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Livermore, CA 94551-0808, U.S.A. 
 
ABSTRACT 
 

First-principles generalized pseudopotential theory (GPT) provides a fundamental 
basis for transferable multi-ion interatomic potentials in transition metals and alloys 
within density-functional quantum mechanics.  In the central bcc metals, where multi-ion 
angular forces are important to materials properties, simplified model GPT or MGPT 
potentials have been developed based on canonical d bands to allow analytic forms and 
large-scale atomistic simulations.  Robust, advanced-generation MGPT potentials have 
now been obtained for Ta and Mo and successfully applied to a wide range of structural, 
thermodynamic, defect and mechanical properties at both ambient and extreme 
conditions.  Selected applications to multiscale modeling discussed here include 
dislocation core structure and mobility, atomistically informed dislocation dynamics 
simulations of plasticity, and thermoelasticity and high-pressure strength modeling.  
Recent algorithm improvements have provided a more general matrix representation of 
MGPT beyond canonical bands, allowing improved accuracy and extension to f-electron 
actinide metals, an order of magnitude increase in computational speed for dynamic 
simulations, and the development of temperature-dependent potentials. 
 
 
I. INTRODUCTION 
 

The prospect of modeling across length scales all the way from the atomic to the 
continuum level to achieve a predictive multiscale description of mechanical properties 
such as plasticity and strength has attracted widespread research interest in the last 
decade [1].  One of the most fundamental and important problems in such multiscale 
modeling is that of bridging the gap between first-principles quantum mechanics, from 
which true predictive power for real materials emanates, and the large-scale atomistic 
simulation of thousands or millions of atoms, which is usually essential to describe the 
complex atomic processes that link to higher length and time scales.  For example, to 
model single-crystal plasticity at micron length scales via dislocation-dynamics (DD) 
simulations that evolve the detailed dislocation microstructure requires accurate large-
scale atomistic information on the mobility and interaction of individual dislocations.  As 
indicated in Fig. 1, there currently exists a wide spectrum of atomic-scale simulation 
methods in condensed-matter and materials physics, extending from essentially exact  
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FIG. 1.  Representative sample of the wide spectrum of electronic and atomistic simulation 
approaches used in condensed-matter and materials physics and the material-dependent gap 
separating them.  Indicated are the estimated numbers of transition-metal atoms that could be 
usefully simulated in each category with LLNL’s new BlueGene/L (BG/L) supercomputer. 
 
 
quantum-mechanical techniques to classical descriptions with totally empirical force 
laws.  All of these methods fall into one of two distinct categories, which are separated by 
a material-dependent gap.  On one side of this gap are electronic methods based on direct 
quantum-mechanical treatments.  These include quantum simulations that attempt to treat 
electron and ion motion on an equal footing, solving quantum-mechanical equations on 
the fly for both the electronic states of the system and the forces on the individual ions.  
In transition metals, methods based on density-functional theory (DFT) [2] can provide a 
highly accurate description of the system and are chemically very robust, but they come 
at the price of being severely limited in the size and duration of the simulation.  On the 
other side of the gap are methods used in atomistic simulations, such as molecular 
dynamics (MD), that treat only the ion motion, allowing dramatically larger simulations 
by solving classical Newtonian equations of motion with the forces derived from explicit 
interatomic potentials.  Modeling across the electronic-atomistic gap is possible through 
the development of first-principles quantum-based potentials based on a systematic 
coarse graining of the DFT electronic structure.  We view this as an essential step in the 
predictive multiscale modeling of real complex materials that we envision here.  In this 
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paper, we present an overview of recent work in the Metals and Alloys Group at 
Lawrence Livermore National Laboratory (LLNL) on developing robust quantum-based 
interatomic potentials for transition metals from generalized pseudopotential theory 
(GPT) and applying these potentials to multiscale modeling simulations. 
 
