‘ ! ! . UCRL-CONF-215235

LAWRENCE
LIVERMORE
NATIONAL

wsomrony | StrUuctured Composition of Dataflow and
Control-Flow for Reusable and Robust
Scientific Workflows

S. Bowers, B. Ludaescher, A. Ngu,
T. Critchlow

September 9, 2005

Symposium onApplied Computing
Dijon , France
April 23, 2006 through April 27, 2006

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of California,
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

March 9, 2005

Structured Composition of Dataflow and Control-Flow for
Reusable and Robust Scientific Workflows

ABSTRACT

Data-centric scientific workflows are often modeled as dataflow
process networks. The simplicity of the dataflow framework facili-
tates workflow design, analysis, and optimization. However, some
workflow tasks are particularly “control-flow intensive”, e.g., pro-
cedures to make workflows more fault-tolerant and adaptive in an
unreliable, distributed computing environment. Modeling complex
control-flow directly within a dataflow framework often leads to
overly complicated workflows that are hard to comprehend, reuse,
schedule, and maintain. In this paper, we develop a framework
that allows a structured embedding of control-flow intensive sub-
tasks within dataflow process networks. In this way, we can seam-
lessly handle complex control-flows without sacrificing the ben-
efits of dataflow. We build upon a flexible actor-oriented mod-
eling and design approach and extend it with (actor) frames and
(workflow) templates. A frame is a placeholder for an (existing
or planned) collection of components with similar function and
signature. A template partially specifies the behavior of a sub-
workflow by leaving “holes” (i.e., frames) in the subworkflow de-
finition. Taken together, these abstraction mechanisms facilitate
the separation and structured re-combination of control-flow and
dataflow in scientific workflow applications. We illustrate our ap-
proach with a real-world scientific workflow from the astrophysics
domain. This data-intensive workflow requires remote execution
and file transfer in a semi-reliable environment. For such work-
flows, we propose a 3-layered architecture: The top-level, typically
a dataflow process network, includes Generic Data Transfer (GDT)
frames and Generic remote eXecution (GX) frames. At the second
level, the user can specialize the behavior of these generic compo-
nents by embedding a suitable template (here: transducer templates
for control-flow intensive tasks). At the third level, frames inside
the transducer template are specialized by embedding the desired
implementation. Our approach yields workflows that are more ro-
bust (fault-tolerance strategies can be define by control-flow driven
transducer templates) and at the same time more reuseable, since
the embedding of frames and templates yields more structured and
modular workflows.

1. INTRODUCTION

Scientific workflow systems [19, 17, 2, 16] are increasingly being
used by scientists to construct and execute complex scientific analy-
ses. Such analyses are typically data-centric and involve “gluing”
together data retrieval, computation, and visualization components
into a single executable analysis pipeline. The components may be
part of the workflow system, part of another application (invoked
through system calls, executing R or MATLAB scripts, etc.), or even
external, accessed via web or grid services. In addition to provid-
ing scientists with a mechanism to compose and configure other-

wise heterogeneous components, scientific workflow systems aim
to support end-to-end workflow management, e.g., through tools
for access and querying of external data sources, archival of inter-
mediate results, and monitoring of workflow execution. Most sci-
entific workflow systems treat workflows as dataflow process net-
works [13], a model of computation that comes with “built-in” sup-
port for stream-based and concurrent execution. Thus, dataflow is a
natural paradigm for data-driven and data-intensive scientific work-
flows such as, e.g., the terabyte-sized Fusion Plasma Simulation [3]
and the Terascale Supernova Initiative [21]. It can be efficiently
analysed and scheduled, and is also a simple and intuitive model
for workflow designers [4]. While dataflow has become the stan-
dard model of scientific workflows, some amount of control-flow
modeling is often necessary for engineering fault-tolerant, robust,
and adaptive workflows.

In this paper, we address the problem of combining dataflow and
control-flow for scientific workflows. It has been noted [14] that
modeling control-flow using only dataflow constructs can quickly
lead to overly complex workflows that are hard to understand, reuse,
reconfigure, maintain, and schedule [11]. In particular, model-
ing control-flow using dataflow involves inserting and linking var-
ious low-level and specialized control components alongside data-
flow components, thus making it difficult to distinguish control-
flow from dataflow aspects (since they are “entangled”) and often
requiring complex component connections including loops [21].

