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Abstract 

 
Semantic graphs are becoming a valuable tool for organizing and discovering 

information in an increasingly complex analysis environment.  This paper investigates the 

use of graph topology to measure the strength of relationships in a semantic graph.  These 

relationships are comprised of some number of distinct paths, whose length and 

configuration jointly characterize the strength of association.  We explore these 

characteristics through the use of three distinct algorithms respectively based upon an 

electrical conductance model, Newman and Girvan’s measure of betweenness [5], and 

cutsets.  Algorithmic performance is assessed based upon a collection of partially ordered 

subgraphs which were constructed according to our subjective beliefs regarding strength 

of association.  
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1 Introduction 
In practical informatic applications, semantic graphs are rapidly becoming more valuable 

for representing massive quantities of relational data based upon a defined ontology.  

Methods must be developed for extracting and interpreting information from these 

massive graphs in order for them to be useful in the real world.  In this paper, we address 

the need to quantify, or rank, our confidence in the relationships between entities within a 

semantic graph. 

 

We begin by providing some terminology that will be used extensively in this discussion. 

A graph G = (V, E) is composed of a set of vertices, or nodes, V={v1, v2,…, vn}, together 

with a set of edges, or links, VVE ×⊆ .  A subgraph 'G  of G is defined by ( )','' EVG =  

where VV ⊆'  and E '⊆ V '×V '( )∩ E .  We will generally denote an edge from vertex va to 

vb as vavb, and any quantity q which applies specifically to the edge vavb  will be denoted 

by qab.   

 

A path p in G from va to vb can then be defined as the set of l coincident edges given by  

 

p = vav i1
,v i1

v i2
,...,v il −2

v il −1
,v il −1

vb{ },    (1) 

or equivalently, 

p = vav i1
v i2

...v il −2
v il −1

vb( ),     (2) 

 

where l is considered to be the length of p.  The topological strength of association 

metrics between any two nodes will depend heavily upon the nature of the paths which 

link them.  Therefore, we will differentiate here between simple and composite paths, 

which behave differently under certain circumstances.  Let P denote the set of all distinct 

paths },...,,{ 21 kppp  from va to vb.   Then pj is a simple path if ,jn pv ∈∀  jipv in ≠∉ , , 

i.e., every node in pj is unique to pj.  The simple paths pi  and pj  may also be described as 

internally disjoint.  Any path which is not a simple path will be known as a composite 

path.  Such paths may intersect in various ways with other composite paths, and the 

extent of their coincidence will be instrumental in determining the strength of association. 

 

Semantic graphs are graphs in which nodes represent real-world entities, and edges 

represent relationships between them.  Semantic graphs are governed by ontologies, 

which define the permissible contents of the graph.  Depending upon how the semantic 

graph is constructed, we may also apply a level of confidence or degree of belief to a 

node or link in the graph.  While this high-level description of semantic graphs will 

suffice for the purposes of this paper, they are discussed in greater detail in [1].   

 

We begin our discussion by constructing a definition of the nebulous concept of strength 

as it applies in the semantic graph context.  The concepts presented in this paper will be 

based upon the assumption that the strength of a given relationship is affected to some 

degree by all of the following features, not necessarily exhaustive: 
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I. Subgraph topology, i.e., number and configuration of paths between two nodes of 

interest. 

II. The level of confidence associated with nodes and links connecting two nodes of 

interest.  Such confidence may be based upon the reliability of information sources, 

information extraction, and/or data fusion.  The development and use of an 

appropriate confidence metric would require the participation of an expert who is 

knowledgeable of the information extraction techniques used to build the graph, as 

well as the nature and reliability of supporting document/data sources. 

III. The stability of the subgraph topology between two nodes, where stability 

describes in some fashion the robustness of a relationship to the removal or failure 

of data. 

IV. The criticality of components which link two nodes.  This is a local stability metric, 

applied to an individual node or link, which is based upon the degree to which a 

relationship relies on the component in question. 

V. Semantic interpretation of information in the semantic graph [1].  Such a metric 

attempts to determine the usefulness of information based upon its semantics and 

relevance to the question of interest. 

VI. Underlying document/data support.  Data based upon diverse information sources 

may be considered stronger or more reliable. 

 

We will not address (V) in detail, as this is discussed at length in [1], nor will we 

comprehensively discuss techniques for designing a confidence metric based on 

information extraction for specific nodes and links (II), since such a metric depends 

heavily upon the nature of the information system and the problem domain.  However, 

both of these play a significant role in the interpretation of semantic graph contents, so 

we will discuss appropriate ways to incorporate them into the topological strength metrics 

we have developed, and we will also address an initial approach to creating data 

confidence values from those of document sources. 

 

Note also that the above measures depend upon a neighborhood within the semantic 

graph containing paths which connect the two nodes of interest.  Clearly, any two nodes 

linked by at least one path reside in the same connected graph component.  In a real-

world application, such a connected component is potentially massive, and examining 

every path between two nodes may be an intractable problem.  Later in this paper, we will 

discuss in more detail the conditions under which these metrics should be applied.  For 

the purpose of clarity, however, we will assume in the meantime that our example graphs 

comprise the relationships between two entities in their entirety.  

 

We will begin by introducing partially ordered sets due to graph configuration in Section 

2, followed by detailed discussions of our strength of association, global stability, and 

criticality algorithms in Sections 3, 4, and 5, respectively.  Section 6 introduces a method 

by which we incorporate document/data source confidence into these three algorithms.  

We present notable results on sample graphs in Section 7, and finally, Section 8 discusses 

the appropriate conditions for applying these metrics, along with suggestions for 

preprocessing graphs prior to implementation. 
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2 Partial Ordering 
In order to provide a basis by which to judge the performance of our various algorithms, 

we define a partially ordered set, or “poset”, of graphs we wish to examine.  Let us 

denote the strength of association between two nodes, vs and vt  (frequently referred to as 

the source node and terminal node, respectively), in a graph G as the function 

),( GtsΨ .  We make the following initial assumptions regarding strength of association 

as the foundation for a poset: 

 

(1) ( ) ( )GtsGtsGG ,',' Ψ≤Ψ⇒⊆   

(2) A parallel collapse of nodes in G causes ),( GtsΨ  to decrease (Figure 2-1).  

