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Abstract

Several indirect approaches for obtaining reaction cross sections are briefly

reviewed. The Surrogate Nuclear Reactions method, which aims at determin-

ing cross sections for compound-nuclear reactions, is discussed in some detail.

The validity of the Weisskopf-Ewing approximation in the Surrogate approach

is studied for the example of neutron-induced fission of an actinide nucleus.

1 Introduction

Nuclear reaction data play an important role in nuclear physics applications. Cross
sections for reactions of neutrons and light, charged particles with target nuclei
across the isotopic chart, taking place at energies from several keV to tens of MeV,
are required for nuclear astrophysics and other applications. Unfortunately, for a
large number of reactions the relevant data cannot be directly measured in the
laboratory or easily determined by calculations.

Direct measurements may encounter a variety of difficulties: The energy regime
relevant for a particular application is often inaccessible – cross sections for charged-
particle reactions, e.g., become vanishingly small as the relative energy of the col-
liding nuclei decreases. For astrophysical purposes, such as descriptions of stellar
environments and evolution, reaction rates at energies below 100 keV are needed.
Furthermore, many important reactions involve unstable nuclei which are too diffi-
cult to produce with currently available techniques, too short-lived to serve as tar-
gets in present-day set-ups, or highly radioactive. Producing all relevant isotopes
will remain challenging even for radioactive beam facilities. In addition, electron
screening affects nuclear reaction rates in laboratory experiments as well as in as-
trophysical environments. To date the relevant processes are not fully understood.

Cross section calculations are highly nontrivial since they often require a thor-
ough understanding of both direct and statistical reaction mechanisms (as well as
their interplay) and a detailed knowledge of the nuclear structure involved. Nuclear-
structure models can provide only limited information and very little is known about
important quantities such as optical-model potentials or spectroscopic factors for
nuclei outside the valley of stability.

In order to overcome these limitations, several innovative indirect methods have
been proposed in recent years, all of which rely on a combination of theory and
experiment for success. This contribution will give a brief outline of four indi-
rect methods for the determination of reaction cross sections: the ANC (Asymp-
totic Normalization Coefficient) method, Coulomb Dissociation, the Trojan-Horse
method, and the Surrogate Nuclear Reaction technique. The primary focus here will
be on the Surrogate method, which aims at determining reaction cross sections for
compound-nuclear reactions.
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2 Some indirect approaches to nuclear reactions

2.1 The Asymptotic Normalization Constant (ANC) method

The ANC method has been explored for low-energy radiative-capture reactions
which are dominated by processes occuring far outside the nuclear volume [1]. The
cross section for the desired reaction, A(a, γ)B, is determined by the integral I =∫

drIB
Aa(r)Ô(r)φscatt(r), where φscatt(r) is the scattering function associated with

the a+A channel, Ô(r) is the relevant transition operator (usually of E1, E2, or M1
type), and IB

Aa(r) is the radial function corresponding to the projection of the state
B onto the channel a + A. For small r values, this overlap depends on the details
of the many-body wave functions involved, while its shape is well-known outside
the nuclear volume: IB

Aa(r) → CB
AaW (r)/r, where W (r) is a Whittaker function

and CB
Aa is the so-called asymptotic normalization constant, or ANC. For reactions

that occur predominantly outside the nucleus, the short-range behavior of IB
Aa(r)

does not need to be known. The cross section can be calculated once the ANC
CB

Aa is determined. This can be accomplished by measuring the cross section for a
peripheral transfer reaction A(d, b)B, with d = a + b and B = a + A, that involves
the same asymptotic overlap norm CB

Aa, as well as a known ANC CD
ab.

Ideally, several different reactions are measured to reliably determine the desired
ANC and thus the desired cross section. The ANC method has been used to de-
termine, e.g., the cross sections for 16O(p,γ)17F via 16O(3He,d)17F [2], 7Be(p,γ)8B
via 10B(7Be,8B)9Be and 14N(7Be,8B)13C [3]. Applications of the ANC method are
restricted to low-energy radiative capture reactions and the measured transfer re-
actions have to be peripheral. The associated transfer reaction calculations require
optical-model potentials, the availability and reliability of which limits the number
of reactions that can be considered and the accuracy to which the desired cross
sections can be determined [4]. Major advantages of the approach include the large
cross sections that are obtained in the transfer measurements, the small equivalent
capture energies that can be reached, and the fact that the method can be used
(in inverse kinematics) to determine cross sections for capture on unstable nuclei.
Moreover, it has been shown recently that an approximate relationship between
ANCs of mirror reactions can be employed to predict a cross section by measuring
the ANC of the associated mirror reaction [5].

