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I NTRODUCTION

Although proportional-integral-derivative (PID) controllers are widely used in the process

industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers,

which requires optimization of three parameters, is a time-consuming task. To remedy this

difficulty, much effort has been invested in developing systematic tuning methods. Many of

these methods rely on knowledge of the plant model or require special experiments to identify

a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2].

However, in many situations a plant model is not known, and it is not desirable to open the

process loop for system identification. Thus a method for tuning PID parameters within a closed-

loop setting is advantageous.

In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a

relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist

diagram. Based on the location of this point, PID parameters can be chosen to give the closed-
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loop system a desired phase and gain margin.

An alternative tuning method, which does not require either a modification of the system

or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine

whether a set of PID parameters meets performance specifications. An adaptive algorithm is used

to update the PID controller based on whether or not the controller falsifies a given criterion.

The method requires a finite set of candidate PID controllers that must be initially specified [6].

Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach

requires a carefully chosen input signal [8].

Yet another model-free PID tuning method that does not require opening of the loop is

iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect

to a cost function derived from the output signal of the closed-loop system, see [9]. This method

is based on the performance of the closed-loop system during a step response experiment [10],

[11].

In this article we present a method for optimizing the step response of a closed-loop

system consisting of a PID controller and an unknown plant with a discrete version of extremum

seeking (ES). Specifically, ES is used to minimize a cost function similar to that used in [10],

[11], which quantifies the performance of the PID controller. ES, a non-model-based method,

iteratively modifies the arguments (in this application the PID parameters) of a cost function so

that the output of the cost function reaches a local minimum or local maximum.

In the next section we apply ES to PID controller tuning. We illustrate this technique

through simulations comparing the effectiveness of ES to other PID tuning methods. Next,
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we address the importance of the choice of cost function and consider the effect of controller

saturation. Furthermore, we discuss the choice of ES tuning parameters. Finally, we offer some

conclusions.

COST FUNCTION AND PID CONTROLLERS

Extremum seeking is used to tune the parameters of a PID controller so as to minimize

a given cost function. The cost function, which quantifies the effectiveness of a given PID

controller, is evaluated at the conclusion of a step response experiment. We use the ISE (integral

squared error) cost function

J(θ)
4
=

1

T − t0

∫ T

t0
e2(t, θ)dt, (1)

where the errore(t, θ)
4
= r(t) − y(t, θ) is the difference between the reference and the output

signal of the closed-loop system, and

θ
4
= [K, Ti, Td]

T (2)

contains the PID parameters. The PID controller structure and the meaning ofK, Ti, andTd are

given below.

The cost functionJ(θ) defined in (1) takes into account the error over the time interval

[t0,T ]. By settingt0 to approximate the timeTpeak at which the step response of the closed-loop

system reaches the first peak, the cost functionJ(θ) effectively places zero weighting on the

initial transient portion of the response [10]. Hence, the controller is tuned to minimizes the

error beyond the peak timeTpeak without constraints on the initial transient.

We use a standard PID controller, with the exception that the derivative term acts on the

measured plant output but not on the reference signal. This PID controller avoids large control
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Figure 1. Closed-loop servo system. The output signaly of the unknown plantG is regulated
to the reference signalr by the two-degree-of-freedom controllerCr andCy.

effort during a step change in the reference signal. Figure 1 shows a block diagram of the

closed-loop system, whereG is the unknown plant, the controller is parameterized as

Cr(s) = K
(
1 +

1

Tis

)
, (3)

Cy(s) = K
(
1 +

1

Tis
+ Tds

)
, (4)

andr, u, andy are the reference signal, control signal, and output signal, respectively.

EXTREMUM SEEKING TUNING SCHEME

The cost functionJ(θ) should be understood as a mapping from the PID parameters

K, Ti, and Td to the tracking performance. ES seeks to tune the PID controller by finding a

minimizer of J(θ). However, since ES is a gradient method, the PID parameters found are not

necessarily a global minimizer ofJ(θ).

