), 5(19)
11 0.69831 2+ 2(39), 3(36), 6(25)
12 0.72773 2+ 2(36), 3(54), 4(10)
13 0.75584 2+ 1(100)
14 0.91537 2+ 1(42), 3(12), 4(2), 6(44)
15 0.98273 3+ 2(45), 5(35), 6(20)
16 1.02303 2+ 1(50), 2(10), 3(40)
17 1.05170 3+ 10(100)
18 1.07724 2+ 2(40), 5(60)
19 1.14168 2+ 3(20), 5(50), 6(30)

63Cu 1 0.00000 1.5− GS
2 0.66967 0.5− 1(100)
3 0.96210 2.5− 1(100)
4 1.32701 3.5− 1(84), 3(16)
5 1.41205 2.5− 1(71), 2(7), 3(22)
6 1.54705 1.5− 1(76), 2(2), 3(22)
7 1.86116 3.5− 1(55), 3(45)
8 2.01125 1.5− 1(49), 2(22), 3(25), 5(2), 6(2)
9 2.06223 0.5− 1(16), 2(48), 6(36)
10 2.08139 2.5− 1(39), 3(24), 4(27), 6(10)
11 2.09260 3.5− 1(9), 3(51), 4(40)
12 2.20788 4.5− 3(43), 4(57)
13 2.33658 2.5− 1(70), 3(22), 5(8)

64Cu 1 0.00000 1+ GS
2 0.15928 2+ 1(100)
3 0.27826 2+ 1(100)
4 0.34390 1+ 1(96), 2(4)
5 0.36223 3+ 1(2), 2(98)
6 0.57463 4+ 2(6), 5(94)
7 0.60878 2+ 1(82), 2(8), 3(4), 4(6)
8 0.66300 1+ 1(32), 2(27), 3(35), 4(6)
9 0.73905 2+ 1(7), 2(62), 3(10), 4(3), 5(18)
10 0.74625 3+ 3(70), 5(21), 7(9)
11 0.87828 0+ 1(57), 2(3), 4(40)
12 0.89571 3+ 1(14), 2(6), 3(65), 6(15)
13 0.92708 1+ 1(8), 2(16), 3(67), 5(9)
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Table 23: (continued)

AZ Energy Jπ M Branching Ratios

14 1.24109 2+ 2(19), 3(26), 7(15), 10(40)
15 1.24265 1+ 1(100)
16 1.28715 2+ 5(100)
17 1.28860 3+ 2(54), 3(22), 8(24)

65Cu 1 0.00000 1.5− GS
2 0.77064 0.5− 1(100)
3 1.11556 2.5− 1(100)
4 1.48183 3.5− 1(83), 3(17)
5 1.62343 2.5− 1(56), 2(11), 3(33)
6 1.72500 1.5− 1(72), 3(28)
7 2.09434 3.5− 1(29), 3(53), 4(13), 5(5)
8 2.10744 2.5− 1(17), 2(10), 3(35), 4(32), 6(6)
9 2.21284 0.5− 1(37), 2(55), 6(8)
10 2.27850 3.5− 1(2), 3(98)
11 2.32905 1.5− 1(48), 2(29), 3(23)
12 2.40660 4.5+ 3(27), 4(56), 7(17)
13 2.52574 4.5+ 4(100)
14 2.53304 1.5+ 1(41), 2(50), 6(9)
15 2.53390 3.5+ 4(43), 7(42), 10(15)
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C Neutron Resonance Data

In this table we list the neutron resonance data used in the development of our

level density and photon strength function systematics. This data is taken from

the Reference Input Parameter Library, as explained in the text. Note that this

table lists the data by target nucleus, though the data applies to the structure of

the compound nucleus (target plus neutron).

