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Properties of a nucleon system interacting via isovector proton-neutron pairing
can be described within theso(5) generalized Richardson-Gaudin exactly-solvable
model [1]. We present results for a system of 12 nucleon pairswithin the full
fp + g9/2 shell-model space. We discuss coupling constant dependence of the
pair energies, total energy of the system, and the occupation numbers.

1 Introduction

The pairing interaction has a central role in the description of the strongly correlated
many-body systems. In the sixties R.W. Richardson showed that the eigenvalue prob-
lem of the pairing Hamiltonian can be formulated as a set of nonlinear algebraic equa-
tions [2,3] . Using the properties ofsu(2), which is the relevant algebra for the pairing
Hamiltonian for one kind of fermions, he derived a set of equations coupling the pair
energies, the single particle energies of the system, and the pairing strength. Making
use of the Bethe ansatz method M. Gaudin [4] obtained a limit of these equations for
large coupling constant. Years later Dukelsky,t Esebbag, and Schuck [5] proposed a
generalization of the Richardson’s equations. The resulting Richardson-Gaudin (RG)
models are nowadays widely used for modelling strongly correlated systems in the con-
densed matter physics, nuclear physics, atomic and molecular physics. A review of the
RG models and their applications is presented in ref. [6,7].

In a recent paper Dukelsky et al. [1] presented a generalization of the RG models
to those symmetry algebras that give rise to the well known Exactly Solvable Mod-
els (ESM) in nuclear physics. Special attention is paid to the so(5)model of isovec-
tor proton–neutron (pn) pairing in non–degenerate orbits.An exact solution of this
problem was proposed first by Richardson [3], but later it wasshown by Pan and
Draayer [8], that it is incorrect for more then two pairs.

The aim of this paper is to apply the exact solution of the isovectorpn-pairing
model, proposed in [1] to describe a system of 12 pairs of fermions occupying the
full fp + g9/2 shell model space. In section II we will sketch theso(5) isovectorpn-
pairing model. Later we will present the exact solutions of the RG equations forT = 0
andT = 1 isospin of the system as a functions of the coupling constant. At the end we
will show the evolution of the total energy and the occupation numbers of the nucleons
with the pairing strength.

∗On leave of absence from the Institute of Nuclear Research and Nuclear Energy, BAS, Bulgaria.
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2 so(5) Richardson-Gaudin model

The exactly solvable models have two main advantages: 1) They can describe in ana-
lytical or exactly solvable way a wide variety of phenomena;2) They can be and have
been used as testing ground for various many-body approaches.

We will consider a system of two kinds of fermions subject to pairing interaction. It
could be a mixture of atoms, but we will think about protons and neutrons in a nucleus.
Pairing is part of the nuclear Hamiltonian which takes into account the short-range
nature of the effective nucleon-nucleon interaction in thenuclear medium. The main
feature of the two-body pairing interaction is that it correlates nucleons that are in time
reversal states into pairs.

The generalizedso(5) RG equations were derived by Dukelsky, Gueorguiev and
Van Isacker [1] within the Gaudin–algebra approach [10]. Some of theso(5) generators
are given next. To obtain the fullso(5) algebre one has to add the relevant hermitian
conjugate generators.
TheT = 1 pair creation operators are:

b†−1,i = n†
in

†

i
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1√
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ip

†

i
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†
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whereb†−1,i, b†0,i, andb†1,i create neutron-neutron, proton-neutron, and proton-proton
pairs of nucleons occupying time reversal states.
Isospin-raising (T+) and third component of the isospin (T0) operators:
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T0,i =
1

2
(p†ipi + p†

i
pi) −

1

2
(n†

ini + n†

i
ni). (3)

In the spherical shell model nucleons occupy single particle states with quantum
numbers{j, m}. The index{i} then corresponds to{j, m} andi – to{j, m}. Alterna-
tively, due to the rotational symmetry, the angular moment{j} can be used as a label
instead of{i}, but then the corresponding degeneracy ofΩi = (2j + 1)/2 should be
taken into account. For thej = 1/2 case (Ωi = 1) the relevant equations were derived
by Links et al. [9].