The overall ES PID tuning scheme is summarized in Figure 2. The step response

experiment, which is contained within the dashed box, is run iteratively. The costJ(θ(k)) is

calculated at the conclusion of the step response experiment. The ES algorithm uses the value

J(θ(k)) of the cost function to compute new controller parametersθ(k). Another step function

4



G
+

Extremum Seeking

Algorithm

T

t

f

0

y(t)
rC

yC

(k)θ

J(θ(k))r(t) ∫ ( )dt
-

Figure 2. The overall extremum seeking PID tuning scheme. The ES algorithm updates the PID
controller parametersθ(k) to minimize the cost functionJ(θ), which is calculated from a step
response experiment carried out within the dashed box.

experiment is then performed with the new controller parameters, and the process continues

iteratively in this fashion.

ES is a non-model-based method, which iteratively modifies the inputθ of the cost

function J(θ) to reach a local minimizer. ES, shown schematically in Figure 3, achieves this

optimization by sinusoidally perturbing the input parametersθ(k) of the system and then by

estimating the gradient∇J(θ(k)). Note thatk is the index of the step response experiment,

whereast is the continuous-time variable within an individual step response experiment. The

gradient is determined by highpass filtering the cost function signalJ(θ(k)) to remove the slow

portion of the signal and then by demodulating the output by multiplication with a sinusoidal

signal of the same frequency as the perturbation signal. This procedure yields an estimate of

the gradient by picking off the portion of the cost function signalJ(θ(k)) that arises due to

perturbation of the input signal (see “How Extremum Seeking Works”). The gradient information

is then used to modify the input parameters in the next iteration, specifically, the signal is
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integrated, yielding a new parameter estimateθ̂(k). The integrator performs both the adaptation

function and acts as a lowpass filter.

θ(k) f

z + h

z - 1

α cos(ω k)

z - 1

−γ

J(θ)

+ ×θ(k)

J(θ(k))

ii

Figure 3. Discrete extremum seeking scheme. The input parametersθ(k) are perturbed by the
signalαi cos(ωik). The output of the cost functionJ(θ(k)) is then highpass filtered, demodulated,
and finally lowpass filtered to yield new input parameters.

The time-domain implementation of the discrete-time ES algorithm in Figure 3 is

ζ(k) = −hζ(k−1) + J(θ(k−1)), (5)

θ̂i(k+1) = θ̂i(k)− γiαi cos(ωik)[J(θ(k))− (1+h)ζ(k)], (6)

θi(k+1) = θ̂i(k+1) + αi cos(ωi(k+1)), (7)

whereζ(k) is a scalar and the subscripti indicates theith entry of a vector.γi is the adaptation

gain, andαi is the perturbation amplitude. Stability and convergence are influenced by the

values ofγ, α, and the shape of the cost functionJ(θ) near the minimizer, as explained in

“How Extremum Seeking Works”. The modulation frequencyωi is chosen such thatωi = aiπ,

wherea is rational and satisfies0 < a < 1. Additionally, the highpass filterz−1
z+h

is designed

with 0 < h < 1 and a cutoff frequency well below the modulation frequencyωi.
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An overview of ES theory as well as state of the art applications is provided in [12]. The

PID tuning in this article is a novel hybrid application, where the plant dynamics are continuous

time and the ES dynamics are discrete time.

EXAMPLES OF EXTREMUM SEEKING PID T UNING

We now demonstrate ES PID tuning and compare this method with IFT and two classical

PID tuning methods, namely, Ziegler-Nichols (ZN) tuning rules and internal model control (IMC).

In particular, we use the ultimate sensitivity method [13] version of the ZN tuning rules, which

consists of a closed-loop experiment with only a proportional feedback, where the feedback

gain is increased to a critical value until the system begins to oscillate. PID parameters are then

prescribed based on the critical gainKc and the periodTc of oscillation to give the closed-loop

system response approximately a quarter amplitude decay ratio. The amplitude decay ratio is

the ratio of two consecutive maxima of the errore during a step change of the reference signal.

