¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-PROC-216126

Isovector Pairing within the so(5)
Richardson-Gaudin Exactly
Solvable Model

S. S. Dimitrova, V. G. Gueorguiev, J. Dukelsky, P.
Van Isacker

October 13, 2005

Twenty Forth International Workshop on Nuclear Theory
Rila Mountains, Bulgaria
June 20, 2005 through June 24, 2005



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.



I sovector Pairing within the so(5) Richardson-Gaudin Exactly Solv-
able M odel

S. S. Dimitrovat, J. Dukelsky?, V. G. Gueorguiev,*® P. Van Isacker*

nstitute of Nuclear Research and Nuclear Energy, Bulgatieademy of Sci-
ences, Sofia 1784, Bulgaria

2Instituto de Estructura de la Materia, CSIC, Serrano 128088Madrid, Spain
3Lawrence Livermore National Laboratory, Livermore, Gatliifia, USA

4Grand Acceélérateur National d’lons Lourds, BP 550274876 Caen Cedex 5,
France

Properties of a nucleon system interacting via isovectotgorneutron pairing
can be described within the(5) generalized Richardson-Gaudin exactly-solvable
model [1]. We present results for a system of 12 nucleon paitisin the full
fp + g9,2 shell-model space. We discuss coupling constant depeadgfnthe
pair energies, total energy of the system, and the occupatimbers.

1 Introduction

The pairing interaction has a central role in the descniptibthe strongly correlated
many-body systems. In the sixties R.W. Richardson showaithie eigenvalue prob-
lem of the pairing Hamiltonian can be formulated as a set afinear algebraic equa-
tions [2,3] . Using the properties ef:(2), which is the relevant algebra for the pairing
Hamiltonian for one kind of fermions, he derived a set of amues coupling the pair
energies, the single particle energies of the system, angahing strength. Making
use of the Bethe ansatz method M. Gaudin [4] obtained a lifrthh@se equations for
large coupling constant. Years later Dukelsky,t Esebbad,%chuck [5] proposed a
generalization of the Richardson’s equations. The resuRichardson-Gaudin (RG)
models are nowadays widely used for modelling stronglyadated systems in the con-
densed matter physics, nuclear physics, atomic and maleghysics. A review of the
RG models and their applications is presented in ref. [6, 7].

In a recent paper Dukelsky et al. [1] presented a generilizaf the RG models
to those symmetry algebras that give rise to the well knowacHy Solvable Mod-
els (ESM) in nuclear physics. Special attention is paid tosth(5) model of isovec-
tor proton—neutron (pn) pairing in non—degenerate orb&ta. exact solution of this
problem was proposed first by Richardson [3], but later it whswn by Pan and
Draayer [8], that it is incorrect for more then two pairs.

The aim of this paper is to apply the exact solution of the éster prn-pairing
model, proposed in [1] to describe a system of 12 pairs of ifmmsnoccupying the
full fp + go9,2 shell model space. In section Il we will sketch the5) isovectorpn-
pairing model. Later we will present the exact solutiondhefRG equations fdf = 0
and7’ = 1 isospin of the system as a functions of the coupling constdrthe end we
will show the evolution of the total energy and the occupatiambers of the nucleons
with the pairing strength.
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2 so(5) Richardson-Gaudin model

The exactly solvable models have two main advantages: 1y d&e describe in ana-
lytical or exactly solvable way a wide variety of phenome®iaThey can be and have
been used as testing ground for various many-body appreache

We will consider a system of two kinds of fermions subjectading interaction. It
could be a mixture of atoms, but we will think about protond arutrons in a nucleus.
Pairing is part of the nuclear Hamiltonian which takes intcaunt the short-range
nature of the effective nucleon-nucleon interaction inthelear medium. The main
feature of the two-body pairing interaction is that it cdaites nucleons that are in time
reversal states into pairs.

The generalizedo(5) RG equations were derived by Dukelsky, Gueorguiev and
Van Isacker [1] within the Gaudin—algebra approach [LOn8ef theso(5) generators
are given next. To obtain the fudb(5) algebre one has to add the relevant hermitian
conjugate generators.