(3) A serial collapse of nodes in G causes ),( GtsΨ  to increase (Figure 2-2). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2-1:  A parallel collapse occurs when two nodes from distinct paths (shown in blue)  in G1 fuse 

in G2.  (A)  A parallel collapse may cause a single node dependency between paths, or (B) link 

dependencies may form.  In a multigraph setting, (B) may exhibit a single node dependency. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-2:  A serial collapse occurs when two adjacent nodes (shown in blue)  in G1 fuse in G2. 

 

Assumption (1) is clearly true given that any subgraph of G connecting vs and vt contains 

less supporting information than G for the relationship and must thus represent a weaker 

association (we assert that the strengths are equal only for the trivial case where GG =' ).  
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Assumption (3) is similarly obvious in that it illustrates the basic assumption that a short 

path is always topologically stronger than a long path (this is not necessarily true 

semantically, as described in [1]).  The underlying assumption which gives rise to (2) is 

that two simple paths represent a stronger association than one simple path.  A single 

simple path can be envisioned as two paths which intersect at every point, while two 

simple paths are completely independent.  Therefore if two paths only partially coincide 

(forming a composite path), their combined strength should lie between these two 

extremes, dictated by the extent of the coincidence between them.  If we quantify the 

degree of coincidence as the proportion of nodes and links shared between the two, we 

get the ordering shown in Figure 2-3. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-3:  Dark nodes indicate the portions of shared information between two paths.  The 

proportion of shared data determines the ordering for paths collapsed in parallel.  Thus we can 

properly order the graph from Figure 2-1(A)  with its single-node dependency. 

 

While most subgraphs of semantic graphs encountered in real world applications will be 

far more complex than those shown here, we can use these three assumptions to 

qualitatively evaluate the performance of our algorithms in ranking various relationships. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 5 

3 Conductance 
First we present a promising algorithm which is based upon the concept of an electrical 

circuit [2, 3, 7].  We may imagine the graph as a series of pathways along which an 

electrical current might travel, where the links of our graph represent wires, and each 

node is a connection between those wires.  We associate with each node an electric 

potential, which acts as a sort of “electrical pressure”, pushing current through the graph 

from high to low potential.  Thus, current will only flow through a link if there is a 

potential difference between the two nodes it connects.  The magnitude of the potential 

difference between va and vb is determined both by the amount of current flowing between 

them, and the amount of opposing force on the link vavb.  This opposing force is called 

the resistance.  We can formalize our definition of potential difference, denoted abV , as 

the amount of energy required to move a current, abω , across a resistance abr .  This 

relationship is described by Ohm’s Law (3), and it holds true for any resistor or 

component in an electrical network, as well as the network itself, as long as the resistors 

are ideal (resistances remain constant). 

 

baababab vvrV ,∀= ω       (3) 

 

The conductance on a resistor between va and vb, denoted abk , is defined as the inverse of 

the resistance, i.e., 

ba

ab

ab vv
r

k ,
1

∀= ,      (4) 

 

so that conductance on a component of the graph increases as its resistance decreases.  

The graph conductance is the metric we will use to measure the strength of association 

between two nodes in a semantic graph. 

 

To see why this is appropriate, we must first consider the behavior of resistance and 

conductance due to graph configuration.  In an electrical circuit, resistors along a single 

path or path fragment are connected in series and have an additive dampening effect on a 

current; hence longer pathways will carry a higher resistance (i.e., lower conductance).  

On the other hand, conductance is additive across resistors in parallel paths between two 

points in the electrical network, which implies that conductance will increase across path 

multiplicity.  In terms of our strength of association metric, increasing numbers of 

parallel paths (e.g., multiple simple paths, or disjoint portions of composite paths) will 

boost strength, while increasing the length of simple paths will decrease the strength. 

 

The behavior of conductance in the electrical network mimics in some sense the effect we 

would like to see from a confidence metric, if such a metric were available, for the data 

underlying the graph.  Low confidence, as with low conductance, should lower the 

strength of association.   Let us assume, then, for the sake of argument, that we have such 

a confidence metric, ]1,0(∈abc , where 1=abc  represents certainty, and that this metric 
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21,,1 EEvvk baab ∈∀=

⇓
( ) ( ) siemensGkGk stst

4

3
21 ==

may be applied to a link or a node
1
.  Standard methods of computing graph conductance 

expect the conductance values to be applied only to the links of the graph.  Therefore, to 

explicitly incorporate nodes and their effects, we must make some modifications to our 

graph to set the stage for the implementation. 

3.1 Conductance Model Considerations 

As we have previously discussed, the graph conductance model is a promising candidate 

for a strength of association metric.  However, there are three issues we must address 

before we can apply the model properly. 

Single-Node Dependencies 

There are certain properties of the conductance model that are inconsistent with our 

interpretation of the strength of association metric in a semantic graph context.  One such 

property is that single-node dependencies may often be ignored by the model.  By single-

node dependency, we mean an intersection of two or more distinct paths at exactly one 

node.  In Figure 3-1, we compare such a graph to its counterpart, which is composed of 

the same number of simple, i.e., internally disjoint, paths of the same length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-1:  Single node dependencies, as shown above, are often ignored in the conductance model.  

In the above graphs, all link conductances are fixed at 1. 

 

In the context of strength of association, however, we would like to see a lower graph 

conductance in the presence of single-node dependencies, as asserted in assumption (2) 

regarding a parallel collapse. 