Table 24: Experimental neutron resonance data

Target D0 (keV) 〈Γγ〉0 (meV)
40Ca 32.6 ± 4.30 1500 ± 1000
42Ca 20.0 ± 5.00 1100 ± 200
43Ca 1.80 ± 0.30 750 ± 40
44Ca 24.1 ± 3.20 1300 ± 400
45Sc 1.30 ± 0.10 840 ± 460
46Ti 25.0 ± 4.40 1400 ± 400
47Ti 1.75 ± 0.25 1200 ± 400
48Ti 18.3 ± 2.90 1400 ± 400
49Ti 4.00 ± 0.80 810 ± 240
50Ti 125. ± 70.0 1100 ± 300
50V 2.30 ± 0.60 600 ± 80
51V 4.10 ± 0.60 1500 ± 300
50Cr 13.3 ± 1.30 1500 ± 500
52Cr 43.4 ± 4.37 1850 ± 550
53Cr 7.80 ± 0.80 2100 ± 800
54Cr 62.0 ± 8.00 2500 ± 700
55Mn 2.30 ± 0.40 750 ± 150
54Fe 18.0 ± 2.40 1800 ± 500
56Fe 25.4 ± 2.20 920 ± 410
57Fe 6.50 ± 1.00 1900 ± 600
58Fe 25.4 ± 4.90 3000 ± 900
59Co 1.25 ± 0.15 560 ± 100
58Ni 13.4 ± 0.90 2600 ± 800
59Ni 2.00 ± 0.70 2200 ± 700
60Ni 13.8 ± 0.90 1700 ± 500
61Ni 2.10 ± 0.15 2200 ± 700
62Ni 16.0 ± 3.00 910 ± 270
64Ni 19.6 ± 3.00 2400 ± 700
63Cu 0.95 ± 0.09 490 ± 30
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Table 24: (continued)

Target D0 (keV) 〈Γγ〉0 (meV)
65Cu 1.30 ± 0.11 385 ± 20
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D Experimental GDR Parameters

In this table we list the measured GDR parameters used in the development of our

local GDR systematics. This data is taken from the Reference Input Parameter

Library, as explained in the text.

Table 25: Experimental GDR parameters

Target EE1,1 σE1,1 ΓE1,1 EE1,2 σE1,2 ΓE1,2
51V 17.93 53.3 3.62 20.95 40.7 7.15
51V 17.86 58.8 4.42 21.22 28.8 5.10
54Cr 17.80 88.0 6.50
55Mn 16.82 51.4 4.33 20.09 45.2 4.09
59Co 16.43 28.3 2.73 18.66 58.4 7.38
60Ni 16.30 34.1 2.44 18.51 55.2 6.37
63Cu 16.72 66.1 4.19 19.10 30.1 3.56
63Cu 16.24 60.8 4.65 19.65 26.8 4.59
65Cu 16.70 75.2 6.89
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E Level Density Parameters

The following table lists our Fermi gas and constant temperature level density pa-

rameters. The parameters listed correspond to those discussed in Section 4. The

column labeled “N” indicates how many of the discrete levels listed in Appendix

B were included in the constant temperature fit and subsequent Hauser-Feshbach

calculations. In the last column, an “x” indicates that the asymptotic level density

parameter ã was derived from a measured average resonance spacing. An “s” in-

dicates that ã is drawn from our systematic (see Section 4.3). All quantities listed

are in units of MeV, with the exception of ã (units of MeV−1) and σ(Ex) (unitless).