TheT = 1 pair creation operators are:
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wherebil’i, bai, andbL. create neutron-neutron, proton-neutron, and protoneprot
pairs of nucleons occupying time reversal states.
Isospin-raisingT’) and third component of the isospifiy) operators:
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In the spherical shell model nucleons occupy single parsthtes with quantum
numbers{j, m}. The index{i} then corresponds tpj, m} andi —to {j,m}. Alterna-
tively, due to the rotational symmetry, the angular momgintcan be used as a label
instead of{:}, but then the corresponding degeneracf2pf= (25 + 1)/2 should be
taken into account. For the= 1/2 case {2; = 1) the relevant equations were derived
by Links et al. [9].

Following the Ushveridize's procedure [10] and having imdhthe properties of
the so(5) algebra one can derive the generalized RG equations fof'the 1 pn-
pairing. They complete a set 8V — T" algebraic equations, wher€ is the number
of pairs in the systent is the isospin:
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Sinceso(5) is a rank-two algebra, there are two sets of spectral pasamet, and
wg. Hereg; is the single particle energf,; is the degeneracy of the single particle level



andyg is the strength of the pairing interaction. If a system of lfarticles is considered,
one has to solve the original Richardson equations (for g@nsee [2, 3, 6]). The
number of equations then equals the number of pairs in thersyand there is just one
type of spectral parameters (ordy and nowg terms).

Each solution of the generalized RG equations correspanais eigenstate of the
pn-Hamiltonian. The spectral parametegsare interpreted as pair energies as in the
case of the standard:(2) pairing. The new set of parameterg are associated with
the isospinsur(2) algebra. Their number i& — T, connected to the number of
proton-neutron pairs and they don’t appear in the expradsiothe eigenvalue of the
pn-Hamiltonian.

In this presentation of theo(5) pairing model we assume that all fermions are
coupled to pairs, i.e. the seniority of the system is equaéto. The model can easily
incorporate broken pairs as well [5].

3 Propertiesof the generalized RG equations

We have studied the properties of the generalized RG edusditicdhe case of 12 pairs
of fermions occupying the fulfp + g9 » shell. This is the way to describe the nucleus
64Ge as a*’Ca core and 12 valent nucleon pairs. The level scheme and thersep-
gies are introduced by Monnoye et al. [11]. The single plrénergies are as follows:
€ty = 0.0 MeV, gp,,, = 6.0 MeV, e, = 6.25 MeV, ep, , = 7.1 MeV and
€go,, = 9.6 MeV. This is a shell-model problem which can not be solved exyaatl
present. If the strength of the pairing interaction is edaalero the nucleons occupy
the single particle orbits obeying the Pauli principle +thare 8 protons and 8 neutrons
in the f7 o orbit and 4 protons and 4 neutrons in g, sub-shell.

For solving the problem we consider a system of 12 complestaljc equations
for each pairing energy,, and12 — T for eachwg value. It can be proven that the
pair energies and the values can be either real or can appear in complex conjugated
pairs. The system is solved numerically using the NewtopHRan method. The first
step of the numerical procedure is to determine the initiedsg for the solution. We
start solving the system for a very small value of the cogptionstant. Inthd = 0
case all pairing energies are complex conjugated. Thelimpaats are just below the
s.p. levels which the pairs would occupy without pairing #melimaginary parts are
evenly distributed around the zero within the interval & BleV. The initial guess for
thew values deviate slightly from the initial guess for the paiemyies. Suppose we
have found a solution for a very small value of the couplingstant, then we use it as
an initial guess for the solution with a larger valugyand so on. In this way we study
the evaluation of the solution of the RG equations as a fandaf the pairing strength.

Looking at the RG equations one can see that there are foes tyfssingularities,
which may appear when the denominator of a term goes to zeme.rdal problem
is how to guess the initial value of the solution after a slagpoint. We use the
derivatives of the solutions with at the point where the solution still converges to
predict its values foy beyond the singular point.

Figure 1 shows the evaluation of the solution of the RG equatior?” = 0, which
corresponds to the ground stateé’tf:e. The right panel shows the behavior of the real
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Figure 1: The spectral parameters(red curves) anav (blue curves) for thd” = 0
isospin. Black lines indicate the twice the s.p. energjes () pair energies).