2.2 Coulomb Dissociation

Coulomb dissociation has been used to extract cross sections for radiative-capture
reactions, A(a, γ)B, by studying the time-reversed breakup reaction in which the
Coulomb field of a highly-charged target provides a virtual photon that is absorbed
by the projectile, B. Due to the high flux of virtual photons provided by the tar-
get nucleus, the cross section of the breakup, X(B, Aa)X , is much larger than the
capture cross section and can be related to the latter via the principle of detailed
balance [6]. Coulomb dissociation is a simple and powerful reaction mechanism.
Since the electromagnetic interaction is well known, valuable nuclear structure and
reaction information can be obtained from experiments in which nuclear effects
are excluded. The suppression of nuclear effects can be accomplished by selecting
bombarding energies below the Coulomb barrier or, if higher energies are desired,
by observing the breakup products at small forward scattering angles which (clas-
sically) correspond to large impact parameters. Coulomb dissociation has been
employed, e.g., to determine the 7Be(p,γ)8B and 13N(p,γ)14O cross sections from
the breakup of 8B [7] and 14O [8], respectively.

Applications of the Coulomb dissociation method are restricted to providing ra-
diative capture reaction cross sections on a nucleus in its ground state. Furthermore,
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the relative strength of the electromagnetic multipoles are different in the radiative
capture and the breakup processes; low-energy capture proceeds predominantly by
E1 transitions, while higher-order contributions can play a significant role in the
dissociation. Since the principle of detailed balance applies separately for each elec-
tromagnetic multipole order, additional measurements or calculations are required
to extract the relevant multipole order. Additional complications, such nuclear con-
tributions to the breakup and final-state effects, which can often be minimized by
selecting a particular experimental set-up, require further studies.

2.3 The Trojan-Horse method

The Trojan-Horse method [9] provides a mechanism for circumventing the Coulomb
suppression in low-energy charged-particle reactions, x + A → c + C, by selecting a
reaction p+A → s+c+C with a composite projectile consisting of the desired pro-
jectile and an additional fragment, p = x + s. The kinematic conditions are chosen
such that the fragment s can be considered a spectator to the reaction between x
and A. Employing a DWBA approximation in the description of the Trojan-Horse
reaction and replacing the scattering wave function for the c + C system by its
asymptotic form for radii larger than a suitably chosen cutoff radius Rc and by
zero for r < Rc (“surface approximation”) makes it possible to relate the measured
three-body cross section to the desired two-body cross section. The method allows
one to achieve very small relative kinetic energies between the “desired” projectile
x and the target A – the three-body (Trojan-Horse) cross section remains finite
even for vanishingly small relative energies between x and A. Not only does the
Trojan-Horse approach avoid the problem of Coulomb suppression that is present in
low-energy charged-particle reactions, it can also be expected that electron screen-
ing effects are negligible in this approach. This makes it, in principle, possible to
obtain information on the screening effects by comparing the desired cross section
extracted from a Trojan-Horse experiment to a directly measured cross section; the
difference between the cross sections are attributed to screening effects [10].

The exact relationship between the measured three-body and desired two-body
cross sections is complicated and requires several approximations. In typical appli-
cations of the method, only the energy dependence of the cross section is obtained
and the overall scale is normalized to direct-measurement data at higher energies [9].
For testing purposes it is useful to determine a particular desired cross section with
the help of several different Trojan-Horse measurements. Since Trojan-Horse exper-
iments can be carried out in inverse kinematics, it is also possible to study reactions
involving unstable targets.

The Trojan-Horse method can be applied to a variety of nuclear reactions; unlike
the ANC method or Coulomb dissociation, it is not limited to radiative-capture
reactions. For example, the astrophysically relevant cross section for 7Li(p,α)α has
been extracted from a measurement of 2H(7Li,αα′)n [10], the 3He(d,p)4He cross
section was obtained from a 6Li(3He,pα)4He experiment [11], and the 11B(p,α)8Be
reaction was studied via 2H(11B,8Bα)n [12]. The Trojan-Horse method was also
applied to determine the low-energy nuclear scattering cross section 12C(α, α)12C
from the 6Li(12C,12Cα)d reaction [13].