 
II. GENERALIZED PSEUDOPOENTIAL THEORY 
 

Within DFT quantum mechanics, first-principles generalized pseudopotential 
theory provides a fundamental basis for ab initio interatomic potentials in both simple 
and transition metals [3-5].  In the GPT applied to transition metals, a mixed basis of 
plane waves and localized d-state orbitals is used to self-consistently expand the electron 
density and total energy of the system in terms of weak sp pseudopotential, d-d tight-
binding, and sp-d hybridization matrix elements, which in turn are all directly calculable 
from first principles.  For a bulk elemental transition metal, one obtains an explicit real-
space total-energy functional of the form [5] 
 

Etot (R1...RN ) = NEvol(Ω) +
1
2

'
i , j
∑ v2 (ij;Ω) +

1
6

'
i, j ,k
∑ v3(ijk;Ω) +

1
24

'
i, j ,k ,l
∑ v4 (ijkl;Ω)  . (1) 

 
The leading volume term in this expansion, Evol , as well as the two-, three-, and four-ion 
interatomic potentials, v2 , are volume dependent, but structure independent 
quantities and thus transferable to all bulk ion configurations, either ordered or 
disordered.  This includes all structural phases as well as the deformed solid and the 
imperfect bulk solid with either point or extended defects present.  The angular-force 
multi-ion potentials v3  in Eq. (1) reflect directional-bonding contributions from 
partially-filled d bands and are generally important for mid-period transition metals.  In 
the full ab initio GPT, however, these potentials are generally long-ranged, nonanalytic 
and multidimensional functions, so that v3  cannot be readily tabulated for 
application purposes.  This has led to the development of a simplified and complementary 
model GPT or MGPT, which achieves for the central transition metals short-ranged, 
analytic potential forms that can be applied to large-scale atomistic simulations [6,7]. 

,v3,  and v4

 and v4

and v4

In practice, the ab inito GPT and the MGPT have complementary ranges of 
application.  The ab initio GPT is most effective in situations where the total-energy 
expansion (1) can be truncated at the pair-potential level, since tabulation and 
interpolation of a nonanalytic pair potential v2 (r,Ω) represents no computational barrier 
for atomistic simulations.  Thus routine ab initio GPT applications include sp-bonded 
simple metals, series-end transition metals and appropriate binary alloys, such as the 
transition-metal aluminides [8].  The primary application range for the MGPT, on the 
other hand, is the Group-VB and -VIB bcc transition metals such as Ta and Mo.  Both 
GPT and MGPT potentials have been implemented in atomistic simulations and applied 
to a wide range of bulk structural, thermodynamic, defect and mechanical properties at 
both ambient and extreme conditions of temperature and pressure [9].  Extension of the 

5 



bulk GPT and MGPT potentials to highly nonbulk situations, such as surfaces, voids and 
clusters, is also possible through appropriate environmental modulation [10]. 
 
A. Standard MGPT for central bcc transition metals 
 

The MGPT is derived from the GPT through a series of systematic approximations 
applicable to mid-period bcc transition metals with nearly half-filled d bands.  In the 
MGPT, long-range interatomic interactions arising from sp-d hybridization are assumed 
to destructively interfere and are explicitly neglected beyond Evol , while multi-ion d-state 
non-orthogonality contributions are formally folded back into 2 .  Canonical d bands are 
introduced to express the remaining d-d tight-binding matrix elements analytically as 

v

 
i
dφ〈 |Δ|   .            (2) p

ijWSmijm
j

d RRRf )/()( ααφ ==〉′
 
For pure canonical d bands p = 2ℓ+1 = 5 with ℓ = 2, but in practice one allows p to be a 
weakly volume-dependent parameter typically optimized in the range of 4-5, with a 
Gaussian cutoff introduced beyond the bcc second-neighbor distance [11].  The 
coefficients mα are also volume dependent, but in the standard MGPT they are 
maintained exactly in their canonical d-band ratios of 6 : −4 : 1 for 0α : 1α : 2α  . 

The radial-force two-ion pair potential 2 in the MGPT then consists of simple-
metal sp, hard-core overlap and analytic tight-binding d-state contributions: 

v

 
24

222 )]()[()]()[(),(),(),( rfvrfvrvrvrv ba
hcsp Ω−Ω+Ω+Ω=Ω   .         (3) 

 
Here the potential contributions  and  are retained directly from the ab initio GPT, 
while a  and b  are volume-dependent d-state coefficients.  The angular-force three- and 
four-ion potentials v3  are appropriate multi-ion generalizations of the final two 
terms in Eq. (3).  At a given volume Ω,  is a three-dimensional function of the 
distances linking three ions: 

spv2
hcv2

v v
 and v4

3v

 
)()]()(){[(),,()()()()();,,( 3

2
213213213213 θθθθ PrfrfvLrfrfrfvrrrv dc Ω+Ω=Ω  

)}()]()([)()]()([ 2
2

131
2

32 θθ PrfrfPrfrf ++   ,         (4) 
 
while  is a six-dimensional, oscillatory function of the six distances linking four ions: 4v
 

