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ABSTRACT

The Feit-Rubenchik size-selection damage model has been extended in a number of 
ways. More realistic thermal deposition profiles have been added. Non-spherical shapes 
(rods and plates) have been considered, with allowance for their orientation dependence. 
Random variations have been taken into account. An explicit form for the change of 
absorptivity with precursor size has been added. A simulation tool called GIDGET has 
been built to allow adjustment of the many possible parameters in order to fit 
experimental data of initiation density as a function of fluence and pulse duration. The 
result is a set of constraints on the possible properties of initiation precursors.
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1.    INTRODUCTION

For many years, laser damage researchers have been building models that improve 
understanding of the observed density of damage initiation sites as a function of laser 
beam fluence and pulse width. There is general agreement that initiation is caused by the 
violent destruction of unobservably small (nanometer size) absorbing precursors. These 
precursors are supposed to exist in large numbers, with only a small fraction 
contributing to the observed initiation density. The idea that damage properties could be 
produced from a model in which the size of the precursors was an important factor was 
put forward by Hopper and Uhlmann some time ago1. They assumed that linear 
absorption of laser energy raised the temperature of precursors until mechanical failure 
took place. They showed that there is a precursor size at which the temperature rise is 
maximized. Below that size, diffusion removes heat quickly. Above that size, the fact 
that absorption goes as the area, while thermal mass goes as the volume, leads to 
reduced temperature. A number of other workers extended their ideas2,3.

Hopper and Uhlmann followed most workers of the time in being most interested in the 
“threshold fluence” for laser damage. Below the threshold fluence, damage is supposed 
to be rare, while fluences above the threshold are sure to cause damage. More recently, 
experiments show that there is a steady increase in initiation density, per area or per 
volume, as the fluence is raised4. Feit and Rubenchik5 have extended the idea of size 
selection to allow for calculation of the curve of damage initiation density ρ as a 
function of laser fluence φ. Their basic idea was to find the range of precursor sizes 
which fail at any given fluence, and to assign to that fluence the number density of 
precursors between the smallest and largest failing sizes. They presumed that failure was 
due to runaway absorption above a critical temperature below the mechanical failure 
point. The latest results of their work are described in a companion paper6.
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This paper describes the extension of the size-selection model to allow for non-spherical 
inclusions, to generalize the absorption-versus-size assumptions and to add random 
factors. It describes a simulation tool that allows variation of the model parameters, with 
immediate visualization of the resulting ρ(φ) curve. The tool also finds the effect of 
pulse-width variation, and permits multi-parameter optimization to best fit experimental 
data.

2.    THE MODEL

2.1 Viewpoint
The basic difference between the extensions discussed here and prior work is that we 
allow for a fraction F of the precursors at any given size to be initiated, with F
somewhere between zero and unity. If F jumps abruptly from zero to unity at some 
small size, and jumps back to zero at some larger size, then the results of previous work 
are duplicated. More generally, however, we take the initiation density (per area or per 
volume) to be the integral, over size, of the number density of precursors (area or 
volume) n(s) times the initiation fraction F:
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Since the quantities inside the integral are stochastic, it is a stochastic integral, meaning 
that results are not exact. Instead, the integral yields a mean value with some variation 
about the mean. We presume that values of F between zero and unity may be caused by 
orientation differences (for asymmetric particles), or by random variations in absorption, 
failure temperature, or other factors.

Note that the units of n(s), once size is integrated out, are carried through to become the 
units of ρ(φ). This means that the integral can be used to calculate surface damage 
density and volume damage density equally well.

2.2 Assumptions
We assume that:
• Absorbing precursors exist in large numbers, with a variety of sub-wavelength sizes
• The precursors absorb laser light, heat up, and the heat diffuses away
• Damage initiation happens when the hottest point in a precursor exceeds some critical 

temperature Tx

• Exceeding the critical temperature causes sharply increased absorption and thermal 
runaway, destroying a region larger than the precursor and leaving melted and 
fractured material behind

• The peak temperature that a precursor reaches depends on the size, shape, absorption 
profile  and other characteristics of the precursor

• At low fluence, only some precursors will fail, at the hottest size (or shape, or 
absorption profile, or …)