The organization and contributions of the paper are as follows:
We describe a framework that “untangles” dataflow and control-
flow aspects and instead supports a structured embedding of control-
intensive subtasks within dataflow process networks (Section 2).
Our approach is to encapsulate generic behavioral specifications
(i.e., control-flow) in workflow templates. Templates are distinct
and separate components and thus can be easily reused in other
workflows. Templates are partial specifications and contain “holes”,
so-called frames, that act as placeholders for independently defined
subcomponents. Composing templates with existing dataflow com-
ponents results in applying the associated behavior to the compo-
nent in such a way that the separation between control-flow and
dataflow is maintained, thus allowing the underlying dataflow com-
ponent to be easily changed (typically through a configuration pa-
rameter of the template). This approach allows workflow designers
to change complex control-flow behavior, by simply using different
templates. Our approach was inspired by the notion of hierarchi-
cal finite state machines [8] and can also be seen as an extension of
actor-oriented modeling [12] with frames and templates (Figure 2).

In Section 3 we first present a specialized 3-layered architecture
of our framework. It allows the designer to select and reuse differ-
ent control-flow intensive behaviors for generic top-level compo-
nents, by embedding inside of them suitable transducer templates

F8 filez/C:/workflows/TSl-s-transfer. xml
Fle vew Edt Greph Dobug telp

@RS PMNOPEED e

Actors | pata

Quick Search

oulput

text [concent v

“rorecurs
== T Director

== b Director
== bE Director
== 50F Director
= A adors
® 1 Methematiosl Operations
[Cortrol
1 Image Manipulation
[} Grid Functions
@ 1 Web Services
1# [} Datamiring
&] Domain Specific

bt Dlayed Input

rgger,

suse_stder true
®cmd_sr:™

ecmd_ls:™

@ debug_xr false
@ debug_Is: false
@ debug_xfr_file: ™
@ debug_is_file: ™

% () Extemal Exceution Envira wcmd_x_user: ™

count

‘This composite actor is meant to be used in the PN domain
to wrap around an acter with one inputand one output,

“This actor retries a subworkflow if functionPass is false up
to atmost count number of imes. toutputs the last
functionOutputand functionPass

@ [1nputs @ cmd_xir_host:™ o] Log N

® L IFiters wssh_identity ™ . S

@ () Constarts scmd_ls_host:™ ”~ S
) | Converlers scmd_Is_user:™

1 Complex Structures Autror: isoman

® L1 File Systern 3 input RecordAss embler $id: Rotry.em! v 1.3 2005101120 01:25:36 xaowan Exp §

Conditional Loop
output

= E

funcioninput

RepordAssembld2
funet

Expression2
BooleanSwitch2 pass
T

>
> BooleanSwitch
functionOutput = 1o gutput

>

Expression -

] =0Ty

Figure 1: Control-flow intensive astrophysics workflow in KEPLER [21]. “Retry”, a composite actor for fault-tolerant data transfer
(top), contains a subworkflow (bottom), which itself contains a “ConditionalL.oop” subworkflow (inside not shown). Complex feed-
back loops and the use of boolean switches illustrate the complexity of modeling control-flow directly in a dataflow process network.

as the middle-layer. The concrete implementation of frames inside
of transducer templates is independently selected via the bottom-
layer. We then describe a Generic Data Transfer (GDT) compo-
nent, which is part of our prototypical implementation on top of the
open-source KEPLER system [2, 15], an extension of PTOLEMY 11
[5] for scientific workflows. GDT was motivated by earlier work
on a control-intensive astrophysics workflow [21]. As shown in
Figure 1, this workflow uses dataflow constructs to implement a
fault-tolerance scheme (involving “retry”) for transfering files, re-
sulting in a very complex process network. In the new approach,
the GDT component encapsulates this and other transfer behaviors
as templates in which workflow designers can select from a set of
behaviors as well as the desired underlying transfer protocols (e.g.,
scp or £tp). Given a particular behavior and protocol, the GDT
automatically composes these into the desired executable compo-
nent. At any time, the behavior and the underlying protocols can be
easily changed by simply reconfiguring GDT. In the original work-
flow this would be a complex and error-prone programming task,
involving the insertion, deletion, and re-wiring of various control-
flow and dataflow components. We also describe a Generic remote
eXecution (GX) component, whose middle-layer employs exactly
the same control-intensive behaviors (via transducer templates) as
GDT to support fault-tolerance, demonstrating the versatility of our
approach and the improved component reusability it creates.