Table 26: Local systematic level density parameters

Nucleus ã ∆ δW Ex E0 T σ(Ex) N x/s
43Ca 5.277 0.195 3.000 5.292 -3.782 1.279 2.674 16 x
44Ca 5.725 2.248 2.620 7.818 -2.051 1.262 2.745 14 x
45Ca 5.668 0.269 2.340 2.000 -1.391 0.941 2.092 3 x
46Ca 5.631 2.112 1.480 5.600 -0.568 1.130 2.579 6 s
47Ca 5.725 0.524 0.670 2.000 -1.127 1.008 2.132 0 s
45Sc 5.536 -0.223 2.670 7.008 -5.900 1.425 3.014 35 s
46Sc 5.675 -1.029 2.280 4.680 -5.400 1.291 2.885 25 x
47Sc 5.725 -0.137 1.320 5.868 -4.604 1.335 3.007 26 s
48Sc 5.819 -0.950 0.950 1.700 -3.080 1.050 2.492 6 s
49Sc 5.912 0.384 0.210 2.000 -1.281 1.004 2.257 0 s
50Sc 6.005 -0.660 0.330 6.578 -5.865 1.412 3.323 2 s
44Ti 5.441 3.450 3.040 11.608 -3.098 1.504 3.052 16 s
45Ti 5.536 -0.135 3.430 3.300 -2.854 1.071 2.467 13 s
46Ti 5.631 2.371 3.020 10.316 -3.988 1.456 3.119 26 s
47Ti 4.982 0.222 2.680 8.231 -6.114 1.589 3.294 25 x
48Ti 5.745 2.043 1.690 9.470 -3.603 1.431 3.212 25 x
49Ti 6.128 0.151 0.630 3.800 -2.560 1.107 2.725 16 x
50Ti 5.965 2.167 0.240 5.430 -0.295 1.111 2.729 24 x
51Ti 5.874 0.510 0.260 4.000 -2.098 1.142 2.832 14 x
52Ti 6.190 1.559 1.030 3.981 -0.402 0.977 2.562 9 s
53Ti 6.282 0.502 1.730 5.400 -3.168 1.156 3.066 0 s
54Ti 6.373 1.776 2.370 6.800 -2.052 1.137 3.097 0 s
45V 5.536 -0.173 3.460 5.660 -4.791 1.289 2.825 1 s
46V 5.631 0.212 3.850 6.155 -4.544 1.273 2.866 20 s
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Table 26: (continued)

Nucleus ã ∆ δW Ex E0 T σ(Ex) N x/s
47V 5.725 -0.121 3.360 2.600 -2.325 0.979 2.393 9 s
48V 5.819 -0.580 1.880 4.551 -4.454 1.233 2.906 22 s
49V 5.912 -0.154 1.990 2.000 -1.993 0.953 2.361 37 s
50V 6.005 -0.820 0.810 5.720 -5.604 1.349 3.218 24 s
51V 5.748 0.325 0.540 5.878 -3.698 1.320 3.186 30 x
52V 6.239 -0.824 0.540 1.871 -2.933 1.014 2.646 24 x
53V 6.282 -0.084 1.360 2.189 -1.951 0.940 2.539 6 s
54V 6.373 -0.843 2.120 4.435 -4.844 1.165 3.147 0 s
55V 6.465 -0.060 2.530 5.167 -4.064 1.139 3.159 0 s
56V 6.556 -0.804 3.260 4.375 -4.840 1.105 3.159 0 s
57V 6.646 -0.076 3.490 5.055 -4.094 1.086 3.179 0 s
47Cr 5.725 -0.114 3.560 8.459 -7.157 1.476 3.206 2 s
48Cr 5.819 2.943 3.100 9.231 -2.008 1.294 3.015 2 s
49Cr 5.912 0.285 1.400 3.258 -2.036 1.047 2.582 12 s
50Cr 6.005 2.015 1.760 5.155 -0.416 1.037 2.639 7 s
51Cr 5.953 0.048 0.360 4.718 -3.332 1.225 3.032 12 x
52Cr 6.190 2.011 0.120 8.101 -2.322 1.309 3.272 15 s
53Cr 6.016 0.448 0.070 6.039 -3.528 1.298 3.280 13 x
54Cr 6.080 1.945 0.740 7.490 -2.094 1.264 3.285 9 x
55Cr 6.233 0.354 1.570 7.141 -4.761 1.315 3.450 9 x
56Cr 6.556 1.714 1.980 4.189 -0.251 0.905 2.663 7 s
57Cr 6.646 0.248 2.670 5.300 -3.627 1.100 3.198 0 s
58Cr 6.736 1.814 2.900 6.900 -2.111 1.087 3.230 0 s
59Cr 6.826 -0.040 3.340 4.100 -3.236 0.987 3.081 0 s
60Cr 6.916 1.830 3.250 6.600 -1.865 1.034 3.233 0 s
48Mn 5.819 -0.431 2.150 5.194 -4.717 1.266 2.965 0 s
49Mn 5.912 0.304 1.330 2.000 -1.335 0.949 2.244 3 s
50Mn 6.005 -0.226 1.170 5.274 -4.289 1.258 3.065 1 s
51Mn 6.098 0.261 0.370 4.780 -3.013 1.192 2.988 11 s
52Mn 6.190 -0.625 0.020 3.200 -3.409 1.136 2.917 19 s
53Mn 6.282 0.205 -0.270 5.542 -3.543 1.253 3.223 21 s
54Mn 6.373 -0.735 -0.210 6.115 -5.546 1.347 3.468 17 s
55Mn 6.465 0.210 0.680 4.615 -3.000 1.126 3.102 12 s
56Mn 6.617 -0.712 1.500 7.620 -7.069 1.374 3.638 8 x
57Mn 6.646 -0.076 1.960 3.098 -2.496 0.959 2.869 6 s
58Mn 6.736 -0.632 2.560 4.455 -4.523 1.096 3.244 1 s
59Mn 6.826 -0.103 2.800 4.939 -3.982 1.077 3.263 0 s
60Mn 6.916 -0.284 3.160 4.716 -4.161 1.055 3.276 1 s
61Mn 7.006 -0.100 3.340 4.859 -3.958 1.038 3.296 0 s
51Fe 6.098 0.385 0.640 5.826 -3.564 1.257 3.119 0 s
52Fe 6.190 2.818 0.530 6.222 0.274 1.081 2.811 5 s
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Table 26: (continued)