3 The Surrogate Nuclear Reactions approach

3.1 The full Surrogate treatment

The Surrogate nuclear reaction technique is an indirect method for determining the
cross section for reactions a + A → B∗ → c + C that proceed through a compound
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nucleus (B∗), a highly excited configuration in statistical equilibrium (see Figure 1).
Formation and decay of a compound nucleus (CN) are, by definition, independent
of each other (for each angular momentum and parity value) and the cross section
for the “desired” reaction can be expressed as

σαχ(Ea) =
∑

J,π

σCN
α (Eex, J, π) GCN

χ (Eex, J, π) . (1)

Here α denotes the entrance channel a+A and χ represents the relevant exit channel
c + C. The excitation energy of the compound nucleus, Eex, is related to the pro-
jectile energy Ea via the energy needed for separating a from B: Ea = Eex−Sa(B).
The formation cross section σCN

α = σ(a+A → B∗) can usually be calculated reason-
ably well by using optical potentials, while the theoretical decay probabilities GCN

χ

for the different channels χ are often quite uncertain. The objective of the Surrogate
method is to determine or constrain these decay probabilities experimentally.

Aa

“Desired” reaction

D

“Surrogate” reaction

d

b

B*

C

c

Figure 1: Surrogate reaction mechanism. The first step of the desired reaction is re-
placed by an alternative (“Surrogate”) reaction that populates the same compound
nucleus. The subsequent decay of the compound nucleus into the relevant channel
is measured and used to extract the desired cross section.

In a Surrogate experiment, the compound nucleus B∗ is produced via an al-
ternative (“Surrogate”), direct reaction d + D → b + B∗ and the decay of B∗ is
observed in coincidence with the outgoing particle b. The probability for forming
B∗ in the Surrogate reaction (with energy Eex, angular momentum J , and parity
π) is FCN

δ (Eex, J, π), where δ denotes the entrance channel d+D. The quantity

Pδχ(Eex) =
∑

J,π

FCN
δ (Eex, J, π) GCN

χ (Eex, J, π) , (2)

which gives the probability that the compound nucleus B∗ was formed with en-
ergy Eex and decayed into channel χ, can be obtained experimentally. The direct-
reaction probabilities FCN

δ (Eex, J, π) have to be determined theoretically, so that
the branching ratios GCN

χ (Eex, J, π) can be extracted from the measurements. In

practice, the decay of the compound nucleus is modeled and the GCN
χ (Eex, J, π) are

obtained by fitting the calculations to reproduce the measured decay probabilities
and subsequently inserted in Eq. (1) to yield the desired cross section.

A full treatment of a Surrogate experiment is challenging: It involves taking into
account differences in the angular momentum J and parity π distributions between
the compound nuclei produced in the desired and Surrogate reactions, as well as
their effect on the decay of the compound nucleus. Predicting the Jπ distribution
resulting from a Surrogate reaction is a nontrivial task since a proper treatment of
direct reactions leading to highly excited states in the intermediate nucleus B in-
volves a description of particle transfers, and inelastic scattering, to unbound states.
Modeling the compound-nuclear decay requires a proper description of structural
properties of the reaction products (level densities, branching ratios, internal con-
version rates), plus a fission model for cases which involve that decay mode. Fur-
thermore, applications of the Surrogate technique outside the valley of stability will
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require microscopic approaches to optical models and level-density prescriptions
which can be extrapolated to the region of interest. The experimental determina-
tion of the probabilities Pδχ(E) requires the number of δ−χ coincidences between
the outgoing particle b and the relevant reaction channel χ = c + C, as well as
the total number of Surrogate reaction events (i.e. events which produce B∗ in the
Surrogate reaction). This, in turn, implies that the effects of target contaminants
need to be minimized and that the decay channel χ can be clearly identified (e.g.,
from fission fragments or characteristic gamma rays). Since the Surrogate approach
assumes that formation and decay of the intermediate nuclear state are independent
of each other (apart from conserving constants of motion), it becomes important
to estimate the probability that an equilibrated intermediate (i.e. compound) nu-
cleus is actually formed in a particular reaction. The Surrogate method needs to
be carefully tested; cross sections extracted from Surrogate benchmark experiments
need to be compared to direct measurements and to results from other Surrogate
experiments which aim at determining the same “desired” reaction.