Specifically, the PID parameters given by ZN areK = Kc/1.7, Ti = Tc/2, andTd = Tc/8.

Details of IMC can be found in [1], where the plant is assumed to have the form

G(s) =
Kp

1 + sT
e−sL. (8)

Based on (8), the PID parameters are chosen to be of the formK = 2T+L
2Kp(Tf+L)

, Ti = T + L/2,

andTd = TL
2T+L

, whereTf is a design parameter that affects the tradeoff between performance

and robustness. When the plant is unknown, a step response experiment can be used to obtain

an estimate of the form (8) as explained in [1]. Although variations of IMC that can deal with

additional model structures exist, for example [14] and [15], these methods are not considered

here. We note that ZN and IMC are derived for a PID structure with derivative action on both the
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reference signal and the output signal, not the structure (3), (4), which does not have derivative

action on the reference signal.

In [11] IFT, ZN, and IMC are applied to the models

G1(s) =
1

1 + 20s
e−5s, (9)

G2(s) =
1

1 + 20s
e−20s, (10)

G3(s) =
1

(1 + 10s)8
, (11)

G4(s) =
1− 5s

(1 + 10s)(1 + 20s)
. (12)

Notice thatG1 andG2 have time delays,G3 has repeated poles, andG4 is nonminimum phase.

We apply ES to (9)–(12) to allow comparison with the IFT, ZN, and IMC PID controllers found

in [11].

The closed-loop systems are simulated using a time step of 0.01 s, and the time delays

are approximated using a third-order Padé approximation to be consistent with [11]. The PID

controller parameters given by ZN are used as a starting point for ES tuning. For all simulations

the parametersa andh in the ES scheme (5)–(7) are set to 0.8 and 0.5, respectively.

Tuning for G1

ES PID tuning is applied toG1 in (9), which has a time delay of 5 s. For these simulations

the cost function spans fromt0 = 10 s to T = 100 s, α = [0.1, 1, 0.1]T , γ = [200, 1200, 200]T ,

and ωi = aiπ. Figure 4 shows that ES minimizes the cost function (1) with convergence in

less than 10 iterations to PID parameters that produce a local minimum. ES achieves this step

response by increasing the value of the integral timeTi to almost three times that given by
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Figure 4. ES PID tuning ofG1 illustrated by (a) the evolution of the cost function and (b) the
PID parameters during ES tuning of the closed-loop system withG1(s). The lower plots present
(c) the output signal and (d) the control signal during step response experiments of the closed-
loop systems withG1(s) and the PID controllers obtained from the four methods. ES reduces
the cost function in (a) by increasing the integral time in (b), which produces a more favorable
step response similar to that found using IFT in (c).

the ZN tuning rules, thereby reducing the influence of the integral portion of the controller, see

Table 1. The performance of the PID parameters obtained from ES tuning is roughly equivalent

to the IFT performance. This similarity is expected since both methods attempt to minimize

the same cost function. Figure 4 shows that IFT and ES yield closed-loop systems with less

overshoot and smaller settling times than ZN and IMC.
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Table 1. PID parameters forG1. The PID parameters found using IFT (in [11]) and ES (in the
present article) are similar; both methods increase the integral timeTi markedly over the ZN.

Tuning method K Ti Td

ZN 4.06 9.25 2.31
IMC 3.62 22.4 2.18
IFT 3.67 27.7 2.11
ES 3.58 27.8 2.15

Table 2. PID parameters forG2. Although ES and IFT yield different parameters, the resulting
responses are similar, as can be seen in Figure 5.

