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Abstract 

A new algorithm is introduced for computing correlations of photon arrival time data acquired in 

single-molecule fluorescence spectroscopy and fluorescence correlation spectroscopy (FCS).  

The correlation is first rewritten as a counting operation on photon pairs.  For each photon, the 

contribution to the correlation function for each subsequent photon is calculated for arbitrary bin 

spacings of the correlation time lag.  By retaining the bin positions in the photon sequence after 

each photon, the correlation can be performed efficiently.  Example correlations for simulations 

of FCS experiments are shown, with comparable execution speed to the commonly used 

multiple-tau correlation technique.  Also, wide bin spacings are possible that allow for real-time 

software calculation of correlations even for high count rates (~350 kHz).  The flexibility and 
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broad applicability of the algorithm is demonstrated using results from single molecule photon 

antibunching experiments.   

Copyright 

OCIS codes 

Introduction 

Single-molecule fluorescence spectroscopy (SMFS) and fluorescence fluctuation spectroscopy 

(FFS) are powerful tools in the analysis of macromolecular dynamics and interactions.  The 

many different SMFS and FFS methods introduced in recent years analyze the same basic data 

streams – sequences of photon arrival times from one or more detection channels.  It has become 

standard practice1-4 to first record the arrival times of all detected photons, with any 

accompanying information (lifetime, channel, etc.), and then perform any analysis on the 

resulting sequence.   

One of the most common data analysis operations performed on these photon streams is the 

temporal correlation function used in fluorescence correlation spectroscopy (FCS)5.  Calculated 

in the most straightforward manner, this can be an extraordinarily time-consuming process 

involving time lags that span several orders of magnitude on the time axis.  However, with 

appropriate algorithms, this operation can be performed quickly.  The multiple-tau correlation 

technique, originally implemented for digital hardware correlators, efficiently calculates 

temporal correlations in real time by limiting the number of correlation time lags calculated.  

Although only certain correlation time lags are calculated, the entire data set is used by 

successively reducing the time resolution of the data stream6.  This algorithm has been 
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implemented in software, with appropriate modifications to account for the fact that, with 

sufficiently high time resolution, most of the recorded time bins contain no photon events7-9. 

Here, we demonstrate a new correlation algorithm which is simpler in nature than the multiple-

tau correlation technique.  In contrast to the multiple-tau correlation technique, this algorithm 

allows for bins to be spaced in any way desired.  The algorithm concept can be easily adapted to 

extensions of the temporal correlation function, including the PAID histogram3 and higher-order 

correlations10, 11. 

Theory 

Correlation function rewritten in terms of photon timing data 

If written in terms of two fluorescence or light scattering intensities, ( )AI t  and ( )BI t  , the 

temporal correlation function is defined as ( ) ( ) ( ) ( ) ( )AB A B A BC I t I t I t I tτ τ τ= + + .  Here, 

time t  and time lag τ  are continuous variables. 

The data recorded for a typical SMFS/FCS experiment are series of photon events i  recorded 

with a discrete time stamp t Ai  with time resolution t∆  for each detection channel A .  Assuming 

stationarity, the ensemble averages in the expression for ( )ABC τ  are converted to averages over 

all time.  Averaging over a finite, experimental time T  gives the correlogram ( )ˆ
ABC τ .  Within 

this finite time, there are AN  and BN  photons detected in the respective channels. 

Using discrete time stamps simplifies the expression for the correlogram considerably.  In 

terms of t , ( )tAI  is the number of photons i  such that t=t Ai ; or ( ) { }( )t t tA AiI n i t= ∋ = ∆ .  

{ }t tAii ∋ =  is the set of all photons i  such that t =tAi , and the operator n  counts the number of 
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elements in the set.  In this notation, using discrete time lag τ , we can express the correlogram 

as,  

 ( )
{ }( )

{ }( ) { }( )( )2

t t - τˆ τ
t τ t τ

Ai Bj
AB

Ai Bj

n i T t
C

n i T n j T t

∋ = ∆
=

∋ ≤ + ∋ ≥ ∆
 (1) 

The restrictions on the average intensities used in the denominator are there for symmetric 

normalization12.   

Efficient correlation calculation by tracking bin positions 

The above expression reduces the computation of the correlogram to a counting task.  To 

compute ( )ˆ τABC  at the full resolution t∆ , there are two obvious possibilities.  First, one can 

iterate through each pair of photons, calculating the time lag τ=t -tBj Ai  and adding 1 to the 

correlogram ( )ˆ τABC .  This is prohibitively slow, requiring A BN N  operations ( ( )2O n  algorithm).  