                                                 
1
 Note that we exclude 0 from the range of abc  and assume that data with zero confidence has been pared 

from the graph.  This is not necessary from an electrical standpoint (zero confidence simply produces 

infinite resistance, preventing the flow of current along a pathway), but may be implementationally 

desirable to avoid potential divide-by-zero errors and to allow more efficient computation.   
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vs vs vt vt 

21,,1 EEvvk baab ∈∀=

⇓
( ) ( ) siemensGkGk stst 1' ==

G GG ⊂'

Zero potential difference 

There are some circumstances in which a link may have zero potential difference 

between its nodes.  Such links carry no current and will have no effect on the graph 

conductance.  Due to assumption (1) regarding strength of subgraphs, however, we 

expect such links to strengthen the graph, even if only to a small degree.  Figure 3-2 

shows a simple example, where the center vertical link of G has zero potential difference.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-2:  The center vertical link in G has zero potential difference, and thus has no effect on the 

graph conductance.  All link conductances are fixed at 1 in each graph.  Note that in real world 

applications where confidences have been applied, zero potential differences may be rare. 

 

It is also interesting to note that from an electrical standpoint, single-node dependencies 

and zero potential difference produce the same result.  Though they may be electrically 

identical, our solution to these issues, in the context of semantic graphs, must treat them 

quite differently.   

Applying Confidence to Nodes 

Perhaps the most important issue of the three listed here is that we would like to be able 

to apply confidence, ergo conductance, to nodes as well as links.  Unfortunately, standard 

graph conductance computation algorithms expect nodes to act as merely connection 

points between the links.  We have found this problem to be nontrivial in that graph 

configurations can become quite complex, giving rise to great difficulty in encapsulating 

the behavior of nodes relative to the links between them in terms of conductance. 

3.2 Graph Modification 

We begin by conceptualizing our nodes as “objects” in the graph, to which conductances 

can be applied, without yet attempting to precisely define their nature.  We would like to 

force any current entering a node object to cross a resistance within the node before it can 

move on to another node object.  Thus we assert that our node object has an entry point, 

where all incoming links must enter, and an exit point “on the other side”, where all 

outgoing links leave (See Figure 3-3). 
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Undirected links between node objects in the graph are represented through the use of 

two directed links which must go from exit to entry.  Directed graphs and multigraphs 

may also be represented in this fashion, through the use of an appropriate number of 

directed links. 

 

 

 

 

 

 

 

 
Figure 3-3:  Node objects vi and vj  with conductances ki and kj , respectively.  Red arrows denote 

entry points and blue arrows denote exit points for the node objects.  Note that the undirected link 

between the nodes is represented here by two directed links, where each much go from exit to entry. 

    

For our implementation, we have chosen to represent node objects as a pair of dummy 

nodes connected by a link which carries the node conductance.  Figure 3-4 illustrates the 

structure for two adjacent node objects, iv  and jv .  One dummy node acts as the entry 

point for the node object, and we refer to it as the entry node for the node object.  The 

other node is the exit node. 

 

 

 

 

 

 

 

 
 

 

 
Figure 3-4:  A node object represented as two dummy nodes connected by a link which carries the 

node conductance.  Node object conductances are given in red, link conductances in blue.  Note that 

the link belonging to the node object is the only link permitted to flow from entry node to exit node. 

 

As shown in Figure 3-4, links belonging to node objects are the only links in the graph 

“permitted” to flow from an entry node to an exit node.  In general, we only convert 

internal nodes, i.e., all nodes other than the source node sv  and the terminal node tv , into 

node objects.  The source and terminal nodes each act as their own entry and exit points.  

As a consequence, a link connecting the source directly to the terminal node, for the sake 

of consistency, should become two links (multigraph).  The absence of this second link, 

in contrast to the two links between other pairs of node objects, may tend to weaken 

graphs which already rely heavily upon the direct link between these nodes, potentially 

skewing graph rankings.  Having made these modifications, we are prepared to compute 

the graph conductance. 
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3.3 Implementation 

To compute the graph conductance, we will make use of Kirchoff’s Current Law [2], 

which states that the sum of currents flowing into a node must equal the sum of currents 

flowing out.  Mathematically, we represent this as 

 

Evvv jiij ij ∈∀=∑ ,,0ω .     (5) 

 

It should be noted here that 0>ijω  if current flows from iv  to jv , and 0<ijω  if it flows 

in the opposite direction.  Now, by Ohm’s Law (3) and (4), we can rewrite (5) as 

 

∑ ∈∀=
j jiiijij EvvvVk .,,0     (6) 

 

Since jiij VVV −=  is the potential difference between iv  and jv , we can solve (6) for iV  

to obtain an expression for the potential at any node iv . 

 

.,, Evvv
k

Vk
V jii

j ij

j jij

i ∈∀=
∑
∑

    (7) 

 

The linear system of equations introduced in (7) can be solved using the Gauss-Seidel 

method [6], an iterative approach.  The steps of the algorithm are given below. 

 

(i) Set 1,1 −== ts VV .  Initialize 0=iV  for all internal nodes.              

(ii) For each internal node iv , compute 
∑
∑

=

j ij

j jij

i
k

Vk
V ,  where jv  is adjacent to 

iv , and previous results are used as soon as they are available. 

(iii) Repeat (ii) until the change in potential is less than some tolerance. 

 

When the above algorithm converges, we will have computed potentials for each node in 

the graph.  The resulting potential differences indicate the direction of current flow on 

each link.   

 

Recall that our graph modifications included directed links flowing in each direction 

between two node objects.  It can be easily seen that the above algorithm ignores link 

direction in computing node potentials.  Frequently, if not always, we will find that the 

resulting current flow along at least one of these links is flowing in the opposite direction 

than we intended (See Figure 3-5A).  We can determine the direction of the current by 

examining the potentials at the end nodes of a link (recall that current flows from high to 

low potential). 
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Figure 3-5:  (A) Frequently, current flows in the opposite direction than intended (red links), 

bypassing the node object resistance.  (B)  We mitigate this situation by adding the node object 

resistances to such links. 

 

If either link between two node objects flows from an entry node to an exit node (i.e., the 

wrong direction), we can mitigate this situation by adding the node object resistances to 

the offending link resistance.  In effect, we are “forcing” the current to flow across an 

equivalent resistance, since it does not follow the path we intended.  