2. ACTOR-ORIENTED DESIGN EXTENSIONS

In KEPLER, users develop workflows by selecting appropriate com-
ponents called actors and placing them on a design canvas, after
which they can be “wired” together to form the desired workflow
graph (c¢f. Figure 1). Actors have input and output ports which pro-
vide the communication interface to other actors. Workflows can be
hierarchically structured, yielding composite actors that encapsu-
late subworkflows (e.g., see the bottom-right in Figure 1). A novel
feature of KEPLER, inherited from PTOLEMY II, is that the over-
all execution and component interaction semantics of a workflow

is not defined by the components, but is factored out into a sepa-
rate component called a director (not shown here). Taken together,
workflows, actors, ports, connections, and directors represent the
basic building blocks of actor-oriented modeling and design [12].

In this section we define scientific workflows as dataflow process
networks and describe two extensions to actor-oriented modeling,
i.e., frames and templates. Frames form the basis of our approach
for embedding control-flow intensive behaviors (via workflow tem-
plates) inside of dataflow process networks.

2.1 Scientific Workflows as Process Networks

An actor-oriented workflow graph W = (A, D) consists of a set
A of actors representing components or tasks and a set of directed
dataflow connections D (see below), representing communication
channels that connect actors via ports, and along which actors com-
municate by passing tokens.

Let ports(A) denote the set of ports of actor A. Each port p €
ports(A) is designated as either input or output. Some input ports
may be distinguished as parameters pars(A) C in(A) which can
be used for configuring A’s behavior. For convenience, we write
A.p to emphasize that port p belongs to actor A. The signature ¥ 4
of an actor is given by its ports; we write X4 = in(A4) — out(A).

Actors are wired together through their ports via dataflow con-
nections. A dataflow connection d € D is a directed hyperedge
d = (o, 1), connecting n output ports o = {o01,...,0,} with m
input ports i = {¢1,...,4m}. A dataflow connection d = (o, i)
corresponds to a merge step of output tokens from o, followed by a
copy step, delivering all tokens to the input ports i.

A composite actor Aw encapsulates a sub-workflow W. The
(external) ports of Ay consist of a distinguished set of ports from
W, ie., Aw might not expose all of its subworkflow’s ports. A hi-
erarchical workflow is a workflow graph that contains at least one
composite actor. Since subworkflows can themselves be hierarchi-
cal, any level of nesting can be modeled.

A port p may have a structural data type constraining the al-

lowed set of values accepted by p (if p is an input port) or produced
by p (if p is an output port). The PTOLEMY II type system includes
simple types (e.g., string and int) and complex types (such as
nested record and 1ist structures). A port p may also have a se-
mantic type, denoting a concept from a description logic ontology
[4]. For example, a semantic type is:

MEASUREMENT 1 VITEM.SPECIESOCCURRENCE

indicating that the corresponding port accepts (or produces) data
tokens that are measurements where the measured item is a species
occurrence (as opposed to, e.g., a temperature). In addition to port
semantic types, an actor A itself may also be associated with a se-
mantic type, describing the overall function or purpose of A.-While
structural (i.e., data) type safety ensures that actors can “work with”
incoming data tokens at runtime, semantic type safety avoids actor
connections at design time that are not meaningful in terms of their
concept annotations (e.g., occurrence data cannot be used where
temperature data is expected).

So far, the execution semantics of a workflow graph W has not
been specified. Indeed, in PTOLEMY II and thus in KEPLER, the
workflow designer can choose among different models of compu-
tation, each one being represented by a so-called director. A direc-
tor specifies and mediates all inter-actor communication, separat-
ing workflow orchestration and scheduling (the director’s concern)
from individual actor execution (the actor’s concern). This sepa-
ration achieves a form of behavioral polymorphism [12], resulting
in more reusable actor components and subworkflows. KEPLER
(through PTOLEMY II) provides a variety of directors that imple-
ment process network (PN and SDF), discrete event (DE), continu-
ous time (CT), and finite state transducer (FST) semantics.