• As the fluence increases, a larger and larger fraction of the precursors will fail, over a 
broader range of sizes

2.3 Simplifications
In order to simplify the calculations, we make a number of additional assumptions. For 
the most part, these assumptions can be relaxed without causing serious changes in the 
results or conclusions:



• Thermal properties are independent of temperature, until runaway (an average value is 
used)

• Precursor material and bulk material thermal properties are the same
• All materials are homogeneous and isotropic
• Absorption is constant inside the precursors, and zero outside
• Absorption is linear (single-photon)
• The precursors absorb only a small fraction of the incoming laser light (this is the 

“weak Beer’s law” limit)
• Because of small absorption, deposition is near-uniform throughout the precursors
• Heat removal is only by thermal diffusion
• The only shapes we consider are simple ones for which we can do the diffusion math:
o Balls (3D diffusion)
o Rods (2D diffusion)
o Plates (1D diffusion)

2.4 Precursor Number Density
We take the number density n(s) of precursors (per area or per volume, per size) to have 
a power law form as a function of size s with exponent Q, truncated at some minimum 
size sLO and also at some maximum size sHI. If the total density of precursors (per area 
or per volume) is N, then the density is given by
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We use this functional form because it is the type of variation often observed in natural 
processes such as optics contamination, laboratory dust, and so forth. Common values of 
Q are in the range from 1 to 3. We insert the lower size limit to avoid getting infinite 
density when we integrate down to zero size. This is reasonable because there is a 
physical lower size limit, since precursors of nanometer size are only a few molecules 
across. The upper size limit is just a convenience in numerical computations, since (as 
we shall see) it has very small effect on the results of the model. Also, large particles 
(say a few microns or more) would be visible in optical inspection unless their 
absorption was extremely low.

2.5 Laser Beam Absorption
In principle, the absorption of laser light by the precursors could be quite complex. 
Although they are sub-wavelength in size, diffraction might be important. We would 
then see resonances as a function of size and shape, and calculation would be difficult. 
To investigate this issue, we calculated absorption by small balls with a small absorptive 
part of their refractive index, using the exact Mie theory7. We found that the absorption 
profile inside the balls was almost exactly what one would calculate by using absorption 
along undeviated rays (this is not true for metallic inclusions – see Figure 4 in Walker2

et. al.). Although there were strong resonances outside the balls when the real parts of 
the refractive index were different in the ball and the substrate, perturbations from the 
simple ray picture were small inside, and largely confined to the output surface. We 
therefore used the straight-ray results for balls, and assumed that the same undeviated-
ray picture could be used with plates and rods as well.

When absorption in the precursors is weak (as we shall see it must be) and is found from 
an undeviated-ray picture, the deposition inside a uniform-absorption-coefficient 
precursor is close to spatially uniform. We therefore adopted this picture. To test its 
validity, we carried out finite-element calculations of temperature rise in balls for non-
uniform absorption coefficients and large absorption coefficients. With appropriate 



scaling, the peak temperatures reached were very close to those found from weak 
absorption of undeviated rays, even with 3 e-foldings of irradiance across the ball.

When there is no diffusion, the rate of temperature rise due to weak absorption of 
undeviated rays in any shape is given by
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Here T is the temperature rise above the initial temperature, I is the laser beam 
irradiance, β is the absorption coefficient inside the precursor, and CV is the specific heat 
per unit volume (recall that β and CV are supposed to be average values over the range 
of expected temperatures from ambient to Tx). Taking some representative values, 
assume that I = 1 GW / cm2, β = 105 m-1 (0.1 per micron) and CV = 2 J / cc / °K (typical 
of SiO2 or KDP). The temperature would then rise at 500 °K / ns. We see that the 
absorption coefficient cannot be much smaller than the value we assumed, as 
temperatures high enough to initiate damage would not be reached during the duration of 
typical laser pulses. Likewise, the absorption coefficient cannot be much larger than the 
assumed value, since temperatures high enough to form plasma would be reached in less 
than a nanosecond. This is the reasoning behind the remark that absorption coefficients 
must be so small that absorption in a sub-wavelength precursor is small.