Nucleus ã ∆ δW Ex E0 T σ(Ex) N x/s
53Fe 6.282 0.121 -0.730 4.763 -3.114 1.216 3.135 5 s
54Fe 6.373 1.967 -1.010 8.021 -2.135 1.315 3.403 25 s
55Fe 6.428 0.366 -0.970 4.922 -2.781 1.199 3.212 5 x
56Fe 6.556 1.927 0.050 8.893 -3.026 1.324 3.552 33 s
57Fe 6.486 0.302 0.720 7.054 -4.629 1.300 3.554 31 x
58Fe 6.551 2.014 1.220 9.192 -3.347 1.310 3.629 32 x
59Fe 6.880 0.383 1.940 4.674 -2.836 1.032 3.161 28 x
60Fe 6.916 1.921 2.070 6.777 -1.739 1.071 3.297 24 s
61Fe 7.006 0.191 2.380 4.900 -3.382 1.042 3.293 4 s
62Fe 7.095 1.935 2.590 6.400 -1.463 1.008 3.274 4 s
63Fe 7.184 0.170 3.100 4.700 -3.316 0.992 3.298 0 s
52Co 6.190 -0.962 0.120 4.423 -4.799 1.256 3.173 0 s
53Co 6.282 0.278 -0.860 5.608 -3.380 1.272 3.251 1 s
54Co 6.373 -0.229 -1.170 3.513 -2.869 1.151 3.029 2 s
55Co 6.465 0.476 -2.180 4.728 -2.355 1.218 3.218 9 s
56Co 6.556 -0.694 -1.540 4.295 -4.032 1.234 3.349 7 s
57Co 6.646 0.165 -0.890 5.072 -3.210 1.194 3.338 7 s
58Co 6.736 -0.881 0.110 5.390 -5.344 1.251 3.535 11 s
59Co 6.826 0.198 0.770 4.955 -3.261 1.109 3.304 31 s
60Co 7.022 -0.854 1.390 4.032 -4.469 1.081 3.320 49 x
61Co 7.006 0.089 1.750 1.000 -1.185 0.783 2.195 2 s
62Co 7.095 -0.862 2.350 4.058 -4.597 1.051 3.366 1 s
63Co 7.184 0.034 2.410 4.915 -3.676 1.038 3.391 1 s
64Co 7.272 -0.628 2.890 4.216 -4.351 1.015 3.398 0 s
55Ni 6.465 0.404 -2.170 5.632 -2.980 1.285 3.384 0 s
56Ni 6.556 3.215 -2.740 9.275 -0.532 1.346 3.582 23 s
57Ni 6.646 0.624 -2.670 3.000 -1.256 1.092 2.880 15 s
58Ni 6.736 1.993 -1.580 10.652 -3.691 1.445 3.922 29 s
59Ni 6.909 0.433 -0.680 7.495 -4.430 1.305 3.712 32 x
60Ni 6.872 2.075 -0.160 10.171 -3.664 1.362 3.872 34 x
61Ni 7.111 0.305 0.590 5.581 -3.509 1.124 3.460 28 x
62Ni 6.954 2.193 1.100 9.664 -3.384 1.284 3.824 37 x
63Ni 7.378 0.337 1.580 3.200 -1.826 0.873 2.976 20 x
64Ni 7.272 2.164 1.630 6.816 -1.296 1.032 3.419 23 s
65Ni 7.785 0.337 1.760 2.000 -1.064 0.730 2.622 22 x
56Cu 6.556 -0.666 -0.940 4.512 -4.210 1.227 3.348 0 s
57Cu 6.646 0.693 -2.310 5.825 -2.610 1.260 3.454 0 s
58Cu 6.736 -0.090 -1.210 4.332 -3.119 1.159 3.307 5 s
59Cu 6.826 0.252 -0.650 3.219 -1.939 1.014 3.000 8 s
60Cu 6.916 -0.616 0.350 7.061 -6.178 1.319 3.788 6 s
61Cu 7.006 0.287 0.880 4.660 -2.904 1.057 3.299 31 s
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Table 26: (continued)