),,,,,()()()()()[();,,,,,( 65432154216543214 θθθθθθMrfrfrfrfvrrrrrrv e Ω=Ω  
),,,,,()()()()( 125109875623 θθθθθθMrfrfrfrf+  
)],,,,,()()()()( 436512113461 θθθθθθMrfrfrfrf+   ,        (5) 

 
where dc  and ev  are additional volume-dependent d-state coefficients.  The quantities 
L, P and M in Eqs. (4) and (5) are universal angular functions that depend only on d 
symmetry and apply to all transition metals and all volumes.  These functions have exact 
analytic representations, as given in Ref. [6], and are displayed below in Fig. 7. 

vv ,
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FIG. 2.  Optimized MGPT potentials v  for Ta and Mo at their respective equilibrium 
volumes.  Shown for comparison are earlier 1994 MGPT potentials for Mo. 

2 ,v3, and v4

 
 
B. Optimized MGPT potentials for Ta and Mo 
 

The five d-state coefficients  and  in Eqs. (3)-(5) are all well-defined 
material parameters that depend primarily on d-band filling and width.  To compensate 
for the approximations introduced into the MGPT, these quantities together with the 
volume term 

dcba vvvv ,,, ev

Evol  are parameterized and constrained by basic theoretical and/or 
experimental data.  In our current preferred scheme, we fit as a function of volume a 
combination of first-principles DFT and experimental data on the cold equation of state, 
shear elastic moduli, unrelaxed vacancy formation energy and the Debye temperature, 
under the additional constraint of the compressibility sum rule, which reduces the number 
of independent parameters from six to five.  Optimized Ta MGPT potentials so obtained 
to 1000 GPa [9,11] are displayed at equilibrium in Fig. 2.  Corresponding optimized Mo 
potentials, recently obtained to 400 GPa [12], are also shown, as are our earlier 1994 Mo 
potentials [7].  The former potentials are intended to improve upon and replace the latter 
ones.  In this regard, the new MGPT Mo potentials correct known problems with the 
1994 potentials at short bond lengths, while giving excellent fcc-bcc and A15-bcc 
structural energies and improved dislocation properties. 
 
 
III. SELECTED APPLICATIONS TO MULTISCALE MODELING 
 

The MGPT potentials for Ta and Mo have been applied to a wide range of physical 
properties at both ambient and extreme conditions, including multiphase equation of 
state, melting and rapid solidification, high-pressure elastic moduli and ideal strength, 
thermoelasticity, vacancies and self-interstitials, grain boundaries, and dislocation core 
structure and mobility.  Here we discuss selected recent applications directly relevant to 
the multiscale modeling of plasticity and strength. 
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Pressure (GPa)

 
FIG. 3.  GF/MGPT core polarization predicted in Mo and Ta as function of volume, giving an 
isotropic dislocation core near equilibrium and in expansion but a polarized core under pressure. 
 
 
A. Dislocation core structure and mobility 
 

The low-temperature and high-strain-rate plastic behavior of bcc transition metals is 
controlled by the intrinsic core properties of 〉〈1112/a  screw dislocations.  Unlike the 
highly mobile edge dislocations in these metals, the motion of the screw dislocations is 
severely restricted by the non-planar atomic structure of its core, resulting in low 
mobility, thermal activated kink pairs and a temperature-dependent yield stress. 

The accurate atomistic simulation of dislocation core properties has been greatly 
facilitated by the development of an advanced Green’s function (GF) simulation method 
that allows both static and dynamic calculations [11].  This method implements rigorous 
flexible boundary conditions by introducing a buffer layer between fixed outer and 
relaxed inner atomistic regions of the simulation cell, allowing one to dynamically update 
the boundary conditions as the atoms move.  Extensive GF/MGPT simulations have been 
carried out in Ta and Mo over wide ranges of pressure on the core structure, Peierls stress 
and its stress-orientation dependence, and kink-pair energetics of  screw 
dislocations [11,13-15].  In general, the core structure exhibits a three-fold directional 
spreading, of variable magnitude or polarization p, along three 

〉〈1112/a

〉〈112  directions on three 
{110} planes in the  zone.  When p vanishes, a more symmetric isotropic core is 
obtained, while at p b/6, where b is the Burgers vector, a fully polarized core with 
maximum three-fold spreading is obtained.  As illustrated in Fig. 3, we predict an 
isotropic core structure for Mo and Ta near equilibrium and into expansion, but an 
increasingly polarized core under hydrostatic pressure [15]. 