2.6 Thermal Diffusion
We are assuming that thermal diffusion reduces the temperature found in the above no-
diffusion result. The diffusion equation (using the thermal source above) is

∂T
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=
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Here D is the diffusion coefficient, again using a temperature-averaged value to maintain 
linear behavior.

It is a straightforward exercise8 to find the temperature in plate-, rod- and ball-shaped 
regions, embedded in an infinite substrate, that are raised by a delta-function thermal 
input that causes unit temperature rise at time zero, with no subsequent thermal input. 
Suppose the regions to have a size s (this is the half-thickness in the case of the plate, 
and the radius for rods and balls). The peak temperature is always at the center point of 
the regions, and is given by
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We have introduced a normalized time v, given by the actual time divided by the 
diffusion time for a distance s:

2

4t Dtv
sτ

= =

The subscript on the temperatures indicates the dimensionality of the regions: 1 is for 
plates, 2 is for rods and 3 is for balls.

2.7 Laser Pulse Shape
We now have the impulse responses of the various precursor geometries, and since we 
have imposed linearity we can convolve the impulse responses with the temporal shape 
of the laser irradiation to get the peak temperature in the precursors as a function of time. 
The results are available in terms of standard functions in the case of flat-in-time laser 
irradiation that jumps from zero irradiance at time zero to a fixed level, and then 



maintains that level indefinitely. Linearity also means that we can superimpose multiple 
step functions of this type to simulate more complicated pulse shapes. It turns out that 
the response to a ramp starting at time zero can also be found in terms of the same 
standard functions, so we could do arbitrary piecewise-linear pulse shapes. In this paper, 
we will restrict ourselves to flat-in-time (FIT) laser irradiance temporal shapes. For FIT 
pulses, the peak temperature in time is always at the end of the pulse, so we do not have 
to search for it. The temperature as a function of normalized time is given by
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Here φ is the fluence in the laser pulse, and E1 represents the exponential integral. The 
term in front of the square brackets is the temperature rise in the absence of diffusion, 
and the quantities inside the square brackets are the diffusion factors that reduce the 
temperature. We will call these diffusion factors gJ(v), where J is the dimensionality of 
the diffusion (1, 2 or 3 for plates, rods or balls). For times small compared to the 
diffusion time all the diffusion factors are unity. For times much larger than the diffusion 
time, the peak temperature in the plate increases as √t and that in the rod increases as 
ln(t). The peak ball temperature, however, asymptotically approaches a constant value 
equal to the no-diffusion temperature that would be caused by constant laser irradiation 
over a time equal to twice the diffusion time.

In the forms shown above, the diffusion factors are somewhat difficult to use due to 
cancellation of terms, and so we have found numerical approximations that are both 
speedy and accurate (to 0.1% relative error) for short and long times.

2.8 Precursor Failure Fluence for Different Shapes
Precursors have been assumed to fail at some temperature rise Tx. Equating this to the 
spatial maximum temperature rise at the end of a FIT pulse, and introducing the critical 
fluence φC at which the precursor fails, we have

Tx =
β φC

CV
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We immediately see that this model (or any similar model) will depend only on the 
grouping Tx CV / β, and not on any of its factors individually. We may reasonably 
expect that CV will be close to the specific heat of the bulk material, even if (contrary to 
our assumption) CV is somewhat different in the precursor, since much of the thermal 
diffusion takes place in the bulk rather than the precursor. But there will be no way to 
extract the critical temperature Tx or absorption coefficient β individually by comparing 
this model to experiment. Only their ratio can be determined.

For times short compared to the diffusion time, all the diffusion factors are unity and the 
failure fluence is given by

φC =
TxCV

β
t <<

s2

4D

The failure fluence, in this short-pulse limit, is independent of pulse width. For times 
long compared to the diffusion time, we can use the results in section 2.7 to see that the 
ball failure fluence increases linearly with the time t, the rod failure fluence increases as 
t / ln(t), and the plate failure fluence increases as √t.



2.9 Relation between Size and Absorption Coefficient
We do not expect the critical temperature or specific heat to depend strongly on 
precursor size. However, the absorption coefficient may well depend on size, and so we 
incorporate such a dependence into the model.