Nucleus ã ∆ δW Ex E0 T σ(Ex) N x/s
62Cu 7.095 -0.702 1.530 5.539 -5.385 1.172 3.615 18 s
63Cu 7.184 0.337 1.860 1.000 -1.052 0.817 2.066 12 s
64Cu 7.131 -0.643 2.420 3.673 -3.910 0.997 3.336 16 x
65Cu 7.360 0.343 2.330 1.000 -0.941 0.764 2.088 2 s



262

F Initial Solar Seeds for Hydrogen Burning

Table 27: Initial composition for hydrogen burning

AZ XAZ
AZ XAZ

AZ XAZ
1H 7.0573× 10−1 2H 4.8010× 10−5 3He 2.9291× 10−5
4He 2.7521× 10−1 6Li 6.4957× 10−10 7Li 9.3525× 10−9
9Be 1.6619× 10−10 10B 1.0674× 10−9 11B 4.7246× 10−9
12C 3.0323× 10−3 13C 3.6500× 10−5 14N 1.1049× 10−3
15N 4.3634× 10−6 16O 9.5918× 10−3 17O 3.8873× 10−6
18O 2.1673× 10−5 19F 4.0515× 10−7 20Ne 1.6189× 10−3
21Ne 4.1274× 10−6 22Ne 1.3022× 10−4 23Na 3.3394× 10−5
24Mg 5.1480× 10−4 25Mg 6.7664× 10−5 26Mg 7.7605× 10−5
27Al 5.8052× 10−5 28Si 6.5301× 10−4 29Si 3.4257× 10−5
30Si 2.3524× 10−5 31P 8.1551× 10−6 32S 3.9581× 10−4
33S 3.2221× 10−6 34S 1.8663× 10−5 36S 9.3793× 10−8
35Cl 3.5147× 10−6 37Cl 1.1886× 10−6 36Ar 7.7402× 10−5
38Ar 1.5379× 10−5 40Ar 2.5295× 10−8 39K 3.4685× 10−6
40K 5.5446× 10−9 41K 2.6311× 10−7 40Ca 5.9898× 10−5
42Ca 4.1964× 10−7 43Ca 8.9734× 10−8 44Ca 1.4190× 10−6
46Ca 2.7926× 10−9 48Ca 1.3841× 10−7 45Sc 3.8929× 10−8
46Ti 2.2340× 10−7 47Ti 2.0805× 10−7 48Ti 2.1503× 10−6
49Ti 1.6361× 10−7 50Ti 1.6442× 10−7 50V 9.2579× 10−10
51V 3.7669× 10−7 50Cr 7.4240× 10−7 52Cr 1.4876× 10−5
53Cr 1.7200× 10−6 54Cr 4.3573× 10−7 55Mn 1.3286× 10−5
54Fe 7.1301× 10−5 56Fe 1.1686× 10−3 57Fe 2.8548× 10−5
58Fe 3.6971× 10−6 59Co 3.3579× 10−6 58Ni 4.9441× 10−5
60Ni 1.9578× 10−5 61Ni 8.5944× 10−7 62Ni 2.7759× 10−6
64Ni 7.2687× 10−7 63Cu 5.7528× 10−7 65Cu 2.6471× 10−7
64Zn 9.9237× 10−7 66Zn 5.8765× 10−7 67Zn 8.7619× 10−8
68Zn 4.0593× 10−7 70Zn 1.3811× 10−8 69Ga 3.9619× 10−8
71Ga 2.7119× 10−8 70Ge 4.3204× 10−8 72Ge 5.9372× 10−8
73Ge 1.7136× 10−8 74Ge 8.1237× 10−8 76Ge 1.7840× 10−8
75As 1.2445× 10−8 74Se 1.0295× 10−9 76Se 1.0765× 10−8
77Se 9.1542× 10−9 78Se 2.9003× 10−8 80Se 6.2529× 10−8
82Se 1.1823× 10−8 79Br 1.1950× 10−8 81Br 1.1925× 10−8
78Kr 3.0187× 10−10 80Kr 2.0216× 10−9 82Kr 1.0682× 10−8
83Kr 1.0833× 10−8 84Kr 5.4607× 10−8 86Kr 1.7055× 10−8
85Rb 1.1008× 10−8 87Rb 4.6434× 10−9 84Sr 2.8047× 10−10
86Sr 5.0468× 10−9 87Sr 3.3230× 10−9 88Sr 4.3206× 10−8
89Y 1.0446× 10−8 90Zr 1.3363× 10−8 91Zr 2.9463× 10−9
92Zr 4.5612× 10−9 94Zr 4.7079× 10−9 96Zr 7.7706× 10−10
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Table 27: (continued)