〉〈111
±=

Similarly, the Peirels stress Pτ  in bcc metals generally exhibits a strong dependence 
on the orientation of the applied stress and large deviations from the well-known Schmid  
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twinning anti-twinning twinning anti-twinning

 
FIG. 4.  Peierls stress and its orientation dependence in Mo and Ta at ambient pressure, as 
calculated with the present MGPT potentials and compared with experimental estimates based on 
the observed yield stress [16,17] and for Mo with results obtained with the 1994 potentials [18]. 
 
 
law.  Figure 4 displays our GF/MGPT predicted Peierls stress in Ta and Mo for a pure 
applied shear stress as a function of angle χ between twinning and anti-twinning 
orientations on {112} planes [11,15].  The calculated twinning−anti-twinning asymmetry 
is indicative of non-Schmid behavior, although this is clearly different in the two metals, 
with Pτ  minimum at χ = 0° for Mo but nearly constant between χ = −30° and 0° for Ta.  
Shown for comparison are experimental estimates of the Peierls stress based on 
extrapolating the observed yield stress to zero temperature [16,17].  Our minimum 
calculated Pτ  in Mo is close to the corresponding estimate, but in the case of Ta is about 
a factor of two larger.  Also in this regard, we believe our present calculated Pτ  in Mo is 
a major improvement over that previously obtained by Rao and Woodward with the 1994 
Mo MGPT potentials [18]. 
 
 
B. Atomistically-informed DD simulations of plasticity 
 

At finite temperature, the motion of the 〉〈1112/a  screw dislocations in the bcc 
lattice normally occurs by the thermally assisted formation and migration of kink pairs.  
In microscale dislocation dynamics (DD) simulations of single-crystal plasticity for bcc 
metals [19], a key input quantity is the stress-dependent activation enthalpy for kink-pair 
formation, )(τHΔ .  This quantity controls the dislocation mobility, with the stress-
dependent velocity of screw dislocation given by 
 

]/)(exp[)( TkHv Bscrew ττ Δ−∝  .              (6) 
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FIG. 5.  On the left: simulated GF/MGPT kink-pair activation enthalpy for Ta (points) at ambient

e have now performed extensive GF/MGPT atomistic simulations of

 
pressure, fitted with Eq. (7) (solid line) and compared with the empirical result of Ref. [19] 
(dashed line).  On the right: atomistically-informed DD simulations of the single-crystal yield 
stress in bcc Ta at three pressures and compared with experiment at ambient pressure [20]. 
 
 
W  )(τHΔ for both 

 be fitt

 .              (7) 
 

ne can thereby import the required atomistic information directly into DD simulations 

Ta and Mo over a wide range of pressures [11,15].  These results can then ed to the 
simple analytic form used in the DD simulations: 
 

qp
PHH ])/(1)[0()( τττ −Δ=Δ

O
for real materials at any assumed pressure condition [14].  In Fig. 5 we display 
representative atomistic calculations of )(τHΔ  in Ta at ambient pressure together with 
atomistically-informed DD simulations o d stress as a function of temperature for 
three selected pressures.  In the latter, we have everywhere scaled down the Peierls stress 

P

f yiel

τ by about a factor of two to account for the overestimate noted in Fig. 4.  Otherwise, 
 temperature dependence of the yield stress at ambient pressure is in good accord with 

experiment [20].  Similar DD calculations for Mo have also been performed [15]. 
 

the

. Thermoelasticity and high-pressure strength modeling 

The pressure and temperature dependence of elastic moduli are additional quantities 
with important implications for strength modeling.  In general, we calculate single-crystal 
moduli as a sum of cold, ion-thermal and electron-thermal components: 
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he cold componen  is taken from DFT calculations or experiment and the electron-
thermal component  from DFT calculations fi te tem eratur  while the rem

n-thermal com  is obtained from strain derivatives of phonons calculated 
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 to high pressures and temp With appropriate 
polycrystalline averaging, our single-crystal moduli can be us lculate and 
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using MGPT potentials.  We have, in fact, developed two useful MGPT-based methods to 
obtain ion

ijC [21].  The first involves a standard quasi-harmonic-phonon formalism with 
the calculation of expl  strain derivatives, while the second involves more time 
consuming Monte Carlo simulation and the statistical evaluation of appropriate 
fluctuation formulae.  The latter includes both quasi-harmonic and anharmonic 
contributions to ion

ijC .  We have used these methods to investigate the full thermoelastic 
behavior of Ta and Mo at high-temperature and pressure [21], building on previous 
studies of the cold high-pressure elastic moduli in Ta [9,22].  A sample of these results 
for Ta is displayed in Fig. 6 and compared with available experimental data [23-25].  In 
this case, anharmonic effects are found to be small and the observed temperature 
dependence of the elastic moduli at ambient-pressure [23] is well described by both our 
quasi-harmonic and Monte Carlo methods.  Accurate experimental moduli are also 
known at very low pressure from ultrasonic measurements [24] and have recently been 
measured in the diamond-anvil cell (DAC) to 105 GPa with a stress/angle-resolved x-ray 
diffraction (SAX) technique [25]. 