Consider, for example, the absorption-versus-size relations we would get under various 
scenarios. Suppose that ball-shaped precursors form from extremely small bits of 
contaminant. These small bits spread out by diffusion of their material during substrate 
creation to make balls of different sizes, all with the same amount of contaminant. If the 
absorption coefficient is linearly proportional to contaminant density, then the 
absorption coefficient in the balls is proportional to the inverse cube of their size. 
Similar reasoning, using initial thread-shaped sources, leads to inverse square 
dependence for rods. Plates arising from initial thin foil sources would have absorption 
coefficients proportional to the inverse of their size.

In the other extreme, if all the precursors were formed of identical material with no 
change of concentration with size, the absorption coefficient would be independent of 
size (size to the power zero).

To allow for these and many other possibilities, we assume a power-law dependence of 
absorption coefficient on size, using an exponent B. This dependence does not have to 
hold over a broad range of sizes, since (as we shall see in section 2.12) only a fairly 
small range of sizes contributes to initiation. It is sufficient if the behavior looks like a 
power law over one, or perhaps two, decades of size variation. We introduce an arbitrary 
reference size s0 and the absorption coefficient β0 at that size, and write the absorption 
coefficient as
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Only one of the two parameters s0 and β0 is needed here; we have introduced two for 
convenience. Normally we will take s0 to be fixed at some arbitrary size, and vary only
B and β0 to fit data values.

2.10 Failure-Fluence Size Scaling for Different Shapes
Inserting the power-law absorption coefficient scaling into the equation for failure 
fluence, we have an expression for the failure fluence as a function of geometry and 
physical parameters

φJ =
TxCV

β g J v( )
=

TxCV

β0
s
s0











B

gJ
4Dt
s2











Once again, J is the dimensionality of the diffusion (1, 2 or 3 for plates, rods or balls).

In order for size selection to take place, we want the failure fluence to increase as the 
size decreases. It is not as important for the failure fluence to decrease for large sizes, 
since the rapid drop-off of number density with size will cut the integral off at the large-
precursor end unless the failure fluence drops off very sharply there (faster than the 
number density is decreasing). The desire for failure fluence increase at small sizes sets 
a lower limit on the absorption coefficient scaling power B. For plates, the lower limit is 
B > -1. For rods, the lower limit is B > -2. For balls, the lower limit is also B > -2. For 
all three shapes, failure fluence will increase at large sizes if B < 0. Some representative 



curves of relative failure fluence as a function of relative size are shown in Figures 1, 2 
and 3 (the numbers on the curves are B values). Note that there is a minimum in the 
curves, corresponding to size selection at both small and large sizes, only for values of B
between the lower limits given above and zero.

2.10 Plate and Rod Orientation
Up to this point, we have ignored the orientation of the precursors, and calculated 
heating for the hottest-case orientation. For balls, there is no orientation factor. 
However, rods and plates heat up at rates that depend on their angle with respect to the 
laser beam. If we define a unit vector normal to the plate surface, and a unit vector 
aligned along the rod axis, then the deposition rate in a plate is proportional to the 
absolute value of the cosine of the angle between the orientation vector and the laser 
beam direction, while the deposition rate in a rod is proportional to the absolute value of 
the sine of the angle. We presume here that the orientation vectors are random on the 
sphere of possible directions (non-uniformity can lead to an orientation-dependent 
initiation rate for the optic). The fraction of precursors reaching the critical temperature 
is a function of the ratio h of initiation fluence to minimum initiation fluence at the 
most-strongly-heated orientation. This ratio depends on the precursor shape; it is given 
by:

Figure 1: Plate relative failure fluence as a 
function of relative size for different power-
law exponents B in the absorption-versus-size 
relation

Figure 3: Ball relative failure fluence as a 
function of relative size for different 
power-law exponents B in the absorption-
versus-size relation

Figure 2: Rod relative failure fluence as a 
function of relative size for different 
power-law exponents B in the absorption-
versus-size relation
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The failing fraction is zero for all three geometries for h less than unity. Above h = 1, 
the plate, rod and ball fractions are given by

1 2 32

1 11 1 1 INIT

C

F F F h h
h h

φ
φ

= − = − = > 1 =

The shapes of these functions are shown below.
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Figure 4: Curves of cumulative fraction initiating due to random orientation for 
the three shapes

The addition of an orientation dependence means that the curves shown in Figures 1 and 
2 are to be taken as the lower limit of initiation, with larger and larger fractions of 
randomly oriented precursors initiating at fluences above the curves. The ball curves in 
Figure 3 are transition values – above the curves, all precursors have initiated.