2.2 Frames

Actors in actor-oriented modeling and design are always concrete:
they correspond to particular implementations and can be directly
executed in a workflow. We extend actor-oriented modeling with
a new entity called frame, which is an abstraction that denotes a
set of alternative actor implementations (or templates) with similar,
but not necessarily identical functionality. For workflow designers,
frames are placeholders for components that will be instantiated
and specialized later. Thus, a designer can place a frame F' on
the design canvas, and connect it with other workflow components,
without prematurely specifying which component C'is to be used.
For component developers, frames can be used as abstractions for
a family of components (actors or templates) with similar function.

Formally, a frame is a named entity [’ that acts as a placeholder
for a component C' to be “plugged into” F' (see Figure 2a). When
devising a frame F’, a family of components Cr is envisioned,
with each C' € CF being a possible alternative for embedding into
F. Like an actor, a frame has input, output, and parameter ports,
structural types, and semantic types; taken together they form the
frame signature ¥ . This signature represents the common API of
the family Cr of components that F" abstracts.

An embedding F|C] of a component C' into a frame F' is a set
of pairs associating (or “wiring”) ports of C' with ports of F, i.e.,
F[C] C ports(F') x ports(C'). We indicate the wiring type of a
pair (z,y) € F[C] as follows:

o Faxw» Cy;ifx €in(F),y €in(C) (input)
o F.ux 4Cly;ifx € out(F),y € out(C) (output)
o .o v (Cy;ifx € pars(F),y € pars(C) (parameter)

The embedded component C' may also introduce new ports not in
ports(F'). We denote these ports as >C.y, <C.y, and VC.y for
input, output, and parameter ports y, respectively.

- ¢ [
Nithg £33

a). Embedding F[C]

c). Transducer Template T(F)

Figure 2: a) Embedding of component C in frame F; b) work-
flow template T(F1,F2); c) finite state transducer template T(F).

Similarly, an embedding F'[C] may not use all the ports of C.
We denote these unused ports as F.oz <, F.z>>, and F.zV for input,
output, and parameter ports x, respectively. We note that parameter
ports F.z can also be connected to input ports C.y and vice versa.
However, other connection types (z,y) € F[C] are not allowed.
More precisely, an embedding F'[C] is well-formed if the input and
output port directions are observed, i.e., F’s inputs (outputs) are
wired only to inputs (outputs) of C' (Figure 2a). A well-formed
embedding F'[C] is structurally well-typed if the structural types
align, and semantically well-typed if the semantic types align:

More precisely, we require for each connection between a port
of F' and a port of C having (structural or semantic) types 7 and
7c that: (1) 77 =X 7¢ for input structural types; (2) 7¢ = 7F for
output structural types; (3) 7= C 7¢ for input semantic types; and
(4) 7¢ T 7F for output semantic types.! Thus, we use contra-
variant subtyping for both structural and semantic types: when em-
bedding a component C' in a frame F', C' should be able to handle
F’s inputs. Conversely, F' should be able to handle outputs of C
(or, equivalently, C' should not produce output that is more general
than what F' anticipates). The signature X (¢ after embedding
C in F includes (unless specified otherwise by the designer) the
unused ports of F' plus the new ports introduced by C'.

When a workflow designer chooses a component C' to embed
within a frame F', we can use the port types of C and F' to semi-
automatically compute the appropriate connections for F[C]. In
addition, component types can be used to help workflow design-
ers search repositories for plausible components to be embedded
within a given frame.

2.3 Workflow Templates

A frame F' imposes some constraints on the set Cr of components
for which it stands. In particular, embeddings F'[C] should be well-
formed and well-typed for any C' € Cr as explained above. How-
ever, no assumptions can be made about the “inner workings” of
C. A workflow template T provides a similar level of abstraction

1«<” denotes the standard subtyping relation between data types,
while “C” denotes concept subsumption in description logics.

for a set of workflows W . Unlike a frame, however, a template 7"
(partially) specifies the behavior of the workflows it represents.

