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Using Gradients, Alignment and Proximity to Extract Curves and
Connect Roads in Overhead Images '

Barry Y. Chen and David W. Paglieroni

ABSTRACT

A robust approach for automatically extracting roads from overhead images is developed in this paper. The first
step involves extracting a very dense set of edge pixels using a technique based on the magnitude and direction of pixel
gradients. In step two, the edges are separated into successive channels of edge orientation that each contain edge pixels
whose gradient directions lie within a different angular range. A de-cluttered map of edge curve segments is extracted
from each channel, and the results are merged into a single composite map of broken edge curves. The final step divides
broken curves into segments that are nearly linear and classifies each segment as connected at both ends or disconnected.
A measure of connectability between two disconnected line segments based on proximity and relative alignment is
defined mathematically. Each disconnected segment is paired with the disconnected segment that it is most connectable
to. Pairs of segments are merged if their separation and misalignment are below thresholds (manually specified at
present) and the connectability of the pair is two-way optimal. Extended curve and road extraction examples are
provided using commercial overhead images.

Keywords: curve extraction, road detection, pixel gradients, edges
1. INTRODUCTION

Although extended curves in overhead images can be attributed to shadows or geological features (such as rivers and
edges of land masses, cliffs or forests), they are very often associated with man-made roads. The ability to automatically
extract extended curves (especially roads) from overhead images is fundamental and important to computer-aided image
understanding. A novel approach for automatically extracting extended curves (such as roads) from overhead images is
presented in this paper.

A major objective of image understanding is to be able to accurately represent the content of a scene in terms of
relationships between extracted objects and entities at a higher level of abstraction than with pixels. A critical step
towards image understanding is thus computer-aided extraction of wide varieties of content from images, including
extended curves such as roads, extended regions such as forests, man-made structures such as buildings, moving vehicles
such as trucks, etc.

The ability to automatically extract roads from images is useful in itself. In particular, although road networks are
available in Geographical Information Systems (GIS’s) for some sites, they are unavailable for many others. Even when
available, road network data is often incomplete, inaccurate or outdated. The tedious labor intensive process of
populating a GIS with road data involves extensive manual inspection of overhead imagery. Sufficiently robust tools for
automatically extracting roads from images could dramatically reduce manual inspection time. They could also be used
to flag areas of significant change in existing road databases.

Systems such as the Image Content Engine (ICE) cue human analysts for content, such as specific types of buildings
or moving vehicles, in broad area search images [1]. Once ICE has matched the necessary patterns or extracted the
appropriate features from images to be searched, it provides prioritized cues to human analysts for manual confirmation.
It normally takes much less time to manually inspect lists of prioritized cues than to manually search entire images. The
relevance of the cues, the prioritization of relevant cues, the false alarm rate, confidence levels and search efficiency can
all be dramatically improved by requiring matches to buildings and moving vehicles from ICE to be close to roads from
GIS’s or roads extracted automatically from the same images.

Over the past several decades many systems have been developed for the automatic extraction of extended curves
and roads from overhead images. These systems can be generally categorized into three classes based on the method

' This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence
Livermore National Laboratory under Contract No. W-7405-Eng-48.

% Lawrence Livermore National Laboratory chen52@lnl.gov, paglieronil @llnl.gov




they use to identify road pixels from the background: edge linking methods, Hough methods, and pattern matching
methods. Edge linking methods model roads as long, slowly curving lines (or parallel lines in high resolution images).
Roads are formed by linking large sets of edge pixels whose magnitude and orientations change slowly from one edge
pixel to the next. This linking process is often implemented as a search problem where the next pixel to link is
determined either by heuristics [2][3], as the next node in a minimal path graph search [4], or by an underlying road path
model (see [5] for an example of a deterministic path model and [6] and [7] for stochastic path models).

Related to edge linking methods are Hough transform-based methods [8]. The Hough transform is used to identify
edge pixels belonging to the same line, and because some roads are especially well modeled by straight parallel lines,
Hough methods can find roads in urban environments (many of which are straight) [9] or initial straight road segments
for other road tracking algorithms [10].

Pattern matching methods look for pixels or a group of pixels that exhibit road-like characteristics. For example,
[11] identify road pixels by finding pixels whose intensity in MSS band 2 of the LANDSAT-1 images falls within that
expected for concrete or asphalt regions. A similar pixel spectra-based classification method is found in [12]. Other
pattern methods find groups of pixels that match textures or profiles representative of roads. [5] extends [13]’s approach
which identifies road pixels by correlating the intensity cross-section of typical roads to potential road locations in the
image. Texture classification techniques, such as those based on Gabor wavelets [14-16], can be tuned to detect image
tiles with linear textures of varying orientations and as such can be used to find regions whose textures resemble that of
roads.

