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Livermore, CA 94550
The Hamiltonian for Dirac's second-order equation
depends nonlinearly on the potential V and the energy E.
For this reason the magnetic contribution to the
Hamiltonian for s-waves, which has a short range, is
attractive for a repulsive Coulomb potential (V > 0) and
repulsive for an attractive Coulomb potential (V < 0).
Previous studies are confined to the latter case, where

strong net attraction near a high-Z nucleus accelerates

electrons to velocities close to the speed of light.
The Hamiltonian is linear in the product EV/mc2.
Usually solutions are found in the regime E = mc2 + €,

where except for high Z, | ¢ | << mc2. Here we show that

for V > 0 the attractive magnetic term and the repulsive
linear term combine to support a bound state at E = 0.5 mc2

corresponding to a binding energy Ep =-¢= 0.5 mc2.



l. Introduction

Dirac's equation is used in atomic and optical physics to describe
the relativistic motion of an electron in the vicinity of a high-Z
nucleus [1-3]. Of what conceivable interest could Dirac's equation
have for a posively charged particle which under all known
laboratory conditions slows down near the nucleus?

The second-order form of the Dirac equation has an s-wave

magnetic contribution - the magnetic contributions of course

depend on the particle's orbital angular momentum - of the form,

Vmag‘v =Th - .. 2 =V
: (1)

where the primes denote radial derivatives. For a repulsive Coulomb

potential, V = e2/r, the part of Vmag Which multiples the wave

function is attractive for r > 92/(E + mcz) and repulsive for
r< e2/(E + mc2). Both solutions are regular at the point

r= e2/(E + mc2) where the denominator vanishes, and in the

usual way one solution is regular and one is irregular at r = 0.



Here we report the existence of a bound state due to the

attractive nature of Vipaq near E = 0, where the part of the

Hamiltonian linear in V, which is repulsive, vanishes. A

value of E equal to zero corresponds to a binding energy of mc2.

Although the Klein-Gordon equation is known to support a bound
state with binding energy of order mc2 for an attractive Coulomb

potential with unit-strength point source at the origin, V = - e2/r,
[4-5], strong binding due to weak forces by the Dirac equation to our
knowledge has not been previously reported.

The question naturaily arises if such states exist in the physical
world. The equations of general relativity have multiple solutions,
only one of which discovered by Lemaitre [6] for an expanding
universe, has been confirmed experimentally. | regard these weak-
force strong-binding solutions of relativistic quantum theory as the
counterpart in special relativity of general relativity solutions
which are known but not confirmed experimentally, and this paper is
intended to stimulate experimental and further theoretical interest.

If nothing else the mathematical existence of these states



teaches us that the postulate of the existence of a strong force in
nature responsible for nuclear binding, while it may be supported
experimentally, is nevertheless rooted in our experience of particle
binding in nonrelativistic quantum mechanics, which requires a

strong potential

Il. Relativistic bound states

Dirac's reduced radial equations are,
R < 1
GK+ ;GK:'-E(ES-V)F—K

) X

1
F_ - —F_¢=-g EL-V) Gy

where | have used the compact notation Eg = E + mc2 and

E, =E- mc2. Bound and continuum states are found in the regimes
EgE < 0 and EgE| > O respectively. In this notation - E_for E| <0
is the binding energy and Eg is associated with the particle

magnetic moment of magnitude efc/Eg.

Egs. (2) are solved for x = -1. | first solve the second-order or

Schroedinger form of the equation for G_q by elimination of the



equation of Fq. The second-order form is,

d o1
VG 9%

-G_,- i
Es-V 2.2

EL- V)Es-V)G ;=0
) (3)

Then knowning G_q | find Fq by writing the solution of Eq. (2b) as,

1,
F1=-ﬁfodrr(EL-V)G_1 | "

and performing the quadrature.
This elimination isolates the singular, attractive magnetic

potential in the equation for G_{ such that one may look for short-

range binding. This is why | made the comparison earlier of the
solutions of relativistic quantum theory with those of general
relativity. Such studies appear not to have been made in Dirac
theory, whose known solutions for the case of a scalar potential V

are confined to solutions which reduce to Schroedinger's solutions in

the limit | V | << mc2. This limit does not obtain in the regime of the
present study.

