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The complete exact solution of the T = 1 neutron-proton pairing Hamiltonian is presented in
the context of the SO(5) Richardson-Gaudin model with non-degenerate single-particle levels and
including isospin-symmetry breaking terms. The power of the method is illustrated with a numerical
calculation for 64Ge for a pf + g9/2 model space which is out of reach of modern shell-model codes.
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Exactly solvable models (ESM) provide important in-
sights into the structure of many-body quantum systems.
The two main advantages of ESMs are: (1) They can de-
scribe in an analytical or exact numerical way a wide
variety of elementary phenomena. (2) They can be and
have been used as a testing ground for various many-body
approaches.

A particular class of ESMs, extensively used in nu-
clear physics, are the dynamical-symmetry models. In
this case the Hamiltonian can be expressed in terms of
Casimir operators of a chain of nested algebras. An ex-
ample often used to introduce nuclear superconductivity
(see e.g. Ref. [1]) is the rank-1 (Lie) algebra SU(2). Ex-
amples of dynamical-symmetry models associated with a
rank-2 algebra are Elliott’s SU(3) model of nuclear defor-
mation [2] and the SO(5) model of T = 1 isovector pairing
between neutrons and protons [3] which has found many
applications in nuclei (see e.g. Ref. [4]).

The concept of quantum integrability, closely linked
with exact solvability, goes beyond the limits of the
dynamical-symmetry approach. A quantum system is
integrable if there exist as many commuting Hermitian
operators (integrals of motion) as quantum degrees of
freedom [5]. The set of Casimir operators of a chain of
nested algebras satisfies this condition.

Dynamical-symmetry models are usually defined for
degenerate single-particle levels. Lifting this degeneracy
breaks the dynamical symmetry but may still preserve
integrability. The pairing model with non-degenerate
single-particle levels, of which an exact solution was
found by Richardson in the sixties [6], represents an ex-
ample of an ESM with such characteristics. Recently,
more general exactly solvable pairing models, both for
fermions and for bosons, called Richardson-Gaudin (RG)
models, have been proposed [7, 8].

The RG pairing models are based on rank-1 algebras:
SU(2) for fermions and SU(1,1) for bosons. In this Letter
we carry out the first step in extending the RG models
to higher-rank algebras by considering a RG model based
on the rank-2 algebra SO(5). The model Hamiltonian de-
scribes a two-component system consisting of neutrons
and protons interacting through an isovector (T = 1)
pairing force and distributed over non-degenerate orbits.

This neutron-proton (np) pairing Hamiltonian with non-
degenerate orbits has been studied by Richardson [9] who
proposed an exact solution. However, it was shown sub-
sequently that Richardson’s solution is incorrect for more
than two nucleon pairs [10] by explicitly solving the case
of three-nucleon pairs. Independently, Links et al. de-
rived an exact solution for the isospin invariant SO(5)
model by making use of the quantum inverse scattering
method [12].

We present here the most general exact solution of the
RG SO(5) model including isospin symmetry breaking
terms and for states with arbitray seniority. In addi-
tion to the construction of the complete set of integrals
of motion from which more general exactly solvable pn-
pairing Hamiltonians can be derived, we present here the
first numerical exact solution of the SO(5) RG model for
64Ge in a Hilbert space built from the pf +g9/2 shells, of
which the dimension goes well beyond the limits of mod-
ern shell-model codes based on exact diagonalization.

SO(5) has also been proposed as the symmetry under-
lying high-Tc superconductivity [13]. The exactly solv-
able RG model discussed in this Letter may conceiv-
ably be used to generalize SO(5) condensed-matter mod-
els [14] by the explicit addition of non-degenerate single-
particle symmetry-breaking terms. Other possible appli-
cations might be found in polarized ultracold Fermi gases
with p-wave pairing interactions [15].