A novel and robust approach for automatically extracting extended curves (such as roads) from overhead images is
presented in this paper. As shown in Fig.1, images are transformed into gradients, gradients are transformed into edges
(Section 2), edges are transformed into broken curves (Section 3), broken curves are modeled as broken polylines
(Section 4), and aligned broken polylines are connected (Section 5). Several parameters are involved, but there are
simple guidelines for choosing most parameter values, and specific values are usually not critical.
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Fig.1 Block diagram for extracting extended polylines from overhead image blocks.

We have discovered that edge curve extraction is facilitated when edges of greatest possible density (derived from
gradient magnitudes and directions) are separated into overlapping channels of edge orientation (derived from gradient
directions). By de-cluttering each channel, recombining the de-cluttered channels, and independently de-cluttering the
recombined edge image, we have observed that extended edge curves can be more effectively extracted while edge



clutter can be more easily suppressed. Like traditional edge linking methods, this approach implicitly models roads as
long, slowly curving lines, but unlike many edge linking methods roads are extracted as a result of these separate de-
cluttering operations. Finally, we linearly connect disconnected polyline representations of broken edge curves if and
only if each of the two open line segments to be joined is the one that is most connectable to the other. Examples that
demonstrate these concepts are provided throughout the paper.

2. DENSE EDGES FROM GRADIENTS

Most algorithms for detecting edges in images u seek local maxima in image gradient magnitudes. Gradients are
traditionally estimated by applying 1D filters of Gaussian derivatives in the columns and rows direction to u [17][18].
Gradient local maxima occur at points where the magnitude of the gradient image is zero. Edge coarseness is regulated
using the Gaussian variance parameter o.

We have chosen a more geometrical approach to gradient estimation in which the gradient u(c,7) of u at a pixel with
column and row coordinates [c,7] is estimated as a weighted sum of direction vectors from the center of pixel [c,r] to the
centers of neighbor pixels [¢,7']. The weight assigned to a neighbor [¢’,#'] is determined by its distance from [c¢,r] and

the difference between pixel values at [¢’,7'] and [c,r]. u(c,r) is complex with magnitude A(c,r) and direction & (c,r):

(c—c) + jG'=7)
[(¢' - ) + (= 1]

(1) ier) 2 aer) N = S Luer) - uer) ]
(c’,r' YeR(c,r | p)
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where R(c,r | p) is the neighborhood containing all pixels that intersect a disk of radius p centered on [c,r]. Though
defined for monochrome images u, the gradient estimate can be generalized to multi-band images by writing equation (1)
for each band, summing the equations into one “composite” equation and dividing both sides by the number of bands.
This is tantamount to interpreting u(c,7) in equation (1) as the mean of pixel [c,7] values across all bands.

Equation (1) can be expressed in convolution form as

(2) u(er) = [he,r|p, k)* 1(c;r) ] u(e,r) = [hle,r | p, k) *u(er)]
3) he,r | p.k) = % for [c,r] € R(0,0| p)
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where “*” is the convolution operator, /(c,r) is an image whose pixels are all ones, and /4 is a complex filter. Although #
is not separable, the FFT can be applied in equation (2) to estimate the gradient image with efficiency (even for large
filter masks) comparable to image convolution in the spatial domain with separable 2D filters decomposed into pairs of
1D Gaussian filters.

One can increase coarseness by factoring more neighbor pixels into the gradient estimate. This is achieved by using
a larger o value in the Gaussian formulation. However, because there is only one parameter, the impact of distance-to-
neighbor on the gradient estimate cannot be controlled independent of coarseness. This explains why Gaussian edges
derived from large o values have rounded corners, and why one might therefore wish to combine Gaussian edges across
successive coarseness resolutions. On the other hand, equation (1) uses two parameters. The neighborhood radius
parameter p > 0.5 regulates coarseness and noise suppression in gradient estimates, while the distance-to-neighbor
attenuation parameter & > 0 independently regulates the impact of distance-to-neighbor on gradient estimates and edge
precision. There are combinations of parameters p and & that can produce coarse low-noise gradient estimates and more
precise edges with relatively sharp corners simultaneously. Combining edges across successive coarseness resolutions is
thus much less of an issue when equation (1) is used.