 

Once we have made the necessary adjustment to these link resistances, we run the Gauss-

Seidel algorithm again (without reinitializing the internal node potentials) until it 

converges. 

Computing a Final Result 

Having computed potentials on all of the nodes using the Gauss-Seidel algorithm, we still 

must compute the conductance.  Ohm’s Law (3) tells us the graph conductance is given 

by  

 

st

st

st
V

k
ω

= .      (8) 

 

Since 2)1(1 =−−=stV , we need only compute the total current flowing into the graph to 

determine the conductance.  Due to Kirchoff’s Current Law (5), we know that the total 

current flowing into the graph at sv  equals the total current flowing out of sv .  Thus, by 

(3), (4), and (5), 

 

∑ ∑ ∈−==
j j jsjsjsjsjst EvvVkVk ),1(ω .    (9) 

 

The graph conductance, given by (8), will be our strength of association measure, 

),( GtsΨ . 
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4 Cutsets 
In this section we discuss an appropriate method for determining a global stability 

measure for a graph.  The foundation for this metric is the assumption that a graph with 

multiple redundancies will be more robust to breakage due to the random removal, or 

failure, of links or nodes.  Our approach is to incrementally remove graph components 

(links or nodes) according to some probability of removal applied to each component at a 

given time τ .  We also incorporate a probability that no component fails at time τ .  We 

wish to determine the expected time [ ]τE  at which the association “breaks”, i.e. there is 

no longer a path from sv  to tv  existing in the graph.   

 

Due to the fact that some composite paths may share only a single node, the removal of 

links alone is insufficient to quantify the distinction between such paths and multiple 

simple paths.  Therefore, we must also consider the potential removal of nodes in our 

procedure.  We could implement this adjustment in the algorithm by converting the nodes 

to node objects as described in Section 3, but it is more straightforward to apply removal 

probabilities to the nodes as well as the links. 

 

We also must consider the fact that multiple simple paths will be penalized for shorter 

length if we remove only one component at each stage of the algorithm.  We correct for 

this bias by removing the entire subpath which depends upon the link removed (see 

Figure 4-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4-1:  The removal of node vi necessitates the removal of the other 

components in its subpath, as they are no longer involved in any path connecting vs  

and vt. 

 

We loosely define subpath as referring to the set of components which, as a result of a 

given node or link removal, no longer exist on any path in the graph from sv  to tv .   

 

While minimal cutsets are widely discussed in the literature, determining the expected 

cutset size in a procedure such as this is not so straightforward.  That the effect of 

removing a given component depends upon prior removals suggests a Markov process, 

which may be approached in different ways.  We have explored two possible methods for 
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performing this computation – a Hidden Markov Model [7], which is discussed in detail 

in the Appendix, and simulation. 

4.1 Simulation Approach 

The simulation approach is relatively straightforward.  At a given time τ , each 

component has a probability of removal, )|( τip , associated with it, and additionally, 

there is a probability )|( τ∅p  that no component is removed.  At each step we randomly 

choose a component (or no component at all) according to these probabilities.  If a 

component is chosen, it is removed along with its subpath, and the graph is examined to 

determine whether a path from sv  to tv  remains.  Each value of τ  where sv  and tv  are 

finally separated is stored, and, for n trials, the expected value of the number of steps 

required is computed in the usual way 

n
n

ppE i

n

i

ii
τττ ==∑

=

ˆ,ˆ)(ˆ

1

,     (10) 

 

where τn  is the number of failures that occurred at time τ .  The slightly more complex 

aspect to this algorithm is determining the appropriate removal probabilities at a given 

time τ .  These removal probabilities provide a good vehicle for incorporating confidence 

on the nodes and links.  Assuming, as for the conductance algorithm, that confidence 

]1,0(∈jc  is defined and available, low-confidence components should have a higher 

probability of being removed,  decreasing the global stability of the graph.  One way to 

accomplish this is by first assigning unscaled likelihoods of removal at time τ  as shown 

in (11), 

 

( ) { }( ) ( ) icic ii ∀==∅ − ,|,min| 1τλτλ    (11) 

 

where ( )τλ |∅  is the likelihood that no component is removed at time τ , and ( )τλ |i  

represents the likelihood that component i is removed.  Note that the likelihood for 

component removal is dependent on τ  only insofar as whether it exists in the graph at 

time τ , i.e., confidence values are held constant over time.  Given the likelihoods in (11), 

we compute the removal probabilities as shown in (12). 

 

( )
( )

( ) ( )
{ }ij

i

j
jp

i

,,
||

|
| ∅=

∅+
=
∑ τλτλ

τλ
τ    (12) 

 

A key property of this metric is that it will be bounded below by the maximum number of 

pairwise-internally-disjoint paths in the graph (Menger’s Theorem) [4].  In terms of 

strength, this would be undesirable, since path influence on strength should approach zero 

as path length approaches infinity.  However, in terms of path redundancy and robustness 

to breakage, we consider this property appropriate.  Although very long paths are easily 

broken, they still provide a “safety net” of sorts for the association in question.  We will 

discuss these and other considerations when we discuss our results in Section 7. 
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4.2 Hidden Markov Model 

We have also investigated an implementation for the cutset algorithm using a Hidden 

Markov Model (HMM) [7].  Although our favored algorithm is the simulation approach 

due to its simplicity, the HMM provides an interesting, if complex, alternative.  In an 

HMM, we have a finite set of states, which are related to each other by transition 

probabilities, i.e., the probability that one state will transition to another through a 

sequence of events.  Each state is associated with some observable feature or value, and 

these observable features are the only part of the event sequence visible to an external 

observer.  This technique produces a precise result, in contrast to the simulation approach 

described in Section 4.1, and it is discussed in detail in the Appendix. 
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5 Betweenness 
Newman and Girvan [5] proposed a metric called betweenness, which measures the 

intensity of “traffic” along a link in a graph.  It is computed using the number of shortest 

paths in the graph which traverse a given link.  Thus, a link with high betweenness plays 

a large part in holding a relationship together.  We call this metric criticality.  It is based 

on betweenness, and it measures the relative vulnerability of a link or node in the graph.   