We begin by introducing the 10 generators of the
SO(5) algebra in a representation well suited for nu-
clear physics problems. Let us define first the three
T = 1 pair-creation operators: b̂†−1,i = n̂†i n̂

†
ı̄ , b̂†0,i =

(n̂†i p̂
†
ı̄ + p̂†i n̂

†
ı̄ )/
√

2, and b̂†+1,i = p̂†i p̂
†
ı̄ , where n and p re-

fer to neutrons and protons, respectively, and i labels a
single-particle basis (with ı̄ its time-reversed state) which
may be associated with the spherical shell-model basis
i ≡ jm or with an axially-symmetric deformed basis
i ≡ αm. The three pair-annihilation operators are b̂−1,i,
b̂0,i, and b̂+1,i. The three components of the isospin op-
erator [T̂+,i = (p̂†i n̂i + p̂†ı̄ n̂ı̄)/

√
2, T̂0,i = (p̂†i p̂i + p̂†ı̄ p̂ı̄)/2−

(n̂†i n̂i + n̂†ı̄ n̂ı̄)/2, and T̂−,i = (n̂†i p̂i + n̂†ı̄ p̂ı̄)/
√

2] close the
SUT (2) subalgebra of SO(5). These 9 operators together
with the number operator N̂i = p̂†i p̂i + p̂†ı̄ p̂ı̄ + n̂†i n̂i + n̂†ı̄ n̂ı̄
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define the SO(5) algebra.
For a system with L single-particle states i = 1, ..., L

there are L integrals of motion:

R̂i = (2 + ∆)Ĥi + ∆T̂0,i + 2g

L∑

i′( 6=i)=1

1
zi − zi′

(1)

×
[∑

µ

(
b̂†µ,ib̂µ,i′ + b̂†µ,i′ b̂µ,i

)
+ T̂i · T̂i′ + ĤiĤi′

]
,

where Ĥi = N̂i/2 − 1. The expression (1) follows from
the integrals of motion valid for any semi-simple alge-
bra of arbitrary rank [11]. Since SO(5) is of rank 2, its
Cartan subalgebra contains two elements namely Ĥi and
T̂0,i in the chosen basis which therefore appear linearly
in (1). The set of L parameters zi together with the
two constants g and ∆ can be freely chosen and it is
straightforward to check that the integrability condition
[R̂i, R̂j ] = 0 is valid for any choice of the L + 2 parame-
ters. A simplified version of (1) was previously derived
using the algebraic Bethe ansatz [12].

The eigenvalues of the integrals of motion are

ri = 2g

L∑

i′( 6=i)=1

(
vi

2 − 1
) ( vi′

2 − 1
)

+ titi′

zi − zi′
− g

M+T0+t∑

β=1

2ti
zi − ωβ

+ g

M∑
α=1

vi + 2ti − 2
zi − eα

+
[
(2 + ∆)

(vi

2
− 1

)
−∆ti

]
, (2)

where eα and ωβ are solutions of the equations

1
g

=
1
2

L∑

i=1

vi + 2ti − 2
zi − eα

+
M∑

α′(6=α)=1

2
eα′ − eα

−
M+T0+t∑

β=1

1
ωβ − eα

, (3)

∆
g

=
M+T0+t∑

β′( 6=β)=1

2
ωβ′ − ωβ

−
M∑

α=1

2
eα − ωβ

−
L∑

i=1

2ti
zi − ωβ

.

The meaning of the quantum numbers appearing in (2)
and (3) is as follows: vi is the seniority of each i level,
i.e. the number of fermions not paired in time-reversed
states with isospin T = 1, ti is the isospin of the unpaired
fermions (this quantum number is often called reduced
isospin [17]), t =

∑
i ti, M is the number of T = 1 time-

reversed pairs, and T0 is the z component of the total
isospin, i.e. the eigenvalue of the operator T̂0 =

∑
i T̂0,i.

The total number of nucleons is N = Np + Nn = 2M +∑
i vi whereas their difference is Np − Nn = 2T0. The

quantum numbers M , T0, vi, and ti are conserved; T is
also conserved if ∆ = 0.

Although any function of the R̂i can be used as an in-
tegrable Hamiltonian, the linear combination

∑L
i=1 ziR̂i

yields simple expressions for the np-pairing Hamiltonian

and its corresponding eigenvalues:

Ĥ =
1
2

L∑

i=1

ziR̂i + gĈ (4)

=
∑

j

εj

(
N̂j + ∆N̂p,j

)
+

g

2
T̂ · T̂ + g

∑

µjmj′m′
b̂†µ,jmb̂µ,j′m′ ,

where Ĉ is a constant operator depending on the con-
served quantities. We have introduced the variables
εj = zj/2 and specialized to a spherical basis i ≡ jm.
The second term on the r.h.s. of (1) breaks the isospin
symmetry. For ∆ 6= 0 the operator T̂ 2 does not com-
mute with the Hamiltonian (4) and, consequently, T is
not a good quantum number but T0 is still a conserved
quantity. The same linear combination of the ri and the
use of the Richardson equations (3), yield the eigenvalues
of (4):