Following the Ushveridize’s procedure [10] and having in mind the properties of
the so(5) algebra one can derive the generalized RG equations for theT = 1 pn-
pairing. They complete a set of2N − T algebraic equations, whereN is the number
of pairs in the system,T is the isospin:
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0 =
N−T
∑
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1

wα − wβ
−

N
∑

β=1

1

wα − eβ

Sinceso(5) is a rank-two algebra, there are two sets of spectral parameters:eα and
wβ . Hereεi is the single particle energy,Ωi is the degeneracy of the single particle level
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andg is the strength of the pairing interaction. If a system of like particles is considered,
one has to solve the original Richardson equations (for example, see [2, 3, 6]). The
number of equations then equals the number of pairs in the system and there is just one
type of spectral parameters (onlyeα and nowβ terms).

Each solution of the generalized RG equations corresponds to an eigenstate of the
pn-Hamiltonian. The spectral parameterseα are interpreted as pair energies as in the
case of the standardsu(2) pairing. The new set of parameterswβ are associated with
the isospinsuT (2) algebra. Their number isN − T , connected to the number of
proton-neutron pairs and they don’t appear in the expression for the eigenvalue of the
pn-Hamiltonian.

In this presentation of theso(5) pairing model we assume that all fermions are
coupled to pairs, i.e. the seniority of the system is equal tozero. The model can easily
incorporate broken pairs as well [5].

3 Properties of the generalized RG equations

We have studied the properties of the generalized RG equations in the case of 12 pairs
of fermions occupying the fullfp + g9/2 shell. This is the way to describe the nucleus
64Ge as a40Ca core and 12 valent nucleon pairs. The level scheme and the s.p. ener-
gies are introduced by Monnoye et al. [11]. The single particle energies are as follows:
εf7/2

= 0.0 MeV , εp3/2
= 6.0 MeV , εf5/2

= 6.25 MeV , εp1/2
= 7.1 MeV and

εg9/2
= 9.6 MeV . This is a shell-model problem which can not be solved exactly at

present. If the strength of the pairing interaction is equalto zero the nucleons occupy
the single particle orbits obeying the Pauli principle - there are 8 protons and 8 neutrons
in thef7/2 orbit and 4 protons and 4 neutrons in thep3/2 sub-shell.

For solving the problem we consider a system of 12 complex algebraic equations
for each pairing energyeα and12 − T for eachwβ value. It can be proven that the
pair energies and thew values can be either real or can appear in complex conjugated
pairs. The system is solved numerically using the Newton-Raphson method. The first
step of the numerical procedure is to determine the initial guess for the solution. We
start solving the system for a very small value of the coupling constant. In theT = 0
case all pairing energies are complex conjugated. Their real parts are just below the
s.p. levels which the pairs would occupy without pairing andthe imaginary parts are
evenly distributed around the zero within the interval of 0.2 MeV. The initial guess for
thew values deviate slightly from the initial guess for the pair energies. Suppose we
have found a solution for a very small value of the coupling constant, then we use it as
an initial guess for the solution with a larger value ofg and so on. In this way we study
the evaluation of the solution of the RG equations as a function of the pairing strength.

Looking at the RG equations one can see that there are four types of singularities,
which may appear when the denominator of a term goes to zero. The real problem
is how to guess the initial value of the solution after a singular point. We use the
derivatives of the solutions withg at the point where the solution still converges to
predict its values forg beyond the singular point.

Figure 1 shows the evaluation of the solution of the RG equations forT = 0, which
corresponds to the ground state of64Ge. The right panel shows the behavior of the real
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Figure 1: The spectral parameterseα (red curves) andwβ (blue curves) for theT = 0
isospin. Black lines indicate the twice the s.p. energies (g = 0 pair energies).

part of the solutions and the left one – the evolution of the imaginary part. ForT = 0
in the weak coupling regime 8 pairs of nucleons occupy the thef7/2 orbit and 4 - the
p3/2. The pair energies appear in complex conjugated pairs thus there are two red line
starting from thep3/2 level and 4 red lines emerging from thef7/2. The same holds for
thew values as well. When the pairing strength increases, first the levels close to the
Fermi surface are influenced. The pairing interaction is attractive and the real parts of
all pair energies decrease, when the coupling strength increases. The imaginary parts
get spread to larger absolute values. In this case there are no singularities observed.