AZ XAZ
AZ XAZ

AZ XAZ
93Nb 1.6420× 10−9 92Mo 8.7965× 10−10 94Mo 5.6114× 10−10
95Mo 9.7562× 10−10 96Mo 1.0320× 10−9 97Mo 5.9868× 10−10
98Mo 1.5245× 10−9 100Mo 6.2225× 10−10 96Ru 2.5012× 10−10
98Ru 8.6761× 10−11 99Ru 5.9099× 10−10 100Ru 5.9190× 10−10
101Ru 8.0731× 10−10 102Ru 1.5171× 10−9 104Ru 9.1547× 10−10
103Rh 8.9625× 10−10 102Pd 3.6637× 10−11 104Pd 4.0775× 10−10
105Pd 8.2335× 10−10 106Pd 1.0189× 10−9 108Pd 1.0053× 10−9
110Pd 4.5354× 10−10 107Ag 6.8205× 10−10 109Ag 6.4517× 10−10
106Cd 5.3893× 10−11 108Cd 3.9065× 10−11 110Cd 5.5927× 10−10
111Cd 5.7839× 10−10 112Cd 1.0992× 10−9 113Cd 5.6309× 10−10
114Cd 1.3351× 10−9 116Cd 3.5504× 10−10 113In 2.2581× 10−11
115In 5.1197× 10−10 112Sn 1.0539× 10−10 114Sn 7.1802× 10−11
115Sn 3.9852× 10−11 116Sn 1.6285× 10−9 117Sn 8.6713× 10−10
118Sn 2.7609× 10−9 119Sn 9.8731× 10−10 120Sn 3.7791× 10−9
122Sn 5.4622× 10−10 124Sn 6.9318× 10−10 121Sb 5.4174× 10−10
123Sb 4.1069× 10−10 120Te 1.3052× 10−11 122Te 3.8266× 10−10
123Te 1.3316× 10−10 124Te 7.1827× 10−10 125Te 1.0814× 10−9
126Te 3.1553× 10−9 128Te 4.9408× 10−9 130Te 5.3731× 10−9
127I 2.8912× 10−9 124Xe 1.7910× 10−11 126Xe 1.6223× 10−11
128Xe 3.3349× 10−10 129Xe 4.1767× 10−9 130Xe 6.7411× 10−10
131Xe 3.3799× 10−9 132Xe 4.1403× 10−9 134Xe 1.5558× 10−9
136Xe 1.2832× 10−9 133Cs 1.2515× 10−9 130Ba 1.5652× 10−11
132Ba 1.5125× 10−11 134Ba 3.6946× 10−10 135Ba 1.0108× 10−9
136Ba 1.2144× 10−9 137Ba 1.7466× 10−9 138Ba 1.1240× 10−8
138La 1.4277× 10−12 139La 1.5681× 10−9 136Ce 7.4306× 10−12
138Ce 9.8787× 10−12 140Ce 3.5590× 10−9 142Ce 4.5258× 10−10
141Pr 5.9562× 10−10 142Nd 8.0817× 10−10 143Nd 3.6172× 10−10
144Nd 7.1756× 10−10 145Nd 2.5197× 10−10 146Nd 5.2441× 10−10
148Nd 1.7857× 10−10 150Nd 1.7719× 10−10 144Sm 2.9140× 10−11
147Sm 1.4836× 10−10 148Sm 1.0931× 10−10 149Sm 1.3417× 10−10
150Sm 7.2470× 10−11 152Sm 2.6491× 10−10 154Sm 2.2827× 10−10
151Eu 1.7761× 10−10 153Eu 1.9660× 10−10 152Gd 2.5376× 10−12
154Gd 2.8008× 10−11 155Gd 1.9133× 10−10 156Gd 2.6675× 10−10
157Gd 2.0492× 10−10 158Gd 3.2772× 10−10 160Gd 2.9180× 10−10
159Tb 2.4252× 10−10 156Dy 8.6812× 10−13 158Dy 1.4787× 10−12
160Dy 3.7315× 10−11 161Dy 3.0340× 10−10 162Dy 4.1387× 10−10
163Dy 4.0488× 10−10 164Dy 4.6047× 10−10 165Ho 3.7104× 10−10
162Er 1.4342× 10−12 164Er 1.6759× 10−11 166Er 3.5397× 10−10
167Er 2.4332× 10−10 168Er 2.8557× 10−10 170Er 1.6082× 10−10
169Tm 1.6159× 10−10 168Yb 1.3599× 10−12 170Yb 3.2509× 10−11
171Yb 1.5312× 10−10 172Yb 2.3624× 10−10 173Yb 1.7504× 10−10
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Table 27: (continued)