 

Betweenness is generally computed for the links in a graph
2
, so in order to apply the 

metric to both nodes and links, we transform the graph as described in Figure 3-4.  In this 

case, we require the links to be directed. 

Implementation 

The algorithm begins by selecting either the source node, sv , or terminal node, tv , as a 

root and computing betweenness for all links relative to that root node.  Each node in the 

graph is initially assigned a node weight and node distance from the root node by 

implementing the algorithm below as presented by Newman and Girvan [5]: 

 

1. The root node, rv , is given a distance of 0=rd  and a weight of .1=rw  

2. Each node iv  adjacent to rv  is given distance 11 =+= ri dd , and weight 

1== ri ww . Denote this set of nodes by I. Let J = ∅ 

3. For each node jv  adjacent to one the above nodes in I, we do one of three 

things: 

a. If jv  has not been assigned a distance, then it is assigned distance 

1+= ij dd  and weight ij ww = . Set J = J ∪ j{ }. 

b. If jv  has already been assigned a distance and 1+= ij dd , then the 

weight of jv  is increased by 1, i.e. ijj www +← . Set J = J ∪ j{ }. 

c. If jv  has already been assigned a distance and 1+< ij dd , do nothing. 

4. Repeat from step 3, where I =J, until no nodes remain that have been assigned 

distances, but whose neighbors do not have assigned distances. 

 

The node weight, iw , assigned in the algorithm above provides the number of distinct 

shortest paths from rv  to the node iv , while the node distance, id , is the length of those 

shortest paths.  We found it useful in our implementation to construct a shortest path tree 

during the assignment of node weights which contains only those links belonging to at 

least one shortest path.  Only these links will be assigned weights
3
.  We can use the node 

                                                 
2
 Some versions of betweenness compute the betweenness of nodes in a similar fashion, but the algorithm 

is not usually applied simultaneously to both nodes and links. 
3
 Note that links in the original graph which do not appear in the shortest path tree from the node weight 

algorithm will have a betweenness value of 0 (Figure 5-1). 
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weights and distances computed above, along with the shortest path tree, to compute the 

link weight (betweenness) for each link as presented in Newman and Girvan [5]: 

 

1. Find every “leaf” node nv , i.e., a node such that no shortest paths from rv  to other 

nodes pass through nv .  In a shortest path tree from rv , all leaf nodes will qualify. 

2. For each node iv  neighboring nv , i.e. moving up in the shortest path tree, assign a 

score to the edge from iv  to nv  of 
n

i
w

w
.   

3. Now, starting with the edges that are farthest from the root node, rv , continue the 

above process, working upward toward rv .  To the edge jivv  (with jv  further 

from rv  than iv ), assign a score that is 1 plus the sum of the scores on the 

neighboring edges immediately below it in the shortest path tree (i.e., those 

flowing away from rv ), all multiplied by  
j

i
w

w
. 

4. Repeat step 3 until the node rv  is reached. 

 

Figure 5-1 shows the results for a simple graph containing a link with zero betweenness. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-1:  An example of betweenness from source node (in red), from Newman and Girvan.  

Values within the nodes are node weights. 

 

Newman and Girvan use their measure of betweenness to drive a graph decomposition 

algorithm, so they compute betweenness using each node as a root node, and the resulting 

betweenness values on each link are summed to obtain a final value.  For our purposes, 

we are interested in characterizing the relationship between sv  and tv .  To that end, we 

implement the betweenness algorithm twice, first using sv  as the root node, and then 

using tv .  We add the resulting values to obtain a final measure of betweenness on the 

links.   

 

Now, recall that in the transformed graph, each pair of connected node objects is linked 

by two directed links.  The betweenness values which result on these directed links 

should be summed to obtain the true betweenness value for the original link (see Figure 

5-2). 



 

 

 16 

sv tv
2

2
2

6

4 4

tv

sv

3 2

2 1

1 0

5

2 2

1 1

0
sv

tv

0i
v

1i
v

0j
v

1j
v

bi 

bj 

bij bji 

bj 

bi iv

jv

bij+bji 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-2:  Betweenness values on the directed links between two node objects should be summed to 

obtain the true value. 

 

As written, the above implementation produces values of betweenness that have meaning 

only within their graph, i.e., useful comparisons cannot be made between betweenness 

values arising from different graphs.  However, we can mitigate this problem.  To 

motivate this, let us consider a physical interpretation of the betweenness metric.  We 

may imagine a graph as a network of spheres suspended by wires which connect them.  

Each of these wires is of equal length, and the spheres are of equal weight, say 1.  If we 

suspend the network of wires from the sphere representing sv , we represent the tension 

on each wire by the amount of weight it supports due to the spheres hanging below it.  If 

multiple wires support the same set of spheres, we consider the weight equally distributed 

among the wires.  An illustration of this concept is provided in Figure 5-3 for a simple, 

unmodified graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-3: Betweenness values represent the total weight (tension) on each link when the network is 

suspended from its end nodes.  

 

The resulting betweenness values represent the total amount of node weight stressing the 

links from both directions.  Therefore, we can scale the betweenness values by the 

number of nodes in the network, so that each value represents the proportion of the total 

network weight supported by the link.  This will allow us to compare the vulnerability of 

links from different graphs. 
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In a real world application of betweenness as a measure of criticality, there may be 

circumstances under which the component with maximum betweenness has extremely 

high confidence, i.e., there is little to no risk that the component will fail.  Under such 

circumstances, then, the metric provides little help in highlighting weaknesses in the 

relationship.  So we would like to incorporate, in some fashion, the confidence on the 

data in the graph.  In order to draw attention to true weak points in the graph, we need to 

inflate the criticality measure for data with low confidence.  Therefore we update the 

criticality metric, abκ  on link bavv , to account for confidence as indicated in (14), 

 

( )
( ]1,0,,

22
∈∀

−
= abba

ab

ab

ab cvv
Nc

b
κ     (14) 

 

where N is the number of nodes in the original, unmodified, graph, including sv  and tv .
4
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
4
 Recall that we modified the graph to use node objects, within which there are two dummy nodes.  Thus 

the modified graph upon which the betweenness values are based has 2N-2 nodes. 
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6 Incorporating Source Document Confidence 
All of the metrics presented in this paper can in some fashion incorporate data confidence 

to account for potentially false or unreliable information.  While we cannot specifically 

address the impact of information extraction reliability and data fusion confidence (these 

depend upon the information system in use), we can provide an initial attempt at applying 

source document confidence to the previously defined metrics for the assessment of 

strength of association, global stability of a graph, and criticality of a node or link. 