TheT = 1 case corresponds to an excited state of64Ge (see figure 2). There are
12 pair energies and 11w values. In the weak coupling regime 8 pairs are close to the
f7/2 level, 3 - to thep3/2 level and one - to thef5/2 level. The pair energy for the
pair close to thef5/2 level is real and doesn’t change significantly when the coupling
increases. There is now spectral parameter close to this level. There is one real and
two complex conjugated pair energies just below thep3/2 level. The same holds for
the threew values close to this level. The solutions attached to thef7/2 level appear in
complex conjugated pairs. When the pairing constantg increases one reaches the point
when a realw value become close to the real part of two complex conjugatedw value
and at the same point their imaginary parts vanish. A singularity occurs and the system
for g = 0.795 MeV doesn’t have a stable solution. One has to propose again an initial
guess for the solutions for values ofg beyond the critical point using the derivatives
of the last stable set of solutions. Test for the quality of the initial guess is not just
the existence of a solution. One has to be sure that the obtained solution describes the
same state of the system. And there are two criteria for that which will be discussed in
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Figure 2: The spectral parameterseα (red curves) andwβ (blue curves) for theT = 1
isospin. Black lines indicate twice the s.p. energies (g = 0 pair energies).

section 4.

4 Total energy and occupation numbers

In this section we will discuss the results for the total energy and the occupation num-
bers of the system.

The basic observable for each nuclear system is the total energy. It is calculated as
the expectation value of the Hamiltonian and in the RG model it is simply the sum of
the pair energies:

E =

N
∑

i=1

ei (5)

Figure 3 illustrates the behavior of the total energy as a function of the pairing
strength. In the weak coupling regime (g = 0.1MeV ) the energy of the system is
E = 47.81 MeV for the groundT = 0 state andE = 48.30 MeV for the excited
T = 1 state. As the attraction of the nucleons in time reversed states increases, the
total energy of the system goes from positive to negative.

As it has been mentioned in section 3, one has to confirm that the solution of the
RG equations after a critical point (g > gc) still describes the same state of the system
as before the critical point (g < gc). One such criterium is the smoothness of the total
energy of the system as a function ofg. Another criterium is the smooth behavior of
the occupation numbers when the value ofg passes through the critical value (gc).

5



Figure 3: Total energy of the system for the groundT = 0 state (blue curve) and for
the excitedT = 1 state (red curve).

The occupation probabilities are important observables inthe exactly solvable mod-
els. They are defined as expectation values of the number operators and can be obtained
from the integrals of motion using the Hellmann-Feynmann theorem. The occupation
numbers depend on the derivatives of the pair energies with respect to the coupling
constant:

ηi = g2
N

∑

α=1

Ωi

(2εi − eα)
2

∂eα

∂g
, (6)

One can receive derivatives of the pair energies solving a system of linear equations
obtained by differentiation of the RG equations with respect to g:
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In figure 4 the evolution of the occupation numbers as functions of the pairing
strength is displayed. At weak coupling the occupation numbers of the hole s.p. states
for the ground state of the system are almost equal but less then the corresponding
degeneracies. The particle levels are empty. When the coupling constant increases the
pairs start to populate the particle s.p. levels as well and the depletion of the Fermi
sea increases. This configuration is not allowed for theT = 1 case due to the Pauli
principle.

Figure 4: Occupation numbers of the s.p. orbits:f7/2 (red curve),p3/2(green curve),
f5/2 (magenta curve),p1/2 (blue curve) andg9/2 (black curve) for the groundT = 0
state (left panel) and for the excitedT = 1 state (right panel).

In the excitedT = 1 state for small values ofg one fermion occupies the particle
f5/2 orbit and three are left in thep3/2 one. When the coupling increases the occupation
numbers of the particle levels also increase. It is interesting to notice that for strong
coupling (g ≈ 0.3 MeV for T = 0 andg ≈ 0.4 MeV for T = 1) thef5/2 orbit becomes
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more populated then thep3/2 one.

5 Summary

In summary, we have investigated the solutions of the generalizedso(5) RG equations.
As an example we have discussed the properties of a system of 12 fermions within the
full fp + g9/2 configuration space, interacting via isovector proton-neutron pairing.
We belief that the numerical procedure which we have used canbe applied to tread
very large systems, which is of great importance in the condensed–matter physics in
addressing phenomena like highTc–superconductivity [12,13].
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