AZ XAZ
AZ XAZ

AZ XAZ
174Yb 3.4682× 10−10 176Yb 1.4023× 10−10 175Lu 1.5803× 10−10
176Lu 4.5855× 10−12 174Hf 1.0783× 10−12 176Hf 3.4636× 10−11
177Hf 1.2581× 10−10 178Hf 1.8550× 10−10 179Hf 9.3272× 10−11
180Hf 2.4131× 10−10 180Ta 1.1292× 10−14 181Ta 9.4772× 10−11
180W 7.8768× 10−13 182W 1.6113× 10−10 183W 8.7950× 10−11
184W 1.8989× 10−10 186W 1.7878× 10−10 185Re 9.0315× 10−11
187Re 1.6603× 10−10 184Os 5.6782× 10−13 186Os 5.0342× 10−11
187Os 3.8172× 10−11 188Os 4.2704× 10−10 189Os 5.2110× 10−10
190Os 8.5547× 10−10 192Os 1.3453× 10−9 191Ir 1.1933× 10−9
193Ir 2.0211× 10−9 190Pt 8.1702× 10−13 192Pt 5.0994× 10−11
194Pt 2.1641× 10−9 195Pt 2.2344× 10−9 196Pt 1.6757× 10−9
198Pt 4.8231× 10−10 197Au 9.3184× 10−10 196Hg 2.3797× 10−12
198Hg 1.7079× 10−10 199Hg 2.8843× 10−10 200Hg 3.9764× 10−10
201Hg 2.2828× 10−10 202Hg 5.1607× 10−10 204Hg 1.2023× 10−10
203Tl 2.7882× 10−10 205Tl 6.7255× 10−10 204Pb 3.1529× 10−10
206Pb 3.0900× 10−9 207Pb 3.3720× 10−9 208Pb 9.6177× 10−9
209Bi 7.6127× 10−10 232Th 2.4647× 10−10 235U 3.4061× 10−11
238U 1.0897× 10−10