 

Suppose we have a graph, G, such that each link bavv  has associated with it a set of abn  

source documents { }abnibaid ,...,1),,|( = **
.  Then the set of source documents associated 

with a node av  in the graph will be given by  

 

{ } { } Evvvbaidajd bab

n

i

n

j
aba ∈∋∀= == ,),|()|( 11 U .    (15) 

 

For the purposes of this discussion, we assume that these source documents are 

independent with regard to confidence.
5
  Let us denote the confidence on a source 

document ),|( bakd  by ( ]1,0*

,| ∈bakc .  We interpret confidence in general as the 

probability that the information in question is true, i.e. 

 

)(

)),|((*

,|

truevvPc

truebakdPc

baab

bak

=

=
.     (16) 

 

If at least one source document underlying a link in the graph is true, then the information 

encapsulated by the link is also true.  Thus, 

 

bakfalsebakdPtruebakdoneleastatPcab ,),),|((1)),|(( ∀∀−==   (17) 

 

and hence, under the assumption of independence, 

 

)1(1 *

,|1 bai

n

iab cc ab −∏−= = .      (18) 

 

We may compute abc  for all links in the graph, along with ac  for all nodes, so that these 

confidence values may be incorporated into the strength and reliability metrics presented 

here. 

 

                                                 
**

 We only consider the source documents supporting the links, which represent relationships between 

entities; i.e.,  we assume that the presence of an entity in a document is insignificant unless a relationship is 

formed, or “discovered” in the document. 
5
 The appropriateness of this assumption should be revisited in future efforts. 
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7 Results 
 

7.1 Conductance Results  

Performance evaluation for the conductance algorithm is based primarily upon adherence 

to the early assumptions we made regarding partial orders for strength of association.  We 

tested more than forty small graphs with well-defined features, such as path length, 

multiple paths, single-node dependencies, symmetry-induced zero potential difference, 

etc., for comparison.  In all cases, our assumptions were upheld.  Standard conductance 

algorithms on unmodified graphs produced rank groups from these test cases, where as 

many as eight graphs exhibited the same conductance.  Our modified conductance 

algorithm ranked all test cases consistently with standard conductance rank groups, and 

managed to produce rankings within these rank groups which were defensible using our 

basic ordering assumptions. 

 

We examined the performance particularly closely for graphs with single-node 

dependencies and links with zero potential difference.  Recall that a standard conductance 

algorithm on an unmodified graph does not differentiate between these two conditions, 

which is undesirable for our strength of association metric.  The modified algorithm 

presented in this paper produces the results shown in Figure 7-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7-1:  Standard conductance measure on the displayed graphs is identical.  Our modification 

allows the conductance to vary a small amount in these special circumstances.  The single-node 

dependency is weaker; the link with zero potential difference makes the graph slightly stronger. 

 
We have found another interesting property of this algorithm, which intuitively makes 

sense in regard to strength of association.  The strength of a graph is, in some sense, the 

sum of its parts, i.e., the strength is the aggregate of the individual strengths for each 

independent (simple) path or set of composite paths (Figure 7-2).  This is consistent with 

our intuitive belief that the existence of one path should in no way affect the strength of 

another path, so long as they do not intersect at any point in the graph. 
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Figure 7-2:  The strength of the third graph is the sum of the strengths on the simple paths 

comprising it.  This holds true for both the standard and modified conductance algorithms.  It should 

not be surprising that each path of length two in the first graph has modified conductance of 0.7143. 

 

We also noticed that the effect of a direct link between sv  and tv  is boosted in the 

modified conductance algorithm, due to the fact that these nodes are not transformed in 

the graph modification.  The trivial graph consisting of this link alone has its conductance 

doubled in the modified algorithm due to our assertion in Section 3-2 that consistency in 

the graph modification is a necessary requirement.  While this behavior was not explicitly 

sought in the design of the modified conductance algorithm, it is not necessarily 

undesirable, considering that a direct link between sv  and tv  is the strongest possible link 

or simple path in any graph.  Thus, graphs containing this direct link will frequently be 

considered stronger than other graphs in which it is lacking. 

 

Figure 7-3 presents a graph to which a link has been added, but in this case we have more 

than one possible configuration for the new link.  As should be expected, the orientation 

of this link does make a difference in the strength metric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7-3:  The second and third graphs are stronger than the first due to the addition of a 

link.  The orientation of this link is significant - in the second graph, the link creates a new 

path of length 4, a more significant improvement than in the third graph. 
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The new link in the second graph creates a new path of length 4, which happens to be the 

shortest path in the graph.  In the third graph, the link creates another path of length 5 – 

clearly a less valuable improvement. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7-4:  Fundamental graphs behave well - shorter paths have higher strength, as do multiple 

paths.  It should be noted that halving the length of a path has a greater impact on the strength than 

doubling the number of paths, in the modified algorithm. 

 

Overall, the results from our modified conductance algorithm perform well relative to our 

identified criteria.  The algorithm adequately differentiates between graphs with single-

node dependencies and those with links having zero potential difference.  As shown in 

Figure 7-4, the most fundamental of properties for the strength metric are also upheld, 

such that shorter paths and greater numbers of paths have higher strength measures. 