The potential V occurs in a highly nonlinear manner in the
second-order form of the relativistic equation [Eq. (3)]. With
reference to the second term on the left-hand-side of Eqg. (3)
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(magnetic contribution) the important points are as follows:

(1) the usual nonrelativistic limit is found when | V | << | Eg |, which
occurs away from the origin for a potential with a r1 singularity

2
and for Es=2m¢”  This condition is satisfied for the Dirac definition

Eg=E+ mc2 in the regime E=me . (But even for the uranium atom

the binding energy of a 1s electron is only about 26% of mcz.) (2)
The magnetic contribution has singular points at the origin and at
the radial value displaced from the origin at which Eg - V = 0. With
reference to Fig. 1 the magnetic term is strongly attractive for | V |
< | Eg | (for r outside the displaced singular point) and strongly
repulsive for | V | > | Eg | (for r inside the displaced singular point).
For V < 0 the only singular point is the usual one at the origin and
the magnetic term is repulsive for all r. Analysis shows that both
solutions of Eq. (3) for V > 0 are regular at the displaced singular
point. The singularity at the origin is the usual one for the Dirac x =

-1 radial equation with regular and irregular solutions going as r and

r-1 respectively.



Fig. 1 shows a blow-up of the effective potential near the

singularity displaced from the origin where Eg -V = 0. The

Fc?

Vegr= 'EUeff

effective potential is defined by

where with reference to Eq. (3),

' 1 v 1
Uegr= Es-V1 23 [EL- V)Es- V) - E[Ed]

(5)
Fig. 2 shows Vgt over an extended range of r and the radial
eigenfunctions given by Eqs.(3) and (4). Eq. (3) is solved by
successively integrating forward from the origin into the displaced
singularity and backward from large r into the displaced singularity
until the wronskian of forward and backward solutions is zero to

acceptable accuracy, which in our calculation is taken to be better
than 3 parts per 109, Eq. (4) for F4 is then solved by back
substitution of G_q from Eq. (3) and quadrature.

We found that the wronskian changed sign once from positive to

negative over the range of trial values of E| from -1.5 mc2 to

-0.5 mc2. The zero of the wronskian to the accuracy reported



above was found to occur for E|_ = -Epjnging = -0.50000 mc2.

. Summary and conclusions

We have reported the existence of a bound state with binding

energy near mc2 supported by the Dirac equation for a point-source
Coulomb model. The binding is due to a net short-range magnetic
attraction which dominates the Hamiltonian when the long-range
Coulomb barrier vanishes at E = 0. This state represents a genre
of binding - that of strong binding due to the weak electromagnetic
force whose basis is the relativistic nature of the motion - which is
still unobserved in the laboratory or at least, if observed, is
explained by postulating the existence of a strong force in nature.
Curiously it mimicks the short-range potential in nuclear physics,
which lurks behind a repulsive Coulomb barrier.

Transitions to the state from higher energy states might be

expected to be highly unlikely due to the Coulomb barrier which

2
exists in the normal region of the spectrum for E=mc"  Fyrther
theoretical work to investigate if Levenson's theorem could be
applied to the normal spectral states in order to infer the existence
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of an "extra" state would be highly desirable. Finally it would be
desirable to design experiments which would confirm or deny the
existence of the state and the genre of binding which it represents.
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Figure captions
Fig. 1. Blow up of Vg4 [EQ. (5)] versus r near the singular point

displaced from the origin where Eg -V = 0. For Eg = mc2 and

V = e2/r , the displaced singular point occurs at r = e2/mc2.

Fig. 2. Vg¢ [EQ. (5)] and normalized eigenfunctions G_4 [Eq. (3)] and

F4 [EQ. (4)] versus r.
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