E =
M∑

α=1

eα +
∆
2

M+T0+t∑

β=1

wβ +
∑

j

εj

[vj

2
(2 + ∆)−∆tj

]

+
g

2
T0(T0 − 1). (5)

Each solution of the equations (3) gives an eigenstate
of the np-pairing Hamiltonian. The spectral parameters
eα are interpreted as pair energies as in the case of SU(2)
pairing. However, due to the larger rank of SO(5), a
new set of spectral parameters wβ appears in the equa-
tions (3). These new parameters are associated with the
SUT (2) isospin subalgebra and there are M + T0 + t of
them. In the limit ∆ = 0 the number of finite wβ pa-
rameters reduces to M + t − T for each possible isospin
T . The Bethe ansatz for the SO(5) eigenstates of the RG
model is a product wave function [18]:

(
M∏

α=1

b̂†−1(eα)

)
M+T0+t∏

β=1

(
T̂+(wβ)−

M∑
α=1

Î+,α

wβ − eα

)
|Λ〉,

(6)
where the spectral dependence of the operators is

T̂+(wβ) =
∑

i

T̂+,i

2εi − wβ
, b̂†µ(eα) =

∑

i

b̂†µ,i

2εi − eα
, (7)

and Î+,α is a raising operator for b̂†µ(eα): b̂†µ(eα)Î+,α =
b̂†µ+1(eα) for µ = −1, 0, b̂†+1(eα)Î+,α = 0, and |Λ〉 is a
lowest-weight state defined by b̂µ,i|Λ〉 = T̂−,i|Λ〉 = 0. To
show the behavior of the spectral parameters eα and ωβ

as a function of the isospin-breaking term ∆, we plot in
Fig. 1 some selected solutions of the Richardson equa-
tions (3) for a system of two neutrons and two protons in
two shells (j0 = 1/2 and j1 = 3/2) within the seniority-0
subspace (M = 2, T0 = 0, ti = vi = 0).

For ∆ = 0 there are two finite ωβ complex conjugate
parameters for T = 0 while the two pair energies are real
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FIG. 1: Pair energies eα (dashed lines) and spectral parame-
ters ωβ (solid lines) as a function of the parameter ∆ for three
different states of a 2n-2p system with two shells (j0 = 1/2
and j1 = 3/2) in the seniority-0 subspace. The label T refers
to the isospin in the limit ∆ = 0. The figure shows the lowest-
energy states of the Hamiltonian (4) for each T with energies
plotted in the bottom-right panel. Since the spectral parame-
ters of the T = 1 state are real, their imaginary part is not
shown. The interaction strength and single-particle energies
are g = −1, ε0 = 0, and ε1 = 1.

and negative, for T = 1 there is one real, finite ωβ and
two real pair energies eα, and, finally, the T = 2 case re-
duces to SU(2) for like particles with two eα parameters
forming a complex conjugate pair. For finite ∆ there is
isospin mixing and the number of finite parameters ωβ is
always two. Figure 1 thus confirms that the number of fi-
nite ωβ spectral parameters reduces from M = 2 to M−T
when ∆ → 0. For T = 1 one of the real ωβ goes to −∞ in
this limit, vanishing from the Richardson equations (3)
but giving a finite contribution to the Hamiltonian eigen-
values (4) [16]. Analogously, in the T = 2 case the two
ω parameters tend to ∞ in the ∆ = 0 limit. Also shown
are the energies of the three eigenstates of the np-pairing
Hamiltonian (4). We emphasize that, while these are the
eigenvalues of a particular Hamiltonian, the spectral pa-
rameters completely define the eigenfunction (6) of the L

integrals of motion (1) from which Ĥ is constructed and
their corresponding eigenvalues (2).