Many continuum-level materials strength models, such as the well know Steinberg-
Guinan (SG) model [26], use the macroscopic shear modulus ),( TPG  to scale strength 
data from near ambient conditions eratures.  

ed to ca ),( TPG
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in turn, to either validate or improve upon existing empirical models of the shear 
modulus.  In the case of Ta, the SG model of )300,( KPG has thereby been validated to 
1000 GPa.  More generally, we have investigated the validity of the assumed linear 
scaling of strength with shear modulus.  In Ta and Mo we find that both the ideal shear 
strength of the bcc perfect crystal and the Peierls stress Pτ for 〉〈1112/a  screw 
dislocations display approximate linear scalin 3/)2( 44111 CCg with G +′= , the shear 
modulus in the 〉〈111 direction, to 1000 and 400 GPa, respectively [15]. 
 
 
IV. BEYOND THE STANDARD APPROACH: MATR
 

IX M T 

One of the great virtues of the underlying first-principles  for 
teratomi  is that it allows one to systematically improve the model GPT in a 

ajor strides in 
is direction by developing a more general matrix MGPT representation.  In the matrix 

MGP

ites i 
nd j.  In this repre tation, several major extensions of the standard MGPT are 

possible.  First, the m trix elements of can ediately generalized tre
anonical d-bands with arbitrary tight-binding coefficients 

GP

 GPT formalism
in c potentials
manner consistent with quantum mechanics.  Recently, we have made m
th

T, the three- and four-ion angular functions P, L and M in Eqs. (4) and (5) are recast 
as matrix products that can be evaluated on the fly numerically during a simulation: 
 

)ˆˆˆˆ( kiikjiij HHHHTrP ∝ , )ˆˆˆ( kijkij HHHTrL ∝  and )ˆˆˆˆ( likljkij HHHHTrM ∝  .        (9) 
 
For transition metals ijĤ  is a normalized and explicit 5 × 5 d-state matrix coupling s
a sen

a ijĤ  be imm to at non-
c mα in Eq. (2), resulting in two 
additional MGPT parameters 20 /αα  and 21 /αα , but otherwise with no added 
complication to the theory.  Second, one may further generalize from d states to f states to 
treat actinide metals, in which case ijĤ  comes a 7 × 7 matrix.  The form of the f-state 
matrix may be readily derived from the general two-cente Slater-Koster tight-binding 
integrals [27].  For canonical f-bands, one has p 1 = 7 with ℓ = 3 and ratios of 20 : 
−15 : 6 : −1 for 0

be  
r 

 = 2ℓ+
α : 1α : 2α : 3α  .  The corresponding angular functions P, L and M for  

 
 

P(θ): canonical d and f bands P(θ): canonical d and f bands

 
FIG. 7.  MGPT three- and four-ion angular functions P, L and M for canonical d and f bands. 
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FIG. 8.  Rapid solidification in Ta.  On the left: isothermal compression path (arrow) across the 
high-pressure MGPT melt curve.  On the right: snapshot of a 16-million atom MD/MGPT 
solidification simulation after 0.5 ns showing a rich emerging grain microstructure [29]. 
 
 
canonical f bands are displayed in Fig. 7 and compared with those for canonical d bands.  
The function P for three-ion interactions is little changed, but quantum mechanics has 
added an extra oscillation in both L and M for f bands. 