The Surrogate method is very general and can in principle be employed to de-
termine cross sections for all types of compound-nucleus reactions on a large variety
of nuclei; its greatest potential value lies in applications to reactions on unstable
isotopes. To date, most applications have focused on determining cross sections for
neutron-induced fission for various actinides [15, 16, 17]. Early applications used
(t,pf), (3He,d), and (3He,t) Surrogate reactions to determine (n,f) cross sections
for Th, Pa, U, Pu, Np, Pu, Am, Cm, Bk, and Es [15]. More recently, Petit et al.
studied (3He,x)232Th, with x = p, d, t, α, and obtained fission cross sections for
230Th, 231Pa, and 233Pa [16]. With few exceptions [17], the majority of theses stud-
ies makes use of the Weisskopf-Ewing approximation to the full Surrogate approach.
This approximation is considered in the next subsection.

3.2 The Weisskopf-Ewing approximation

The Hauser-Feshbach expression for the desired cross sections, Eq.1, conserves total
angular momentum J and parity π. Under certain conditions the branching ratios
GCN

χ (Eex, J, π) can be treated as independent of J and π and the cross section
simplifies to

σWE
αχ (Ea) = σCN

α (Eex) GCN
χ (Eex) (3)

where σCN
α (Eex) =

∑
JΠ σCN

α (Eex, J, π) is the reaction cross section describing the
formation of the compound nucleus at energy Eex and GCN

χ (Eex) denotes the Jπ-
independent branching ratio for the exit channel χ. This is the Weisskopf-Ewing
limit of the Hauser-Feshbach theory [14]. It provides a simple and powerful ap-
proximate way of calculating cross sections for compound-nucleus reactions. In the
context of Surrogate reactions, it greatly simplifies the application of the method: It
becomes straightforward to obtain the Jπ-independent branching ratios GCN

χ (Eex)

from measurements of Pδχ(Eex) [= GCN
χ (Eex), since

∑
JΠ FCN

δ (Eex, J, π) = 1] and
to calculate the desired reaction cross section. Calculating the direct-reaction prob-
abilities FCN

δ (Eex, J, π) and modeling the decay of the compound nucleus are no
longer required.

Most applications of the Surrogate method so far have been based on the as-
sumption that the Weisskopf-Ewing limit is valid for the cases of interest. Here we
present a test of this assumption for the 235U(n,f) reaction. While the branching
ratios GCN

χ=fission(Eex, J, π) cannot be directly measured in a fission experiment,
they can be extracted from a calculation of the (n,f) cross section and their Jπ-
dependence can be studied. To this end, we simulated a nuclear reaction. We ex-
tracted the branching ratios from a full Hauser-Feshbach calculation of the 235U(n,f)
reaction that was calibrated to an evaluation of experimental data. The model
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used a deformed optical potential and the level schemes, level densities, gamma
strength functions, fission-model parameters, and pre-equilibrium parameters were
adjusted to reproduce the available data on n-induced fission for energies from En=
0 to 20 MeV. The result of the fit is shown in Figure 2a. We took the extracted
GCN

fission(Eex, J, π) values to represent the “true” branching ratios. Figure 2b gives

the results for the 235U(n,f) reaction for fission proceeding through positive parity
states in the compound nucleus 236U. We observe that the branching ratios exhibit a
significant Jπ dependence. In particular, for low neutron energies, En = 0−5 MeV
(En = Eex(236U) − Sn(236U), where Sn is the neutron separation energy in 236U),
the GCN

fission(Eex, J, π) differ in both their energy dependence and their magnitude
for different Jπ values. With increasing energy, the differences decrease, although
the discrepancies become more pronounced near the thresholds for second-chance
and third-chance fission. The branching ratios for negative parity states (not shown)
are very similar. It is clear that for low energies (below 3 MeV) the Weisskopf-Ewing
approach is not a good approximation, while the energy regime above 5 MeV merits
further study.