We now turn to the discussion of a numerical calcu-
lation for 64Ge. We consider a model space that is well
beyond modern shell-model capabilities based on exact
diagonalization: 12 valence neutrons and 12 valence pro-
tons with a 40Ca core. The adopted single-particle ener-
gies are (in MeV) εf7/2 = 0.00, εp3/2 = 6.00, εf5/2 = 6.25,
εp1/2 = 7.1, and εg9/2 = 9.60, and two pairing strengths,
g = −0.05 (weak) and −0.5 (strong), are considered.
We assume isospin symmetry (∆ = 0) and consider the
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FIG. 2: Complex-plane representation of the pair energies eα

and spectral parameters ωβ for the lowest-energy states with
isospin T = 0, 1, 2 in 64Ge. The left panel corresponds to weak
coupling g = −0.05 and the right panel to strong coupling
g = −0.5. The squares represent the three lowest single-
particle energies (2εf7/2 = 0.00, 2εp3/2 = 12, 2εf5/2 = 12.5),
the black circles are the pair energies eα, and the grey circles
are the parameters ωβ . All energies are in MeV.

seniority-0 subspace.
Results for the lowest T = 0, 1, and 2 states are shown

in Fig. 2. The T = 0 solution corresponds to the ground
state while the T = 1 and T = 2 solutions are excited
states in 64Ge. As in SU(2), the different configurations
can be classified in the weak-coupling limit. At weak
coupling (g → 0) eight pairs occupy the f7/2 level and
four pairs are in the p3/2 level for the state with T = 0.
This is reflected in the upper left panel of figure 2 where
8 pair energies appear close to 2εf7/2 and 4 pair energies
are close to 2εp3/2 making the corresponding terms in (7)
dominant. Due to the Pauli principle, this configuration
is not allowed for a state with T = 1 and, correspond-
ingly, one pair energy is close to 2εf5/2 . In all cases the
wβ parameters are intertwined with the pair energies eα.
The number of wβ parameters (M−T ), together with the
initial configuration at weak coupling, defines each eigen-
state of the np-pairing Hamiltonian. As |g| increases,
the eα and wβ parameters expand in the complex plain.
The solutions are subject to numerical instabilities due
to singularities arising when a real pair energy eα crosses
a single-particle energy or when real eα and wβ parame-
ters cross. An example of the first class of crossings can
be observed in Fig. 2 for T = 2 where the pair energy
above the p3/2 level at weak coupling goes down with
increasing g and crosses the p3/2 single-particle energy.
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FIG. 3: Eigenenergies and occupation probablities of single-
particle levels of the T = 0, 1, and 2 states in 64Ge as a
function of the pairing strength g.

The T = 1 case shows an exchange of positions on the
real axis of a pair energy eα and a wβ parameter as an ex-
ample of the second class of singularities. The first class
of singularities was already present in SU(2) pairing and
precluded the practical use of Richardson’s solution for
a long time. Recently, a new method to overcome this
numerical problem was proposed [19]. We believe that
the same procedure can be used to treat the second class
of singularities as well, allowing the exact solution of the
SO(5) model for very large systems.

As a further illustration of the method we show in
Fig. 3 the eigenenergies and the occupation probabli-
ties of single-particle levels as a function the pairing
strength. The occupation probabilities can be obtained
making use of Hellmann-Feynman theorem which ex-
presses them in terms of derivatives of the eigenvalues
of the integrals of motion ri as 〈Np,i〉 = 1 + ∂ri

∂∆ , and
〈Nn,i〉 = ri − g ∂ri

∂g − (1 + ∆)
(
1 + ∂ri

∂∆

)
+ 1. These deriv-

atives can be related to the derivatives of the spectral
parameters eα and ωα, which in turn can be obtained
taking the derivatives of the Richardson equations (3).

In summary, as an application of generalized RG mod-
els, we have presented the complete solution of the SO(5)
isovector np-pairing problem. The generalization allows
the introduction of one-body symmetry-breaking terms,
such as non-degenerate single-particle energies, yielding
an exact solution of the SO(5) np-pairing model for ar-
bitrary seniorities even if it includes an isospin-breaking
term. The numerical solution of the SO(5) Richardson
equations was presented for the specific example of 64Ge,
together with a discussion of the behavior of the spectral
parameters for weak and strong pairing. With this work
the exact solution for large systems with SO(5) symme-
try is now available which could be of great importance in
condensed-matter physics when addressing the phenom-
enon of high-Tc superconductivity [13, 14]. Finally, the
treatment of higher-rank algebras like Sp(6) and SO(8)
opens the possibility of exact nuclear structure calcula-
tions with more realistic quantum integrable models.
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