A third major advance that has been facilitated by the matrix MGPT concerns 
computational efficiency.  The matrix representation has proved to be amenable to a 
number of algorithm improvements in the evaluation of energies and forces, most notably

ems that 
an be addressed on large parallel platforms.  The most striking example of this is the 
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an optimized strategy to calculate the multi-ion energy terms in Eq. (1) and an explicit 
analytic treatment of the forces [28].  This has resulted in MGPT simulation codes that 
re 6-10 times faster and has dramatically increased the size and scope of probla

c
very recent large-scale MD/MGPT simulations of rapid soldification in Ta that have been 
performed on LLNL’s new BlueGene/L (BG/L) supercomputer [29].  In this problem, 
one is rapidly compressing a hot molten metal across the high-pressure melt curve, and 
one seeks to understand the time scale and kinetics of the solidification transition as well 
as the atomic and microscale morphology of the resolidified solid.  Prior to BG/L, the 
size of the simulations (~10,000 atoms) that could be run for the required time (~1 ns) 
was two orders of magnitude smaller than needed to access the required physics.  With 
BG/L, this threshold has been passed with ease and successful Ta simulations up to 32 
million atoms have been performed that predict a rich and complex early-time grain 
microstructure, as illustrated in Fig. 8. 

Using the f-electron matrix representation of MGPT, we have made additional 
applications to the actinide metals U and δ-phase (fcc) Pu.  Preliminary potentials based 
on canonical bands for these metals are displayed in Fig. 9 at equilibrium.  In the case of  
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FIG. 9.  Preliminary MGPT potentials v2 ,v3, and v4  for the actinide metals U and δ-Pu at their 
respective equilibrium volumes, calculated with canonical f and d bands, respectively. 
 
 
U, the potentials have been calculated to 100 GPa and applied to study structural phase 
stability in that pressure range.  If one allows the value of the p parameter in the radial 
function ) to be reduced from its canonical value of 7 to the vicinity of 4, a good 
account is obtained for structural energy differences between the observed α-U 
orthorhombic phase and other common structures.  Unfortunately, we have discovered 
that the α-U structure itself is not mechanically stable in this treatment and that there are 
other lower-energy orthorhombic structures.  This possibly signals missing physics, such

implicitly 
ssumed in the MGPT. 

The case of δ-Pu is not ideal either because of strong f-electron correlation, but for 

y transverse branch in the <111> direction (Γ → L in Fig. 10). 

(rf

 
as neglected spd-f hybridization and/or higher-order five- and six-ion interactions, since 
U has only about a quarter f-band filling instead of the half f-band filling 
a

this metal we have managed to develop a useful practical scheme.  Here we have 
modeled the strong correlation very simply by assuming that it turns off the f-electron 
bonding completely, so that δ-Pu can be described as a d-band metal in the context of 
MGPT.  This seems to be rather successful, and both the structural phase stability and the 
full fcc phonon spectrum are reasonably well described by this treatment, as shown in 
Fig. 10.  In particular, in a d-bonding MGPT treatment the observed fcc structure is both 
mechanically stable and of lowest energy, whereas in an f-bonding treatment, a bct 
structure has a substantially lower energy.  The calculated phonons from the d-bonding 
treatment also compare well with recent experimental measurements [30], except for the 
anomalous low-frequenc

Two other important areas we are currently pursuing are the use of non-canonical 
bands and the development of temperature-dependent MGPT potentials.  In principle, 
non-canonical bands permit a more accurate characterization of the underlying electronic 
structure.  In practice, we have found them useful in improving the overall quality of the 
calculated phonon spectrum in certain difficult cases such as Mo.  Interestingly, the 
introduction of just two non-canonical band parameters seems to be able to improve all 
phonons at all volumes. 
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FIG. 10.  Phase stability and phonons in δ-Pu.  On the left: structural energies along the Bain path 
at constant volume in both d- and f-bonding MGPT treatments.  On the right: MGPT phonons 
calculated from the d-bonding treatment compared against experiment [30]. 
 
 

The concept of temperature-dependent potentials for d- and f-electron metals is an 
important one, because in such metals there are large electron-thermal effects at 
temperatures as low as melt arising from the high density of electronic states at the Fermi 
level.  These effects can have a dramatic impact on high-temperature properties including 
the melt curve itself [7], but are normally treated separately and additively from the 

One final additional future application area made possible by the matrix MGPT 
ould also be mentioned.  That is the possibility of extending the total-energy expansion 

in Eq

ACK

normal ion-thermal effects, as in Eq. (8).  We are now trying to capture these effects 
simultaneously and self-consistently by building MGPT potentials on the basis of the 
total electron free energy at finite temperature. 

sh
. (1) beyond four-ion interactions.  We believe that it is now feasible to include both 

five- and six-ion potentials in the MGPT.  This should improve the description of certain 
structural properties, such as close-packed energy differences and stacking faults, and 
permit a more accurate treatment of metals to either side of the mid-period transitions 
elements.  It may also improve the description of the observed complex structures in the 
early actinide metals as well. 
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