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Main Points
• The coefficients of the KL mix model were set by 

Dimonte to match RT and RM instabilities as 
measured on the Linear Electric Motor (LEM).

• The KL mix model has been applied to directly-
driven capsule implosions with a variety of laser 
energies, ablator materials, ablator thicknesses and 
convergence ratios.

• The KL calculations nearly match the observed YDD, 
YDT, YP, Tion and implosion times for many (but not 
all) capsules.
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The KL model characterizes 
sub-grid hydrodynamics with 2 variables
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All coefficients of the KL model can 
be derived from four numbers

• αB = 0.07 – Young’s RT bubble coefficient
• θ = 0.25 – RM exponent
• fPE = 0.50 – Ratio of  turbulent to potential energy
• Cc = 0. – the compression coefficient in the L eq.

αB inferred from LEM data is 0.06 rather than 0.07
The ideal value of Cc is 1/3 rather than 0
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1D Calculations with CALEICF
• Sn radiation transport
• Electron thermal flux limiter of 0.05
• LTE opacities from SHM
• Lee-More thermal conductivities
• Thermonuclear reactions
• MC charged particle transport
• T+D => N + He4 reactions in flight
• He3+D => P + He4 reactions in flight 
• Initialize L field to 50nm on inner surface
• Initialize L field to 50-150nm on outer surface
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Three different types of capsules were tested

D2 CH DHe3 CH DHe3 SiO2

D2 Fuel with 
CH Ablator

DHe3 Fuel with 
CH Ablator

DHe3 Fuel with 
SiO2 Ablator

Three types of direct drive laser capsules were fired with different fuel pressures, 
ablator thickness and laser energies. Measured quantities include:

1 Primary DD neutrons and secondary DT neutrons

2 Primary DHe3 protons (for D2 fuels secondary DHe3 protons were measured)

3 Ion temperatures (inferred from TOF spreading of the DD neutrons)

4 Implosion Time
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Carbon mass fraction front nearly 
follows the free-fall line
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Streak plot of d log(ρ)/dL shows 
shocks, rarefactions and ablation fronts
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Streak plot shows turbulent energy feeds through 
from thermal-ablation front to fuel surface
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KL model predicts instabilities near laser absorption 
will degrade performance. Outer surface roughness can 

be adjusted to match data
L0 Study for Shot 37840
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A surface roughness of 50-70nm gives good results for 
most capsules however, some require 150nm

L0 Study for Shot 32316

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160

L0 Outer Surface Roughness in nm

C
al

cu
la

te
d 

Y
ie

ld
/M

ea
su

re
d 

Y
ie

ld

YDD
YP
YDT
Poly. (YDD)

L0 = 135nm on the 
outside surface will 
match data for this 
capsule



APS DPP 2005 12

Thin capsules need L0 = 50 nm 
Thick capsules need L0 = 150 nm

Wall Thickness Study
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YDD from D2/CH Capsules gave 
YOC(Clean) ~ 0.3-0.6

YDD
YOC 0.3-0.6
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YDD from D2/CH Capsules gives 
YOC(KL) ~ 0.8-1.05

YDD
YOC 0.8-1.05
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YDD from DHe3/CH Capsules gave 
YOC(Clean) ~ 0.1-0.4

YDD
YOC 0.1-0.4
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DHe3/CH YOC Measured/Calculated(KL)
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YDD from DHe3/SiO2 Capsules gave 
YOC(Clean) ~ 0.2-1.0

DHe3/SiO2 Capsules YOC Measured/Calculate(clean)
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DHe3/CH YOC Measured/Calculated(KL)
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Summary
• The coefficients of the KL mix model were set by 

Dimonte to match RT and RM instabilities as 
measured on the Linear Electric Motor (LEM).

• The KL mix model has been applied to directly-
driven capsule implosions with a variety of laser 
energies, ablator materials, ablator thicknesses and 
convergence ratios.

• The KL calculations nearly match the observed YDD, 
YDT, YP, Tion and implosion times for many (but not 
all) capsules.