Figure 2: a) Calculated 235U(n,f) cross section, calibrated to experimental data
(“Eval”). Shown are the contribution to the total fission cross section from 1st,
2nd, and 3rd chance fission. b) Calculated branching ratios GCN

fission(Eex, J, π) for

fission of 236U. Results are shown for Jπ = 0+, 5+, 10+, 15+, 20+.

These results illustrate an important point: It is not a priori clear whether the
Weisskopf-Ewing limit applies to a particular reaction in a given energy regime. E.g.,
restricting one’s consideration to reactions induced by neutrons with kinetic energies
above several MeV does not guarantee the validity of the Weisskopf-Ewing limit. If
the states that are populated in the compound nucleus before the decay have large
angular momenta, the condition J . σcutoff required for the Weisskopf-Ewing
limit to be a good approximation to Hauser-Feshbach [14] is no longer satisfied
and the branching ratios may depend on Jπ . Furthermore, the Weisskopf-Ewing
assumption breaks down near the threshold for second-chance and, to a lesser degree,
third-chance fission.

The quantity Pδχ(E), which is measured in a Surrogate experiment, can be cal-
culated in our simulation: Pδ,fission(Eex) =

∑
J,π FCN

δ (Eex, J, π) GCN
fission(Eex, J, π),

where the GCN
fission are the extracted fission branching ratios and FCN

δ (Eex, J, π) de-
notes the probability for populating compound nuclear states in the relevant Surro-
gate reaction. For the purpose of a sensitivity study, we chose the three probability
distributions shown in Figure 3a. Calculating the desired fission cross section via the
formula σWE

(n,f)(Eex) = σCN
n+target(Eex) GCN

fission(Eex) then corresponds to a Surrogate
analysis in the Weisskopf-Ewing approximation. The compound-nucleus formation
cross section σCN

n+target(Eex) was taken to be the one that was used for the fit shown
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in Figure 2a.
Results for the 235U(n,f) cross section obtained from the simulated Surrogate

experiment are compared to each other and to the “reference” cross section in
Figure 3. We observe that the inferred cross sections are too large, by about 40%
for energies above 5 MeV and up to a factor of three for smaller energies. The
influence of the spin-parity distribution in the compound nucleus on the extracted
cross sections is significant; again, this reflects the fact that the Weisskopf-Ewing
approximation is deficient at low energies (below about 3 MeV) when not enough
channels are open and at higher energies when the spin-parity distribution extends
to values significantly higher than the spin-cutoff parameter in the level densities
in the decay channels.

Figure 3: a) Distributions of total angular momentum for the compound nucleus
considered. The mean angular momentum is 〈J〉 = 7.03, 10.0, and 12.97 for dis-
tributions a, b, and c, respectively; positive and negative parities are taken to
be equally probable. The distributions were chosen solely to perform a sensitiv-
ity study. b) Weisskopf-Ewing estimates of the 235U(n,f) cross section, using the
distribution of angular momenta shown in Figure 3a. The crosses represent the
“reference” 235U(n,f) cross section from the fit.

Some recent Surrogate experiments [18] have employed a “Surrogate Ratio” ap-
proach: the experiments measured the ratio R = σα1,χ1

/σα2,χ2
of the cross sections

of two compound-nuclear reactions, ai + Ai → B∗

i → ci + Ci (i = 1, 2), using the
Surrogate method under the assumption that the Weisskopf-Ewing approximation
is valid. An independent determination of the cross section σα2,χ2

was then used to
deduce σα1,χ1

. A simulation analogous to the one employed above indicates that this
method has some advantages (and might lead to some improvements) over simply
using the Weisskopf-Ewing approximation in the manner discussed above [19].

4 Summary

We have briefly reviewed several indirect approaches that have recently been em-
ployed to obtain cross sections for reactions that are difficult to measure directly.
The primary focus of the discussion has been on the Surrogate Nuclear Reaction
method. The sample calculations presented here indicate that further work is re-
quired to move from earlier, approximate implementations of the method to a more
complete treatment. Both theoretical work and benchmark experiments are needed
in order to assess the range of its applicability.

This work was performed under the auspices of the U.S. Department of Energy
by the University of California, Lawrence Livermore National Laboratory (LLNL)
under contract No. W-7405-Eng-48. Partial funding was provided by the Laboratory
Directed Research and Development Program at LLNL under project 04-ERD-057.
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