Tuning method K Ti Td

ZN 1.33 31.0 7.74
IMC 0.935 30.5 6.48
IFT 0.930 30.1 6.06
ES 1.01 31.5 7.16

Tuning for G2

For G2, which is identical toG1 except with a longer time delay of 20 s, we sett0 = 50 s,

T = 300 s, α = [0.06, 0.3, 0.2]T , γ = [2500, 2500, 2500]T , andωi = aiπ. Figure 5 shows that

ES reduces the cost function by an order of magnitude in less than 10 iterations. Moreover, ES

yields a closed-loop system whose step response is similar to that produced by IMC and IFT

and thus has improved overshoot and settling time compared to ZN tuning. The PID parameters

determined by the four tuning methods are presented in Table 2.

Tuning for G3

For G3 with a single pole of order eight we useα = [0.06, 1.1, 0.5]T , γ =

[800, 3500, 300]T , ω1 = ω2 = aπ (with α2 cos(ω2k) replaced byα2 sin(ω2k) in Figure 3), and
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Figure 5. ES PID tuning ofG2 illustrated by (a) the evolution of the cost function and (b)
the PID parameters during ES tuning of the closed-loop system withG2(s). The lower plots
present (c) the output signal and (d) the control signal during step response experiments of the
closed-loop systems withG2(s) and PID controller parameters obtained using the four methods.
ES reduces the cost function in (a) after a few iterations and finds PID parameters in (b), which
produce a step response similar to the IFT and IMC controllers in (c).

ω3 = a3π. Furthermore, the cost function takes into account the error fromt0 = 140 s to

T = 500 s. Figure 6 shows that ES improves the step response behavior obtained by the ZN

tuning rules, and returns a response that is similar to that achieved by IFT, however, with a

smaller settling time than the IMC controller. Table 3 indicates that ES reduces the integral time

Ti and controller gainK to reduce the value of the cost function. This plant proves more of a

challenge and requires roughly 30 iterations until the PID parameters converge.
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Figure 6. ES PID tuning ofG3 illustrated by (a) the evolution of the cost function and (b) the
PID parameters during ES tuning of the closed-loop system withG3(s). The lower plots present
(c) the output signal and (d) the control signal during step response experiments of the closed-
loop systems withG3(s) and the PID controllers obtained by means of the four methods. ES
reduces the cost function in (a), although not as quickly as for the other plants, by decreasing
the integral timeTi in (b), which produces a more favorable step response in (c).

Table 3. PID parameters forG3. IMC, IFT, and ES decrease the proportional gainK and the
integral timeTi versus the parameters found using ZN. Furthermore, IMC reduces the derivative
time Td more so than IFT and ES.

Tuning method K Ti Td

ZN 1.10 75.9 19.0
IMC 0.760 64.7 14.4
IFT 0.664 54.0 18.2
ES 0.684 54.9 19.5
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Table 4. PID parameters forG4. IMC, IFT, and ES progressively decrease the influence of the
integral term while increasing the effect of the derivative term.

Tuning method K Ti Td

ZN 3.53 16.8 4.20
IMC 3.39 31.6 3.90
IFT 3.03 46.3 6.08
ES 3.35 49.2 6.40

Tuning for G4

The PID controller for the closed-loop system with nonminimum phaseG4 in (12) is

tuned using ES. We sett0 = 30 s, T = 200 s, α = [0.05, 0.6, 0.2]T , γ = [2000, 10000, 2000]T ,

ω1 = ω2 = aπ (with α2 cos(ω2k) replaced byα2 sin(ω2k) in Figure 3), andω3 = a3π. Figure 7

shows that ES produces a step response similar to IFT; both ES and IFT yield no overshoot

and a smaller settling time than the ZN and IMC controllers. However, ES produces a slightly

larger initial control signal than IFT. Table 4 shows that an increased integral time improves the

system response.