2.11 Random Variations
Precursors are not likely to be identical. Aside from variations of size and geometry, we 
expect that there will be individual variations of absorption coefficient, critical 
temperature rise and other factors. We introduce such variations into the model by 
smearing out the initiated-fraction curves over a range of fluences. We want the curves 
to remain in positive-fluence territory, and so we want to convolve the curves with a 
random distribution that exists only for positive values of its argument. We somewhat 
arbitrarily choose to use the log-normal distribution. This distribution is close to 
Gaussian when the standard deviation is small compared to the mean, but skews to the 
positive side for large standard deviations and never goes negative.

For mathematical convenience, it is better to do the convolution calculations in terms of 
the variable c that is the reciprocal of h. The log-normal is now avoiding “wrapping 
around infinity” at the low end, and still cannot get to negative fluence at the high end, 
and the plate convolution becomes tractable.

For balls, the convolution is of the CDF of a log-normal with two delta functions. The 
resulting initiated fraction distribution is just a cumulative log-normal distribution. 
Written in terms of h, it is given by
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Here z is the ratio of standard deviation to mean (sometimes called the “contrast”). It 
measures the amount of random variation, with z = 0 corresponding to no randomness 
(orientation factors only).

The convolution integral for plates is more difficult, but it can still be evaluated, using 
the fact that the orientation PDF is unity from c = 0 to c = 1. The result is equal to the 
ball distribution above plus an adjustment term:
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The convolution integral for rods appears to be intractable. We therefore approximate 
the rod result by using the square root of the plate result with h replaced by its square,
and z increased by √2. This makes the result exact for no random component (see the 
orientation distributions above), and the z adjustment makes the added random part 
correct near h = 1 for small values of z. For large z, the result deviates somewhat from
the results of a numerical convolution, but this happens for z values so large 
(comparable to unity, or even greater) that the initial assumption of log-normal noise 
might well be questioned. Given these caveats, we use the equation
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The effect of random variation can be seen in Figure 5, where the ball initiated fraction 
F3 (vertical axis) is seen on the left with only a small random addition, and on the right 
with a large random component. With little randomness, the initiated fraction is mostly 
either zero or unity, but random variation gives us a large region with intermediate 
values.



Figure 5: Effect of random variation on initiation fraction for ball shapes - B = 0

2.12 Integration over Precursor Size
We now have everything we need to evaluate the initiation density as a function of 
fluence. In Figure 6, the product of the number density (for Q = 2) times the initiated 
fraction (for ball shapes with moderate randomness) is seen as a function of size and 
fluence. A heavy line illustrates the path of integration for one fluence value. We see 
that the drop-off of precursor number density as size increases concentrates the 
integrand along the small-size edge of the initiation region. Although precursors of all 
sizes within the initiation region are failing, most of the initiation density comes from 
the smaller precursors in the region, since they are more numerous. As we raise the 
fluence, we get an increased initiation density largely because the initiation region 
moves to lower sizes, where there are more available precursors.

Figure 6: Integrand of the initiation density integral. Heavy line shows the integration path 
for one fluence value

3.    GIDGET

3.1 Overview
GIDGET (Get Initiation Density via Globule Explosion Temperature) is a spreadsheet 
that implements the calculations that make up the model described above. It is designed 
to allow variation of the parameters of the model, produce the resulting curve of 
initiation density as a function of fluence, and allow comparison of the curve with 
experimental data. Using the multi-parameter optimization feature available with the 
spreadsheet, parameters can be automatically adjusted for best fit.
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3.2 Routines for Integration over Precursor Size
Most of the functions needed for GIDGET are supplied by the spreadsheet program. 
However, there are some routines that must be supplied by the user. These routines have 
been implemented in the “macro” language of the spreadsheet. The routines include:

• An adaptive integration routine. It is used because fixed-interval integration is very 
inefficient when the integrand is peaked in one small region of the entire range of 
integration. The routine uses Simpson integration, subdividing high-contribution regions 
recursively to meet a specified error tolerance.