7.2 Cutset Results 

The cutset algorithm is designed to serve as a global measure of stability for a given 

graph.  Stability refers to the vulnerability of the graph to breakage, potentially due to the 

random failure of information in an environment in which confidences may be unknown.  

In an environment where confidences are “known”, there may remain a high degree of 

uncertainty in the confidence assessment.  Under such circumstances, we may choose to 

rely upon graph redundancy as a sort of “safety net”.  In this sense, the cutset algorithm 

result provides an estimate of the risk involved in believing a particular association is 

true.   

 

Unlike the strength of association algorithm described by way of conductance, the cutset 

algorithm clearly favors single-node dependencies (See Figure 7-5).  Although the 

dependent node is a vulnerable component, the other components in the graph are less 

dependent upon the validity of neighboring data.  For example, the topmost graph is 

considered more vulnerable than the graph below it.  This follows since the node 

dependency is close to one of the endpoints, and hence, there are longer subpaths which 

are more susceptible to failure. 
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Figure 7-5:  The cutset algorithm favors single node dependencies.  Note that the first graph is 

considered most vulnerable due to the number of components which are dependently linked, i.e., the 

longer subpaths in the graph are more vulnerable. 

 

As should be expected, longer paths and subpaths are more likely to be broken by random 

failure (Figure 7-6).  However, as mentioned in the discussion of the algorithm, the cutset 

value is bounded below by the maximum number of pairwise-internally-disjoint paths in 

the graph.  Theoretically then, the addition of an independent path of infinite length, 

though certain to fail, will add 1 to the cutset value.  Hence, we conjecture that this 

algorithm is most useful for comparing the configurations of graphs of similar size 

(Figure 7-7).  When this recommendation is followed, the cutset value will depend upon 

topological configuration alone rather than confounding it with influences due to size. 

 

 

 

 

 

 

 

 
 

Figure 7-6:  Longer paths are more susceptible to failure.  Menger's Theorem implies that cutset 

value approaches one as a single simple path length increases without bound. 

 

 

 

 

 

 

 

 

 

 

 
Figure 7-7:  This metric can compare configuration vulnerability between graphs of similar size 

(here, five nodes) in the absence of multigraphs. 
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We must make note of the fact, however, that results from this algorithm should be 

examined with care.  When implementing the algorithm through simulation, there will be 

some variability in the result we obtain.  Therefore in comparing two or more cutset 

values, it is wise to simultaneously consider the configuration differences between the 

graphs in question.  For example, in Figure 7-8, the topmost graph is clearly less stable 

than the two below it, due to the absence of the center link.  So the difference in cutset 

values is quite likely to be significant and representative of a true disparity between the 

graphs.  However, the second and third graphs are similar enough in configuration that 

the difference in their cutset values may be simply an artifact of the simulation approach 

to computing the measure.  In such cases, if a more precise comparison is required, the 

HMM or some other comparable approach may prove to be a more appropriate 

computational method. 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 7-8:  Due to configuration similarity in the second and third graphs, the difference between 

their cutset values may be strictly due to variability from the simulation approach. 

7.3 Betweenness (Criticality) Results 

We have previously described criticality as a component vulnerability measure.  In 

practice, this metric can provide an analyst with a target for further investigation, or 

perhaps indicate the most reliable relationship between two nodes of interest.  We can see 

an example of this in Figure 7-9, where we have imposed confidence values on the nodes 

and links and indicated the resulting criticality values. 

 

The highest criticality values (shown in red) indicate the most prominent obstacles in 

making this a reliable relationship.  Interpretation of the criticality metric is really 

dependent upon the needs of an analyst.  The critical value may indicate pieces of 

information which should be initially targeted for further research or investigation, in 

order to gain greater confidence in the association as a whole.  There may also be 

circumstances where only certain pathways contain solely low-criticality components, so 

that only these paths should be used as a basis for determining the validity of a 

relationship. 
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Figure 7-9: Criticality values for a sample graph.  Highest critical values shown in red. 

 

7.4 Source Document Confidence Results 

We applied source document confidences to the graph shown in Figure 7-10, where the 

document confidences are given by 5.0,4.0,1.0,45.0,3.0 *

5

*

4

*

3

*

2

*

1 ===== ccccc , 

respectively, for the document set { }54321 ,,,, ddddd .  We have assigned these 

hypothetical source documents to links so that graph (A) is supported by only one 

document, 5d , and the links in graph (B) are supported by the remaining four documents. 

 

The strength results for (A) and (B) are 3125.0=Ak  and 3312.0=Bk .  It is interesting to 

note that graph (A), though supported by a document with higher confidence, ultimately 

has a lower strength.  Based upon this metric, additional document support cannot make a 

relationship less likely to be true, no matter how low the document confidence might be.  

Thus, each new source document which corroborates a relationship improves the 

probability that the relationship is true.  We make no assertion that this metric is ideal; 

indeed, we hypothesize that documents are likely not independent with regard to 

confidence, which must be taken into consideration.  It is, however, an encouraging start 

to developing an effective confidence metric based upon information source reliability, 
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which may ultimately incorporate a higher-order model to handle document 

dependencies. 

 

 

 

 

 

 

 

 

 

 

Figure 7-10:  The conductance results for a graph incorporating source document confidence.  (A) is 

supported by a single document.  (B) is supported by multiple documents with lower confidence. 
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8 Applying the Metrics to Real World Semantic Graphs 
Many information systems which use semantic graphs to organize and interpret data may 

potentially employ graphs of massive size, some of which may exceed 10
9
 nodes.  

Algorithms run on graphs of this size can easily become impractical, if not impossible, to 

use in a realistic time-frame, particularly for applications which require near real-time 

decision-making.  Even for graphs of a more manageable size, metrics such as the 

conductance-based strength, which can theoretically achieve arbitrarily large values, may 

become less useful if neighborhoods of interest grow too large.  Such neighborhoods may 

tend to obscure the true strength of the relationship between two nodes of interest.   