Like actors and frames, a template 7" has the usual port signature
Y7 :in(T) — out(T'). In addition, a template includes an “inner”
workflow graph Wr, where some of the components of Wr are
not concrete actors, but frames (Figure 2 b). Let Fi,..., F}, be
the frames that occur in W, either directly, or indirectly through
nested templates. Then we can view T as a partial workflow spec-
ification T'(F1, ..., Fy), whose frames F; can be independently
specialized by embedded components (actors or templates) C;. The
resulting embedding T'(F1[C1], ..., Fr[Cy]) is a concrete, exe-
cutable workflow if no C; has itself a frame; otherwise the em-
bedding is a (more refined) template.

In addition to providing input/output constraints through the port
signature X7 and behavioral constraints through the workflow graph
structure Wr (with frames acting as placeholders), a template 1T’
can also constrain the intended model(s) of computation by pro-
viding one or more directors: In Figure 2 ¢, a transducer template
T'(F) is shown. This template includes a workflow graph Wr with
a frame F'. Moreover, an FST director is inscribed in I’, meaning
that the workflow graph is to be exectued as a finite state trans-
ducer’. A director dictates the execution model of a workflow
graph Wr (e.g., SDF or PN for synchronous dataflow and process
network execution, respectively; or here: FST), and may also im-
pose constraints on the graph structure. In the case of FST, nodes
(components) are not called actors but states (depicted as circles
in Figure 2 c); connections are called state transitions (depicted as
curved arcs). In response to a state transition, the FST director
calls a state implementation if one has been associated with the
state [8, 12]. In our case, we can create a more generic behavior
for the finite state transducer by delaying the specification of a con-
crete actor to implement a state, and instead introducing a frame. In
this way the same control-flow driven behavior can be reused with
different underlying state implementations.

3. GENERIC DATA TRANSFER

Here we consider a particular design pattern® for structuring frames
and templates into generic workflow components that can be exe-
cuted using alternative control behaviors and alternative task im-
plementations. We define the Generic Data Transfer (GDT) and
Generic eXecution (GX) components using this pattern. We also
describe how the GDT and GX components are implementated
within KEPLER.

3.1 A Generic Control-Flow Component Pattern

The generic control-flow component pattern consists of three lev-
els, as shown in Figure 3. The top level is represented as a frame
within a dataflow graph and denotes a particular task (e.g., data
transfer or remote execution). This top-level frame can be embed-
ded with one of many finite state transducer templates (the middle
level), each of which defines a control-flow behavior for the task.
A transducer template has one or more state frames that can be em-
bedded with a particular task implementation (e.g., scp or ssh).
The various frame implementations form the bottom-level of the
pattern.

We use finite state transducers for modeling embedded control-
flow because they offer a more natural, intuitive, and typically more
succinct language for specifying control behavior, compared to data-
flow process networks. Finite state machines (or transducers) are

%a kind of finite state machine that not only consumes input tokens
but that also produces output tokens

3similar in spirit to software design patterns [7]

Top-Level Workflow (Dataflow)

P Actor 1 -P[T }-P—_,_—PActornb
FST T
Transducer
Template

(Control-Flow)

F (State) Frame

Implementation
»ri-- P P> -1
(Dataflow)

Figure 3: A pattern for modeling generic control-flow comopo-
nents that consists of an outer frame (top), a nested transducer
template (middle), and state-frame embeddings (bottom)

often used to model business workflows [1], which are primarily
control-flow oriented (as opposed to dataflow oriented), and under-
pin many of the web-service orchestration languages [6].

We define a finite state transducer (FST) in the normal way: An
FSTis atuple M = (I,0,Q,qo,T), where I and O are sets of
input and output events, respectively, @ is a finite set of states, go
is the initial state, and 7" is a finite set of transitions, each of which

has the form ¢ : ¢ o q'. Here, c is an optional condition that
guards the transition ¢ (i.e., t can only be executed if c is true), and
a is an optional action. The FST M starts in the initial state. When
M is “called” from the outside, it transitions from the current state
q to the next state ¢’, based on the current input events I and the
conditions of transitions emminating from ¢. In addition, we con-
sider FST states that can be associated with a subworkflow (called
state refinements in PTOLEMY II [8]), where the subworkflow is
executed upon entry into the state.

Components that implement this generic control-flow pattern en-
able workflow designers to easily configure both the behavior and
underlying implementation of the component. A workflow de-
signer can (i) insert into a workflow the generic component (as
shown at the top of Figure 3), (ii) select a behavior from the avail-
able transducer templates associated with the component, and (iii)
select task implementations from those avilable for the state frames
of the template. The behaviors and implementations that a work-
flow designer selects from may originally be specified by the com-
ponent developer or can potentially be reused and repurposed from
other generic components.