COST FUNCTION COMPARISON

The cost function dictates the performance of the PID controller obtained from ES. It is

therefore important to choose a cost function that emphasizes the relevant performance aspects

such as, settling time, overshoot, or rise time. To illustrate the dependence of the optimal PID

parametersθ∗ on the cost function we use ES for plantG2(s) to minimize the ISE cost function

(1) with t0 = 0 and t0 = Tpeak as well as the cost functions:

IAE =
1

T

∫ T

0
|e(θ, t)|dt, (13)
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Figure 7. ES PID tuning ofG4 illustrated by (a) the evolution of the cost function and (b) the PID
parameters during ES tuning of the closed-loop system withG4(s). The lower plots present (c)
the output signal and (d) the control signal during step response experiments of the closed-loop
systems withG4(s) and PID controllers obtained using the four methods. ES reduces the cost
function in (a) by increasing the integral timeTi and derivative timeTd in (b), which produces
a more favorable step response similar to that found using IFT in (c).

ITAE =
1

T

∫ T

0
t|e(θ, t)|dt, (14)

ITSE =
1

T

∫ T

0
te2(θ, t)dt. (15)

Note that (14) and (15) involve a time-dependent weighting, which de-emphasizes the transient

portion of the response. Figure 8 shows that ISE witht0 = Tpeak produces a response with

the smallest overshoot and fastest settling time. ITAE and IAE perform slightly worse than ISE

with t0 = Tpeak, whereas ISE witht0 = 0 and ITSE are similar to ZN in terms of overshoot
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Figure 8. The effect of the cost function illustrated by the output signal (a) and the control signal
(b) during step response experiments of the closed-loop systems withG2(s) and PID controllers
obtained using ES with various cost functions. The use of different cost functions in ES yield
different step responses, with the Window cost function producing the best result.

and settling time. However, Figure 8 also indicates that using a cost function comprised of the

squared error (ISE and ITSE) versus the absolute error (IAE and ITAE) results in a decrease in

the time it takes the output of closed-loop system to initially reach the setpoint.

Because of the flexibility of ES the cost function can be modified on the fly, allowing

the PID parameters to be re-tuned whenever it is desirable to emphasize a different performance

aspect. However, stability of ES must be maintained for the new cost function, through the

choice of the ES parameters.

CONTROL SATURATION

Many applications of PID control must deal with actuator saturation. Actuator saturation

can result in integrator windup, in which the feedback loop becomes temporarily disconnected

since the controller output is no longer affected by the feedback signal. During saturation the

integral term grows while the error remains either positive or negative. Hence the integrator is
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Figure 9. Tracking anti-windup scheme. The approach reduces integrator windup by feeding
back the error signalet = uactual − urequested, which is the difference between the requested
control signalurequested and the actual control signaluactual.

slow to recover when the actuator desaturates.

To examine ES tuning in the presence of saturation, we apply ES with and without

the tracking anti-windup scheme [1] depicted in Figure 9, which modifies the integral control

signal using a feedback signal proportional toet the difference between the requested control

signalurequested and the actual control signaluactual produced by the actuator. The tracking time

constantTt for the case of ES is set toTt =
√

TiTd. For IMC this choice ofTt results in a slow

controller response, and thus we useTt = 18.

We compare ES and IMC in the presence of saturation with and without anti-windup.

Figure 10 shows that overshoot is a problem for the IMC controller, whereas ES increases the

integral time (see Table 5) to improve the performance of the controller. ES finds controller

parameters that perform almost as well as the systems with anti-windup. However, when the

actuator is not saturated, the ES and IMC controllers with anti-windup will likely provide a

better response than the ES controller without anti-windup.
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Figure 10. The effect of actuator saturation illustrated by the output signal (a) and the control
signal (b) during step response experiments of the closed-loop systems withG1(s), control
saturation of 1.6, and PID controllers obtained using IMC and ES both with and without anti-
windup. ES finds PID parameters that produce a step response with little overshoot even without
the aid of anti-windup and is comparable to IMC and ES with anti-windup.

Table 5. PID Parameters forG1 with saturation. ES without anti-windup increases the integral
time to decrease the effect of integral windup whereas ES with tracking can use a smaller integral
time because of the anti-windup scheme.