An alternative is to use fast fourier transforms (FFT) to calculate the correlogram.  This is a poor 

choice for FCS measurements, which require calculations of ( )ˆ τABC  over a very large dynamic 

range.  A typical FCS experiment in our laboratory has a time resolution t∆  of 12.5 ns (limited 

only by the time-resolution of the counter-timer data acquisition card; PCI-6602, National 

Instruments), and lasts for 5 minutes.  We generally calculate time lags up to 1 sτ = .  To use the 

FFT at full resolution, this would require two arrays with 102.4 10×  elements each (most 

elements are zero). 

The full time resolution is not needed or wanted in FCS measurements for the entire range of 

time lags, and a compromise is used to speed up the calculation.  In the commonly used multiple-

tau algorithm6, only the first 16 time lags are calculated at the full resolution.  Subsequently, the 
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time resolution is halved by adding the number of photons counted in adjacent bins, and 8 more 

time lags are calculated.  This process is repeated until the full desired dynamic range is reached.  

Originally developed for hardware correlators, this algorithm has recently been extended to work 

with the photon timing data described above7-9.   

As we now describe, it is not necessary to use the rigid bin spacings of the multiple-tau 

algorithm or deal with the complications of halving the time resolution in order to calculate the 

correlogram. We specify M bins with desired time lag τk : say )min max
1 1τ ,τ⎡⎣ , )min max

2 2τ ,τ⎡⎣ , …, 

)min max
M Mτ ,τ⎡⎣ .  There is no requirement on the spacing between these bins.  The choice depends 

only on the time scales relevant to the experiment. 

The algorithm is implemented as follows: 

1) Initialize a correlogram kY  with M bins to 0.   

2) Starting with 1t A , find mint
kBj

 such that min min
min

11
t <t τ t

k k
A kBj Bj−
+ ≤  and  maxt

kBj
 such that 

max max
max

11
t <t τ t

k k
A kBj Bj−
+ ≤ for all 1 Mk = …  (a linear search is adequate).   

3) For every k, add max min
k kj j−  to kY . 

4) Repeat steps 2 and 3 for 2t t
AA AN… .  The important “trick” lies in this step.  The bin 

limits min
kj  and max

kj  are only slightly adjusted when going from 1t A  to 2t A  in step 2 

(figure 1).  Hence, it is possible to use the previously found min
kj  and max

kj  as starting 

points to find new values that satisfy the conditions in step 2 for 2t A .  This reduces the 

computational load dramatically. 

5) Normalize according to equation (1). 
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The correlogram is initialized in step 1.  In step 2, the boundaries of the M time lag bins in 

channel B are mapped out for the first photon in channel A, allowing for the contribution of 

photon pairs including the first photon to be simply calculated in step 3.  Steps 2 and 3 are then 

repeated for the remaining photons in channel A.  However, it is very important to notice that the 

boundaries of the M time lag bins are in general shifted only by a small amount when going from 

the first to second photons in channel A (figure 1).  If channels A and B have the same count 

rates, then each time lag bin boundary in channel B will on average shift only one photon for 

every photon shifted in channel A.  The number of operations scale as AN M  rather than A BN N  

operations, dramatically reducing the computational cost.  The computational cost is similar to 

the multiple-tau algorithm, except now without restrictions on the time lag bins chosen. 

Results and Discussion 

Method compares favorably with multiple-tau algorithm 

We first compare the performance of our new algorithm with the multiple-tau algorithm using 

simulated FCS data.  A homogeneous fluorescent species is simulated to undergo three-

dimensional Brownian diffusion through a confocal detection volume3.  These are 10 s 

simulations, where each molecule’s average count rate (brightness) in the confocal detection 

volume is 35.4 kHz and the diffusion time of the molecule through this detection volume is 300 

µs.  The average number of molecules is set at 0.1, 1.0, and 10.0 in three separate simulations, 

leading to total average count rates of 3.54 kHz, 35.4 kHz, and 354 kHz, respectively.  A plot of 

calculated correlations for the simulation with an average of 0.1 molecules per detection volume 

and corresponding curve fits are shown in figure 2.   
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Table 1 compares the calculation times using our new algorithm and the multiple tau algorithm 

(performed on a 2 GHz Pentium M processor).  In the second and third columns, the bin spacings 

are those dictated by the multiple tau algorithm, with time lags between 1 µs and 2 s. At low 

count rates, there is very little difference in performance.  However, at high count rates (354 

kHz), the multiple tau algorithm is about 40% faster.  When the reciprocal of the count rate is 

comparable to the minimum time bin (1 µs), the successive reductions in the time resolution 

produces savings in the computation time.   