3.2 The Generic Data Transfer Component

A common task in scientific workflows is data transfer between
hosts. Current solutions “hardwire” into the overall workflow both
the underlying transport protocol (e.g., scp) and the dynamic be-
havior used to operate the protocol (e.g., reactions to exceptions
and number of retries). For example, the astrophyhsics workflow
previously discussed (see Figure 1) hardcodes the transfer of lo-
cal simulation data from one host to the host in which a particular
analysis is performed. Data transfer is also commonly performed
in scientific workflows to store and archive the results of analytical
processes.

Data transfer using our framework can instead be specified as
follows. The designer first selects the GDT component whose sig-

- - SDF Director

gipor pre|” N
argaros Dy adom
rgeDisiary i (T Transducer
Seidantt D aors @ s | Modal Model
=

targetidentity -

Generic Component P
-=" ©F
’

_--—" Selected Template 7 Alternative Template
status 1=0 88 relyCount <= maxfetry satusi=0
done=t; rltyCount = atyCount +1 donezt

» Sore T romcount =1
4!
o maxRetry 4 Z N

o retnCount: 1 -
tryC: S nnwm output
N
N
einyGount > ma elry s sausi=0 < ﬂane aaye=0 done
et e

‘\A/
£y

done = 1 iy S dor

AN slams status

.

SDF Director SDF Director

I

srcHost targetHost SRB SPut output
SCP ELIEL SRBFileSysem uploadedFiles

srcPath sicPath s

status

|

fargetHost targelDireclory
done e

T

targetDirectory srcHost

T

e continue

A 4

Selected State Implementation ive State

Figure 4: The Generic Data Transfer component

nature specifies the common inputs and outputs such as source and
target hosts, file names and locations, and user information. Us-
ing the GDT, the designer can then select a transducer template
with the desired data-transfer behavior (e.g., from a library of pre-
defined transducer templates). The designer may choose, e.g., a
retry-failover template that: (1) attempts a transfer protocol
p1 up to n times, (2) if p; is not successful, attempts an alternative
transfer protocol p2 up to m times, and (3) if p2 also fails, reports a
failure condition. Note that n, m, p1, and p> are configuration para-
meters of the template where p; and p2 denote state-frame imple-
mentations. The designer can then select appropriate state-frame
implementations through the GDT. The designer might select, e.g.,
an scp state implementation for p; and an ftp state implementa-
tion for p». Finally, based on the signatures and configured para-
meters of the GDT component, retry-failover template, and
the state implementations (scp and ftp), the proper embeddings
are performed resulting in a fully instantiated (i.e., “ground”) GDT
component that can then be executed from within the overall work-
flow.

Using KEPLER we have implemented an initial version of the
GDT component, as shown in Figure 4. In this implementation,
the GDT component (top, left) is a special actor (more precisely,
an extension of a composite actor) that provides necessary frame
functions for supporting the generic control-flow pattern. The GDT

component contains an intermediate subworkflow (upper-right). This

subworkflow contains a “modal model” actor, which is required in
PTOLEMY II for nesting FSTs within dataflow process networks.
This subworkflow also permits multiple executions of the trans-
ducer template on each firing of the GDT component.

Two transducer templates are shown in Figure 4 for the GDT
component. The selected template (middle, left) is a simple retry
loop, which executes the desired protocol maxRetry times before
entering a fail state. Note that this template performs an equivalent
function as the control components of Figure 1. The other template
(middle, right) of Figure 4 provides a simple fail-over behavior in
which an initial protocol is attempted, and if it fails, a fail-over pro-
tocol is used. Finally, scp and SRB sput state implementations
are shown at the bottom of Figure 4. In the figure, the scp im-

plementation has been selected, and its signature propagated to the
GDT component.

In our current implementation, all configuration including the
selection of templates and state implementations is performed by
assigning specific attributes of the GDT component.* For exam-
ple, when a workflow designer configures the GDT component, a
dialog box is presented that contains a drop-down list of available
templates. Once a template is selected, the user can also select
an associated state implementation (note that at anytime after se-
lecting a template it can be navigated to within the KEPLER GUI).
The GDT actor reacts to these attribute changes dynamically, as-
signing the transducer to the modal model, refining the appropriate
transducer states, and making the appropriate port connections. A
workflow designer can also re-configure the GDT component by
assigning different templates or state implementations.