Tuning method K Ti Td

IMC 3.62 22.4 2.18
ES 3.61 47.6 1.81

ESaw 4.07 12.8 2.20

SELECTING PARAMETERS OF ES SCHEME

Implementation of ES requires the choice of several parameters namely, the perturbation

amplitudesαi, adaptation gainsγi, perturbation frequenciesωi, and h in the highpass filter.

However, it turns out that the minimizer found by ES is fairly insensitive to the ES parameters.

To investigate this sensitivity, we use ES to tune the closed-loop system withG2 in (10) while

varying α andγ. The parametersh andωi are chosen to beh = 0.5 andωi = 0.8iπ.

For the plantG2, Figure 11 shows the evolution of the cost function during tuning with
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Table 6. PID Parameters forG2 with different values ofα and γ. ES arrives at similar PID
parameters for reduced values of the perturbation amplitudeα and the adaptation gainγ.

ES tuning parameters K Ti Td

α, γ 1.01 31.5 7.16
α
2
, γ 1.00 31.1 7.60

α, γ
10

1.01 31.3 7.54
α
2
, γ

10
1.01 31.0 7.65

various ES parameters. Table 6 shows that ES yields almost identical PID parameters even

thoughα is varied by 50 percent andγ is reduced by an order of magnitude. However, the time

to convergence increases due to the reduced perturbation amplitudesαi and adaptation gainsγi.

The tradeoff between the speed of convergence and the domain of initial conditions that will

yield the minimizerθ∗ is quantified in [16], where the ability of ES to avoid getting trapped in

local minima, when its parameters are chosen appropriately, is demonstrated analytically.
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Figure 11. Sensitivity of ES toα andγ illustrated by the evolution of the cost function during
ES tuning of the PID parameters for the plantG2(s) with various values forα andγ. In each
case ES converges to a similar cost with slower convergence for reduced gains.
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COMPARISON OF TUNING M ETHODS

ES and IFT use the same cost function and thus obtain similar results. It is therefore

interesting to compare how these methods minimize the cost function. Both methods are non-

model-based and estimate the gradient of the cost function with respect to the controller

parameters. This gradient estimation is then used in a gradient search scheme to find a local

minimizer of the cost function. The difference lies in how these algorithms estimate the gradient.

IFT uses the signal information from three experiments including a special feedback experiment

and assumes that the system is linear time-invariant to determine the estimate of the gradient.

Although IFT is based on linear theory, the technique can be applied to nonlinear systems [17].

On the other hand, ES requires only one experiment per iterative gradient estimate and

its derivation does not assume that the system is linear. ES uses simple filters plus modulation

by sinusoidal signals to derive the gradient estimate. However, ES requires a choice of several

design parameters, whereas IFT requires that only the step size be specified.

While both ES and IFT are more difficult to implement than ZN and IMC, ES and IFT

can offer considerable improvement. ForG3 with multiple poles these benefits can be seen in

Figure 6, and for the nonminimum phase plantG4 in Figure 7. Additionally, ES is shown to

outperform IMC in the face of nonlinearities such as control saturation in Figure 10.

CONCLUSIONS

ES tunes PID controllers by minimizing a cost function that characterizes the desired

behavior of the closed-loop system. This tuning method is demonstrated on four typical plants
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and found to give parameters that yield performance better than or comparable to that of other

popular tuning methods. Additionally, ES is shown to produce favorable results in the presence of

actuator saturation. The ES method thus has an advantage over model-based PID tuning schemes

in applications that exhibit actuator saturation. However, since ES requires initial values of the

PID parameters the method can be viewed as a complement to another PID parameter design

method. Furthermore, the ES cost function can be chosen to reflect the desired performance

attributes.
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SIDEBAR: HOW EXTREMUM SEEKING WORKS

The first documented use of extremum seeking is Leblanc’s 1922 application to electric

railway systems [18]. In the 1950-60s, extremum seeking was widely studied and used in

applications in both Russia [19]–[24] and the West [25]–[28]. The ability of this technique to

force θ̂(k) to converge to a local minimizerθ∗ of J(θ) is the subject of stability proofs obtained in

the late 1990s [29]. Subsequently, ES has become a useful tool for real-time applications [30]–

[34] and an active area of theoretical research [12]. Here we give an intuitive argument that

explains the convergence of ES.