Number of Photons 

(10 s simulations) 

Time for Multiple 

Tau (s) 

Time for current 

algorithm (s) 

Time for large bin 

spacing (s)  

35291 0.21 0.21 0.07 

362483 1.9 2.1 0.44 

3559930 16 23 4.0 

For the fourth column, a wide spacing between bins is used (2 per decade between 1 µs and 1s) 

using our new algorithm.  Such a wide spacing may be used for calculating correlations in real 

time during the experiment.  For example, for the highest count rate in the bottom row, neither 

algorithm can compute the full correlation within the simulation time of 10s.  However, with 

wider bin spacings (fourth column), our software correlation routine would still be able to keep 

up with a count rate of 354 kHz.  Widely spaced bins are problematic for the multiple-tau 

algorithm due to triangular averaging8, 9, 13.  Triangular averaging results from the finite size of 

the time bins used during the calculation of the correlation.  The process used by the multiple-tau 

algorithm of adding the number of photons counted in adjacent bins to reduce the time resolution 

leads to larger triangular averaging.  With the standard bin spacings used, the triangular 

averaging is small (<0.1%)8, 9, 13.  However, for the wider spacing of 2 bins per decade in column 
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4, the triangular averaging would be much more severe.  In our new algorithm, the full time 

resolution of the photon arrival times is preserved through the entire calculation.  The only 

triangular averaging is on the time scale of the photon arrival time (12.5 ns in our case). 

Example correlations – photon antibunching 

The current algorithm is most useful in cases where specific bin spacings are needed.  For 

example, we are currently performing measurements that attempt to quantify the number of 

independent fluorescent quantum emitters using fluorescence antibunching; the experiments and 

experimental setup are described in reference14.   

Briefly, we measure fluorescence from single oligonucleotides labeled with a red fluorophore 

(Atto 655, Atto-tec GmbH) immobilized on a coverslip.  We collect data from single hairpin 

samples by scanning images (figure 3a) using a 2D piezo-scanner (MadCity Labs, Nano-Bio200, 

Madison, WI).  For excitation of Atto 655, we use a picosecond pulsed laser (LDH 635-B, 

PicoQuant GmbH) driven by a 5 MHz external clock source generated by a counter-timer board 

(PCI-6602, National Instruments).  The excitation laser is focused by a high numerical aperture 

microscope objective, and emitted fluorescence is collected by the same objective.  The emission 

is then focused onto a pinhole (150 µm), and a 50/50 beamsplitter is used to form a Hanbury-

Brown and Twiss interferometer with two avalanche photodiode detectors (SPCM-AQR-14, 

PerkinElmer).  It is necessary to use two independent detectors for photon antibunching, because 

there is no ideal detector with negligible dead time15, 16. 

The APDs produce a TTL pulse for every photon detected which are timed using an 80 MHz 

clock.  The same 80 MHz clock times both channels, and drives the 5 MHz clock for triggering 

the laser diode.  Hence, the laser and photon timing are synchronized, facilitating later data 

analysis. 
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The random arrival times of photon events can be overcome by using pulsed excitation 

sources14, 17, 18. The most efficient way to then obtain photon antibunching histograms is to 

calculate the cross-correlation function between the two channels of the Hanbury-Brown and 

Twiss interferometer. Comparing the number of correlated to anti-correlated events by 

measuring peak heights in the arrival time histogram can then, for example, be used to reveal the 

average number of quantum emitters in the observation volume14, 18, 19.  Figure 3b shows the 

correlation of all photon events obtained during the image scan (figure 3a) calculated with 

logarithmic spacings similar to those used for the FCS simulation in figure 2 (the spacing 

between bins is too large to observe the pulsed nature of the excitation).  Note, that there are two 

significant time scales in the decay curve.  The faster fluctuations at the ~100 µs time scale as 

indicated by the slight shoulder in the plot are due to triplet-state-induced blinking of the 

fluorophores20.  The major, longer term decay at the ~30 ms time scale is due to the movement of 

the scanner21.  Figure 3c shows the fine detail of the correlation function around two time points 

in the FCS curve in figure 3b (as indicated by the dash-dotted and full line in the figure). 

Comparison between the short time scale correlation and the long time scale correlations allows 

the quantification of the triplet state effects on the antibunching curve.  Such effects will play a 

critical role in using photon antibunching to count the number of fluorophores for each 

individual molecule.  The ability to make such comparisons is made possible using the flexible 

bin spacings. 