part of the solutions and the left one — the evolution of thagimary part. Fofl’ = 0
in the weak coupling regime 8 pairs of nucleons occupy thefthgorbit and 4 - the
p3/2- The pair energies appear in complex conjugated pairs keue are two red line
starting from theps , level and 4 red lines emerging from tlig/,. The same holds for
thew values as well. When the pairing strength increases, fiestetvels close to the
Fermi surface are influenced. The pairing interaction imetive and the real parts of
all pair energies decrease, when the coupling strengteasess. The imaginary parts
get spread to larger absolute values. In this case thereaiagularities observed.
TheT = 1 case corresponds to an excited staté*éfe (see figure 2). There are
12 pair energies and Lt values. In the weak coupling regime 8 pairs are close to the
f7/2 level, 3 - to theps, level and one - to the;, level. The pair energy for the
pair close to thefs, level is real and doesn’t change significantly when the dagpl
increases. There is no spectral parameter close to this level. There is one real and
two complex conjugated pair energies just below thg level. The same holds for
the threew values close to this level. The solutions attached tofthelevel appear in
complex conjugated pairs. When the pairing consgantreases one reaches the point
when a reatv value become close to the real part of two complex conjugatediue
and at the same point their imaginary parts vanish. A sindyleccurs and the system
for g = 0.795 M eV doesn't have a stable solution. One has to propose agairitiah in
guess for the solutions for values g@tbeyond the critical point using the derivatives
of the last stable set of solutions. Test for the quality & ithitial guess is not just
the existence of a solution. One has to be sure that the ebtamiution describes the
same state of the system. And there are two criteria for thatwwill be discussed in
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Figure 2: The spectral parametegs(red curves) anabz (blue curves) for thd” = 1
isospin. Black lines indicate twice the s.p. energies=(0 pair energies).

section 4.

4 Total energy and occupation numbers

In this section we will discuss the results for the total ggyeand the occupation num-
bers of the system.

The basic observable for each nuclear system is the totedrieis calculated as
the expectation value of the Hamiltonian and in the RG madslsimply the sum of
the pair energies:

N
E=) & (5)
i=1

Figure 3 illustrates the behavior of the total energy as a&tfan of the pairing
strength. In the weak coupling regimg & 0.1MeV) the energy of the system is
E = 47.81 MeV for the groundl” = 0 state andt’ = 48.30 MeV for the excited
T = 1 state. As the attraction of the nucleons in time reversegsiacreases, the
total energy of the system goes from positive to negative.

As it has been mentioned in section 3, one has to confirm tleagdhution of the
RG equations after a critical poing & g.) still describes the same state of the system
as before the critical poiny(< g.). One such criterium is the smoothness of the total
energy of the system as a functiongf Another criterium is the smooth behavior of
the occupation numbers when the valug @lasses through the critical valug.).
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Figure 3: Total energy of the system for the grodnhd= 0 state (blue curve) and for
the excitedl” = 1 state (red curve).

The occupation probabilities are important observablésdrexactly solvable mod-
els. They are defined as expectation values of the numbeattopeand can be obtained
from the integrals of motion using the Hellmann-Feynmareotem. The occupation
numbers depend on the derivatives of the pair energies wghect to the coupling
constant:
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One can receive derivatives of the pair energies solvingtesyof linear equations
obtained by differentiation of the RG equations with respeg:
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In figure 4 the evolution of the occupation numbers as funstiof the pairing
strength is displayed. At weak coupling the occupation nemsiof the hole s.p. states
for the ground state of the system are almost equal but lessttie corresponding
degeneracies. The particle levels are empty. When the iogugbnstant increases the
pairs start to populate the particle s.p. levels as well &eddepletion of the Fermi
sea increases. This configuration is not allowed forfthe- 1 case due to the Pauli
principle.
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Figure 4. Occupation numbers of the s.p. orbjts;, (red curve)ps/>(green curve),
f5/2 (magenta curve), /» (blue curve) andyy,, (black curve) for the ground’ = 0
state (left panel) and for the excitét= 1 state (right panel).

In the excitedI’ = 1 state for small values af one fermion occupies the particle
[5/2 orbitand three are leftin thg ,, one. When the coupling increases the occupation
numbers of the particle levels also increase. It is intarggb notice that for strong
coupling g =~ 0.3 MeV for T' = 0 andg ~ 0.4 MeV for T" = 1) the f5 /, orbit becomes



more populated then the , one.

5 Summary

In summary, we have investigated the solutions of the géimedso(5) RG equations.
As an example we have discussed the properties of a systeifefrhions within the
full fp + go,2 configuration space, interacting via isovector protontregupairing.
We belief that the numerical procedure which we have usedbeaapplied to tread
very large systems, which is of great importance in the cnseé—matter physics in
addressing phenomena like higix-superconductivity [12, 13].
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