• The integrand function called by the adaptive integrator. This routine contains:
o Tests to select an execution path depending on the geometric shape of the 

precursors.
o Fast approximations to the gJ(v) diffusion functions. These are polynomial ratios 

(Padé forms).
o Calculations of the combined effects of orientation and random factors.

3.3 Matching the Pulse Width Variation of Initiation Fluence
We want to match the variation of damage initiation fluence with pulse width. Typically, 
initiation fluence (for constant initiation density) varies as a power of the pulse duration 
τ. Typical values are in the range τ0.35 to τ0.5. We chose to start with a reference pulse 
duration, and then to calculate the initiation density for another pulse duration. The 
fluence at the new duration is set to give the same initiation density as at the reference 
duration when the model gives the same scaling as experiment. Calling the reference 
pulse width τ1 and the new pulse duration τ2, and taking the pulse-width-scaling 
exponent to be P, we used the model to calculate
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Equality is achieved when the model correctly scales with exponent P. The model 
initiation density is found at each data-point fluence, and compared to values found from 
the above formula, using τ2 values of 1/3 of τ1 and 3 times τ1.

3.4 Comparing the Model to Experimental Data
The model as described here calculates single-shot (unconditioned) initiation levels 
(extension to ramped fluence and conditioning is discussed in the companion paper6). 
We have therefore used single-shot data taken on fused silica exit surface damage as a 
test case. The data were taken with Gaussian pulses, but the model presently uses flat-in-
time pulses; we presumed that the correction was the same at all fluences. The pulse-
width scaling power was taken as 0.37, in agreement with experiment. The diffusion 
coefficient was fixed at 0.01 cm2 / s, which is typical of SiO2 (and KDP). The precursor 
shape was set to “ball.” The spreadsheet nonlinear optimizer was then asked to adjust the 
absorption parameters B and β0, the precursor density parameters N, Q and sLO, and the 
random component z for best fit to the data. The fit error was calculated as the sum of 
the square of the relative errors, since the data varies over several orders of magnitude 
and we want to fit both the low end and the high end equally well. The minimum-error 
result is shown in Figure 7. We see that the data (large circles) is reasonably well fit by 
the model (solid line), once the parameters are adjusted. For comparison, a reference 
curve with power law dependence (exponent 3.9 in this case) is also shown on the plot 
(dashed line). It agrees well with the model, except at the low-fluence end. We have no 
simple explanation for this agreement. Also shown are the shorter-pulse-duration points 
(+) and longer-pulse-duration points (x), which are seen to come at the same initiation 
density values as the model curve, demonstrating correct pulse-width dependence.
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Figure 7: Result of GIDGET fitting output-surface SiO2 damage data by variation of six 
parameters. See text in section 3.4 for a description of the details in the plot.

3.5 Extensions to the Model
It is straightforward to add conditioning to the model, using the method described in the 
companion paper6. It is also easy to add multiple-population precursors, since the 
initiation density for two independent populations is just the sum of their individual 
initiation rates. Precursor shapes other than those used here can be added once their 
diffusion reduction functions and orientation dependence are specified. The extension to 
arbitrary piecewise-linear laser pulse shapes was mentioned previously; it requires the 
addition of one diffusion expression for each temporal segment, and a way to find the 
maximum temperature as a function of time (any standard univariate extremum-finding 
method should work). The model as implemented is of satisfactory speed (optimization 
over 6 parameters, with a hundred or more trial parameter sets, takes a minute or less on 
a 2 GHz PC) but the addition of some of these features will probably require the linking 
of compiled C++ code to the spreadsheet to maintain satisfactory speed.

4.    CONCLUSIONS

The addition of non-spherical precursor shapes, variation of absorption coefficient with 
size, and random factors has increased the flexibility of the size-selection model of 
damage initiation as a function of fluence. Implementation of the improved model in a 
spreadsheet has allowed rapid examination of the effect of parameter changes. Use of 
the multi-parameter optimization feature of the spreadsheet gives us the ability to adjust 
multiple parameters for the best fit to data sets. The increase in both flexibility and speed 
allows us to examine the implications of the model quickly and easily, and to compare 
the model to numerous experiments.
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