For simplicity we consider the single-parameter case in whichθ(k) and θ̂(k) are scalar

and only one probing signalα cos(ωk) is used (see Figure 3). We also assume a quadratic cost

function J(θ) of the form

J(θ) = f ∗ +
f
′′

2
(θ∗ − θ)2 ,

wheref
′′

is positive. Lettingθ̃
4
= θ∗ − θ̂, we can expandJ(θ) as

J ≈
(
f ∗ +

α2f
′′

4

)
+

α2f
′′

4
cos(2ωk)−

(
αf

′′
cos(ωk)

)
θ̃ ,

where a trigonometric identity is used to replacecos2(ωk). The termf
′′

2
θ̃2 is omitted since it is

quadratic inθ̃ and we focus on local analysis only. The role of the washout filterz−1
z+h

in Figure 3

is to filter out the dc component of the output signalJ(θ(k)). Thus,

z − 1

z + h
[J ] ≈ α2f

′′

4
cos(2ωk)−

(
αf

′′
cos(ωk)

)
θ̃ . (16)

Multiplying (16) by α cos(ωk) yields

α cos(ωk)
z − 1

z + h
[J ] ≈ −α2f

′′

2
θ̃ , (17)
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where trigonometric identities are used forcos(2ωk) cos(ωk) andcos2(ωk). Moreover, the higher-

frequency terms withcos(ωk), cos(2ωk), andcos(3ωk) are attenuated by the integrator1
z−1

and

thus omitted. Feeding the signal (17) into the integrator−γ
z−1

in Figure 3 results in

θ̃(k + 1) ≈
(

1− γα2f
′′

2

)
θ̃(k) .

Hence, the estimation error̃θ(k) decays exponentially provided the adaptation gainγ and the

probing amplitudeα are chosen such that the positive quantityγα2f
′′

2
is small. The complete

proof of stability presented in [35] is considerably more involved, and is based on two time

scale averaging [36] for the system

θ̃(k + 1) = θ̃k + γα cos(ωk)

(
e +

f
′′

2

(
θ̃ − α cos(ωk)

)2
)

, (18)

e(k + 1) = −he(k)− (1 + h)
f
′′

2

(
θ̃ − α cos(ωk)

)2
, (19)

where e = f ∗ − 1+h
z+h

[J ], with the assumption thatγ and α are small. The proof guarantees

exponential convergence ofJ(θ(k)) to f ∗ + O(α3).

Another intuitive point of view is to observe that the termf
′′
θ̃ in the signal (17) at the

output of the multiplier is the gradient (derivative) ofJ with respect tõθ for α = 0. Hence, the

role of the additive probing termcos(ωk) and the multiplicative term of the same form (along

with the filtering effects of the washout filter and the integrator) is to estimate the gradient of

J , which is then fed into the integrator, employing classical gradient-based optimization. While

gradient-based methods usually require a model to determine the gradient, ES estimates the

gradient in a non-model based manner.

An interesting aspect of ES is the role of the signalcos(ωk), which mimics amplitude

modulation (AM) in analog communications. The similarity is not obvious since ES employs
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one addition and one multiplication block rather than two multipliers. The addition block is

used because the nonlinearityJ(θ) provides the effect of multiplication since its quadratic part

generates a product ofcos(ωk) and θ̃, which carries the gradient information discussed above.

The modulation, demodulation, and filtering serves to extract the gradient informationf
′′
θ̃(k)

from the signalJ(θ(k)).
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