Finally, in addition to the GDT component, we have also im-
plemented the Generic eXecution (GX) component, shown in Fig-
ure 5. The GX component is similar to the GDT component, but is
tailored for remote execution (e.g., ssh) as opposed to file transfer.
The GX component, however, can directly reuse the control-flow
templates defined for the GDT component (middle of Figure 5).
The ability to reuse control-flow in this way is a significant ad-
vantage of this approach. Indeed, the ability to reuse both control-
flow and dataflow components via templates and frames can lead to
more robust, intuitive, and ultimately reusable scientific workflows.

SDF Director

usary, outut -
oty E 5
commandg] BITONS.
o transportFST
~- 2T e | Modal Model

Transducer

-~ o S5ipe

Generic Component T _ e
P TBampleDelay /#
-
’

-7 - Selected Template 7

Alternative Template

atusi=

status =0 88 retyCount <= maxRelry s

done=1: ratryCount = relnyCount +
satus=0

done=0 /_\
& status==D @
» AomX
N
N »

o maxRetry: 4 7’
7
ereinCount: 1, ~ N output
e ucces:
7 > *
rewcnum ﬂmﬁew ss das!=0 ~ done Hatus==0 done
done = /reiry! N * done=1
*y N L)
N\ status
X

’
v

output

status
v

N

— SDF Director
rector
- Ssh2Exec output

Run Job Grid Gliept 2Pt
fcate olipiitles

status o

stalus
continue Expression

continue Expres sio:
done .

State i A ive State

Figure 5: The Generic eXecution component

4. RELATED WORK

Scientific workflow systems [19, 17, 2, 16] are often based on a
dataflow model, due to the data-centric and data-driven nature of
many scientific workflows. In contrast, business workflow systems
[1] and systems for web-service composition (e.g., BPEL4AWS [6]
and OWL-S) often use control-based models such as finite state ma-
chines or Petri nets. Few systems seamlessly integrate control-flow
and dataflow within a single model. Our approach for embedding
control-flow into dataflow was inspired by hierarchical finite state
machines [8] in PTOLEMY II and more generally, PTOLEMY’s abil-
ity to nest heterogeneous compution models [12, 5].

A number of systems, e.g., for business workflows and more re-
cently for web-service composition [10], support separate interface

“In PTOLEMY I, and attribute is a static property.

declarations from underlying control-flow models. For example,
in the Collaboration Management Infrastructure (CMI) [20], each
interface declaration has an associated state machine that can be
selected at design time. This approach has been shown to enable
improved workflow constructs [18]. Our approach goes further by
combining dataflow and control-flow in a structured way using the
frame and template abstractions. This enables complex “interface”
definitions not possible in other scientific workflow systems.

The development of “rigid” workflow modeling and design frame-

works have recently been identified as a major bottleneck for sci-
entific workflow reuse and repurposing (i.e., reconfiguring existing
workflows for new purposes) [9]. We have shown that our approach
can significantly enhance reusability in scientific workflows. More-
over, the use of frames and templates together with semantic port
types also yields improved search mechanisms for scientific work-
flow repositories.

S.

CONCLUDING REMARKS

While scientific workflows are primarily dataflow-oriented, certain
workflow tasks can be control-intensive, e.g., procedures for pro-
viding fault-tolerant and adaptive distributed data transfer. Model-
ing these tasks directly using dataflow constructs can lead to work-
flows that are overly complex and difficult to maintain and reuse.

‘We have described a framework for structured embedding of generic

control-flow components within dataflow process networks. In par-
ticular, we have introduced (actor) frames and (workflow) tem-
plates and shown how they can be used to develop robust work-
flows via reusable control-intensive subtasks. This framework has
been prototypically implemented on top of the KEPLER scientific
workflow system.

As future work, we intend to further implement frames and tem-
plates as separate modeling constructs within KEPLER, and lever-
age them to create more complex generic control-flow components.
We also want to extend our current data transfer and remote ex-
ecution components with added support for automated signature
matching. One of our goals is to populate KEPLER with a number
of generic components, including rich libraries of supporting task
implementations and transducer templates, to support a wide range
of scientific workflows. We are also interested in investigating FST
composition operations so that designers can select multiple trans-
ducer templates and combine them to dynamically create and reuse
complex control-intensive behavior.