Conclusion 

We have presented a novel correlation algorithm that makes use of flexible bin spacings to 

quickly or accurately calculate correlation functions depending on the needs of the experiment. 

We have demonstrated the performance of this algorithm by calculating the correlation function 
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for simulated fluorescence correlation spectroscopy data. We have also demonstrated the large 

dynamic range over which this algorithm permits calculations by simultaneously calculating 

correlations on the nanosecond to millisecond time scales for a photon antibunching experiment. 

The correlation algorithm developed here allows researchers to adjust time lag bins to the 

resolution that is important to them without sacrificing performance. Also, this algorithm can be 

extended to other calculations, including the PAID histogram3 and higher-order correlations10, 11.    
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Figure Captions 

Figure 1:  Calculating the cross-correlation of photon sequences in two channels (A and B) 

using our new algorithm.  The maximum and minimum limits for M bins in time lag τ  
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( )min max
1 1τ ,τ⎡⎣ , )min max

2 2τ ,τ⎡⎣ , …, )min max
M Mτ ,τ⎡⎣ ) are added to the arrival time of each photon in channel 

A.  Part (a) shows these limits (black arrow for min
1τ , gray dotted lines for other limits) for 

photon 1 from channel A, and part (b) shows these limits for photon 2.  In this example, M=4, 

min
1τ 0= ,  min max

2 1τ τ= , min max
3 2τ τ= , and min max

4 3τ τ= .  To the left of each limit in (a), the index j of 

the photon in channel B such that 1 currt t τBj A> + , where, in turn, min
curr 1τ τ= , max

curr 1τ τ= , etc.  

Similar indices j are shown in (b).  The contribution to the correlogram Yk  for each time lag bin 

k is calculated by subtracting the indices maximum and minimum indices, max min
k kj j− .  The 

critical step in making this correlation calculation efficient is when switching between photons in 

channel A.  Note that in going from photon 1 in channel A to photon 2 (comparing (a) and (b)), 

there are only small adjustments made in the values of min
kj  and max

kj .  Rather than searching 

through the entire photon stream in channel B to find the new time lag bin limits for photon 2, 

we keep all of the values found for photon 1, and make minor adjustments in their values so that 

the relationships 2 currt t τBj A> +  are satisfied for min
curr 1τ τ= , max

curr 1τ τ= , etc.  This reduces the 

computational load dramatically, required on order AN M  operations. 

Figure 2: Correlations and fits for simulated data of fluorescent molecules diffusing through a 

Gaussian detection volume.  The average number of molecules N in the detection volume is 0.1, 

and the diffusion time Dτ  through the detection volume is 300 µs.  For the simulation detection 

volume, the correlation curve satisfies, ( ) ( ) ( )1 1 1 1 25D DC Nτ τ τ τ τ⎡ ⎤= + + +⎣ ⎦ .  The 

correlation calculated using our new algorithm with the quasi-logarithmic bin spacings from the 

multiple-tau correlation algorithm (8 bins per octave, 160 total bins) is shown in black.  The 

dotted light gray line is a fit with 0.099 0.002N = ±  and 294 3 sµ± .  The dark gray line is the 
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correlation with wide bin spacings (2 bins per decade, 12 total bins).  A fit (not shown) recovered 

the values 0.10 0.01N = ±  and 300 100 sµ± .  The wider spacing sacrifices some accuracy, but 

dramatically increases speed of computation. 

Figure 3:  Photon antibunching experiments are performed on fluorescently labeled DNA 

oligomers attached to a glass surface.  (a) Image of surface-immobilized DNA oligomers. Image 

size 20 µm x 20 µm  (b) Long-time scale correlation function over the entire image (similar bin 

spacings to figure 2).  (c) Short-time scale correlation functions with linearly spaced bins (25 ns 

bins).  The non-normalized correlation for the region with time lags between -1.25 µs and 1.25 

µs is shown (central plot in figure 3c, dotted line in figure 3b), along with the regions within 1.25 

µs of the ± 2 ms time lags (side plot in figure 3c, black line in figure 3b). The spikes in figure 3c 

correspond to the timing of the pulses from the excitation laser.  The solid gray line corresponds 

to the average peak height in the region between  -1.25 µs and 1.25 µs, and the dotted gray line 

corresponds to the average spike height in the regions within 1.25 µs of  ± 2 ms time lag regions.  

The peak at -0.2 µs with very low photon pair counts is due to photon antibunching (black 

arrow).  It is not at 0 time lag due to a cable delay and a software adjusted digital delay.   
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