 

For these reasons, we recommend that the metrics presented here be run on peeled 

communities.  The community decomposition algorithm described by Newman and 

Girvan [5] attempts to partition the graph into clusters of closely-related nodes.  Its 

stopping criterion, called modularity, is designed to seek the “best” partition so as to 

minimize the breakage of tight clusters.  This implies that not only will communities be 

smaller and more manageable than the semantic graph as a whole, but each community 

should contain the core of the relationship between any two of its member nodes.  In 

addition, the community decomposition algorithm is hierarchical, which allows the 

decomposition to be “rewound” in some sense to obtain larger neighborhoods, if 

necessary, while remaining faithful to the modularity criterion. 

 

We also suggest that peeling the community once a pair of nodes has been selected for 

analysis is advantageous.  Since tendrils (not including the two nodes of interest) do not 

lie on any path between these nodes, they do not contribute to the strength of the 

relationship, and they decrease the efficiency of the analyses. 

 

There are preprocessing options which may also be considered in an analysis 

environment using these tools.  For example, one might wish to filter the graph of 

semantically undesirable information [1] prior to performing the analysis, ensuring that 

the data upon which the relationship is based is significant, or useful.  The removal of 

data with zero confidence is also advisable, given that such data cannot assist (and in fact, 

may complicate) implementation, the interpretation of results and the decision-making 

process. 

 

There may also be ways of improving the algorithms in terms of efficiency through 

preprocessing or other means.  For example, the conductance algorithm may be improved 

by computing conductances on serial connections beforehand.  In the case of the cutset 

algorithm, the HMM implementation discussed in the Appendix may be improved by 

determining the minimum and maximum possible steps to break the graph. 
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9 Conclusion 
Our exploration of strength of association metrics has merely scratched the surface of an 

extensive range of possible methods to exploit the information stored in a semantic graph.  

As for our metrics in particular, there may be many ways to build on them in order to 

provide the greatest possible benefit to programs in need of inference techniques for 

semantic graphs.  As the use of semantic graphs becomes more widespread, the need for 

metrics such as these will become paramount.  Perhaps those presented here will provide 

a foundation for the development of increasingly more efficient and valuable algorithms 

for knowledge discovery based upon semantic graphs. 

 

Finally, we must note that these metrics and results are the product of a partially funded 

effort, and as a consequence may be inconsistent in some ways with the initial proposal 

and statement of work. 
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Appendix – HMM 
We investigated an implementation for the cutset algorithm using a Hidden Markov 

Model (HMM).  Though our favored algorithm is the simulation approach due to its 

simplicity, the HMM provides an interesting, if complex, alternative.  In an HMM, we 

have a finite set of states, which are related to each other by transition probabilities, i.e., 

the probability that one state will transition to another through a sequence of events.  

Each state is associated with some observable feature or value, and these observable 

features are the only part of the event sequence visible to an external observer.   

 

Our graph is composed of some combination of distinct paths, some or all of which may 

overlap to some degree, between two nodes.  It can be easily shown that the removal of a 

node or link will remove at least one of these distinct paths.  Thus, the maximum number 

of steps that can be taken to break the association is no greater than  the number of 

distinct paths.  For our implementation of the HMM, we allow each unique combination 

of distinct paths to be a hidden state (Figure A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure A:  The original graph contains nine distinct paths.  (A), (B), and (C) are hidden states with 

three, five, and seven distinct paths removed, respectively, from the larger graph.  Similarly, we 

would provide hidden states for other possible configurations, along with the trivial states (all paths 

and no paths). 

 

There will be a maximum of ( ) k

i
kk

i
H 2

0
=∑=

=
 hidden states, where k is the number of 

distinct paths, and each state has an observable value of 0 or 1 indicating failure (failing 

to break the association between sv  and tv ) or success, respectively.  We must explicitly 

determine the transition probabilities between each pair of states, as well as the 

probability of the observable value for each state.  The observable value is easy to 

determine – exactly one hidden state, the one with all distinct paths removed, will have a 

status of 1.  Since there are only two observable states, our observation probability matrix 

will be 
2×H

θ  where ijθ  is the probability that hidden state iH  exhibits the observed state 
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j, j = 0 or 1.   Transition probabilities are more complex to compute.  Suppose 1H  and 

2H  are hidden states, where kh  represents the set of distinct paths remaining in the state 

kH , and the transition probability between states is given by T.   Then   
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where x represents components present in 1H , )|( 1Hxp  is the removal probability of x 

as defined in Section 4.1, and ih1  is the i
th

 path in 1h .  In essence, we sum the removal 

probabilities of all components in 1H  which could have given rise to 2H  when removed, 

i.e., all components not in 2H  which belong to every path removed from 1H . 

 

Suppose we have specified the transition probability matrix, T, along with a probability 

matrix, θ .  We set the initial state probability π = π j{ }, j = 1, …, H , where, for our 

purposes, iπ = 1 if the i
th

 state is the original graph, and 0 otherwise.  We use this HMM, 

given by ( )πθλ ,,T= , to determine the probability of observing the status sequence 

O = o1,o2,...,oQ−1,oQ{ }= 0,0,...,0,1{ }, where Q is the number of states required to achieve 

“success”.  We do that by using the recursive algorithm given below:   

 

• Let Hjj joj ,...,1,)(
11 == θπα  

• Recursively, ( ) ( )∑
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In the above algorithm, ( ) ( )τατ timeHstatePj j |= , and since this probability depends 

only upon the previous state, we can define ( )jτα  recursively.  The complexity of this 

algorithm is QH
2

, which is linear with respect to the length of the observation 

sequence, and we run the HMM for Q = 2, …, k, where k is the number of distinct paths 

in the original graph
6
.  We can then use (10) to compute the expected value for Q.   

                                                 
6
 In reality, k need only be as large as the number of distinct path memberships of the components in the 

graph.  For example, in Figure 10,  k < 6 is appropriate, since any five component removals will break the 

association.  Computing the upper  (and lower) bound for k may significantly decrease runtime for many 

graphs. 