6.
(11

2

—

(31

(41

(31

REFERENCES

G. Alonso and C. Mohan. Workflow Management Systems: The
Next Generation of Distributed Processing Tools. In Advanced
Transaction Models and Architectures. 1997.

I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludaescher, and
S. Mock. Kepler: An Extensible System for Design and Execution of
Scientific Workflows. In SSDBM, 2004.

V. Bhat, S. Klasky, S. Atchley, M. Beck, D. McCune, and

M. Parashar. High Performance Threaded Data Streaming for Large
Scale Simulations. In GRID ’04: Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing (GRID’04), pages
243-250, Washington, DC, USA, 2004. IEEE Computer Society.

S. Bowers and B. Ludischer. Actor-Oriented Design of Scientific
Workflows. In 24" Intl. Conf. on Conceptual Modeling (ER), 2005.
C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and

H. Zheng. Heterogeneous Concurrent Modeling and Design in Java.
Technical Report Technical Memorandum UCB/ERL M05/21, Univ.
of California, Berkeley, 2005.

F. Curbera, Y. Goland, J. Klein, F. Leyman, D. Roller, S. Thatte, and
S. Weer-awarana. Business Process Execution Language for Web
Services (BPELAWS), Version 1.0. 2002.

—

[7] E. Gamma, R. Helm, R. Johnson, and J. J. Vlissides. Design

Patterns. Addison-Wesley Professional, 1995.

A. Girault, B. Lee, and E. A. Lee. Hierarchical Finite State Machines
with Multiple Concurrency Models. IEEE Transactions on CAD,
18(6), 1999.

A. Goderis, C. Goble, U. Sattler, and P. Lord. Seven bottlenecks to
workflow reuse and repurposing. In International Semantic Web
Conference (ISWC2005), 2005. to appear.

R. Hull and J. Su. Tools for Composite Web Services: A Short
Overview. SIGMOD Record, 34(2), 2005.

E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Trans.
Comput., C-36, 1987.

E. A. Lee and S. Neuendorffer. Actor-oriented Models for Codesign:
Balancing Re-Use and Performance. In Formal Methods and Models
for System Design. Kluwer, 2004.

E. A. Lee and T. M. Parks. Dataflow Process Networks. Proc. of the
IEEE, 83(5), 1995.

B. Ludédscher and I. Altintas. On Simplifying Collection Handling
and Control-Flow Issues in SPA/Ptolemy-II. Technical Report
SciDAC-SPA-TN-2003-01, San Diego Supercomputer Center, 2003.

B. Ludischer, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,

M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific Workflow
Management and the Kepler System. Concurrency and Computation:
Practice & Experience, 2005. to appear.

R. S. MacLeod, D. M. Weinstein, J. Davison de St. Germain, C. R.
Johnson, S. G. Parker, and D. . Brooks. SCIRun/BioPSE: Integrated
Problem Solving Environment for Bioelectric Field Problems and
Visualization. In Proc. of the IEEE Intl. Symposium on Biomedical
Imaging (ISBI): From Nano to Macro. IEEE, 2004.

S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang. Triana: A
Graphical Web Service Composition and Execution Toolkit. In Proc.
of the IEEE Intl. Conf. on Web Services (ICWS). IEEE Computer
Society, 2004.

A. H. H. Ngu, D. Georgakopoulos, D. Baker, A. Cichocki,
J. Desmarais, and P. Bates. Advanced Process-based Component
Integration in Telcordia’s Cable OSS. In ICDE, 2002.

T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M.
Greenwood, T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li.
Taverna: a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20(17), 2004.

M. Rusinkiewicz and D. Georgakopoulos. From Coordination of
Workflow and Group Activities to Composition and Management of
Virtual Enterprises. In International Symposium on Database
Applications in Non-Traditional Environments, 1999.

X. Xin. Case Study: Terascale Supernova Initiative Workflow
(TSI-Swesty). LLNL Technical Note, 2004.
http://www-casc.llnl.gov/sdm/documentation/
casestudy-tsi-s.doc.