To understand how p and k interact to produce various gradient and edge estimation behaviors, consider the

direction vector d (c,c'.rr' | k) 4 [(c'-¢) + ji'—r)]/ [(c' - c)z +(r - r)z] M2 in equation (1), and assume that
u(c',r'y — u(c,r) is constant. If £ = 0, pixels [¢,7'] farther from [c,r] have a greater impact on u(c,7) when they should

have less. If k=1, d is a unit vector, so the impact of pixels [¢’,7'] on u(c,r) does not vary with distance from [c,7]. If &



=2, the impact of pixels [¢',7"] on u(c,7) varies inversely with distance from [c,7], but collectively, the set of all pixels at
fixed distance from [c,7] have the same impact on u(c,7), independent of distance. If &k = 3, the set of all pixels at fixed
distance from [c,7] collectively have an impact on u(c,7) that varies inversely with distance. If k > 3, the influence of

pixels [c’,#'] on u(c,7) diminishes severely with increasing distance from [c,7]. For k < 3, gradient estimate coarseness
increases with p. However, as k increases beyond 3, p has much less impact on gradient coarseness because the distance
attenuation is more severe.

Moreover, when p is small and £ < 3, fine detail edges can be derived from the gradient estimates, and such settings
are appropriate when using gradients to detect small objects [19]. In fact, the gradient estimate in equation (1)
degenerates to the Prewitt estimate when (p, k) = (1,0) [20] and the Sobel estimate when (p, k) = (1,2) [22]. It can be
shown that for ideal binary edges passing through centers of 3x3 neighborhoods, Sobel gradient direction estimates are
exact at roughly every 20° of edge slope, and the estimates are close in between. Among all estimates in equation (1) for
which p = 1, the Sobel estimate is thus among the most accurate. When p is large and k varies from 0 to 1, imprecise
noise-suppressed coarse edges with curved corners are produced. When p is large and & varies between 1 and 3, more
precise noise-suppressed edges with sharper corners are produced. For example, we often use (o, k) = (5,2) to extract
noise-suppressed extended curves with decent edge precision from overhead images, although the exact values of the
parameters are not that important.

Edges are locations of local maxima in the gradient estimate u(c,r) for which the gradient magnitude 4(c,r) > A 02 0.

A simple test for gradient local maxima was proposed in [21]. The test makes a distinction between gradient orientation
0 (c,r) € [-m 7] in equation (1) and line orientation (slope angle)

A d(cr) 0<l(cr<nxm
@) 0’ (c,r) Ocr)+n  B(cr)<0 e [0, 7)
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[c,7] is said to be an edge pixel if

(5a) A(e,r) > max [A 0 A(c+AC ,r+Ar), A(C—AC ,r—Ar)]

[1,0] 6 '(c,r) <m/8 or > 71/8
L w8<0(en <38
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The edge map will be as dense as possible when 4 0 0. Edges are not allowed to occur within p’pixels of the first and

last image row and column, where p’is the smallest integer at least as large as p.
Boundary following for curve extraction from edges is facilitated by first completely thinning all of the edges. The
8 structuring elements for complete symmetrical thinning are

000 xx 0
©) Hy=|x1x|, Ho=[11x
111 x 1x

and their 90° rotations, where “x” corresponds to “don’t care” (either 0 or 1). On each iteration, the 8 structuring
elements are applied successively to each edge pixel. Iterations continue until convergence is achieved.

Fig.2 shows a 256x256 overhead image block containing roads and a 16x16 sub-block (courtesy of DigitalGlobe).
Fig.3 shows estimated gradients and fully thinned dense edges (4 0= 0) at various levels of coarseness. As the

coarseness of the gradient estimate increases, some detail is lost, but the gradient magnitudes and directions become less
noisy, and the edge corners remain relatively sharp.
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Fig.2 256 x 256 overhead image block (courtesy of DigitalGlobe).

3. BROKEN CURVES FROM EDGE ORIENTATION CHANNEL DECOMPOSITIONS

Following [21], a novel approach to curve extraction based on edge pixel connectivity and orientation is described in
this Section. Edge pixel orientation is defined as the line orientation (8’ e [0, ) in equation (4)) derived from the
gradient direction & at an edge pixel. We have observed and discovered that edge curve extraction is facilitated by first
separating maps of edges (especially cluttered edges) into different edge orientation channels. Our approach involves
separating edges into N overlapping edge orientation channels, separately decluttering each channel by independently
extracting the curves from each channel that have at least Lchannel > 0 edge pixels, recombining curves extracted from

each channel into a single composite map of curves, and decluttering the result by extracting only curves with at least
edge pixels.

composite
For i = 0...N—I, edge orientation channel i contains all edge pixels for which the edge orientation 8’ lies within a
range defined in terms of the center 00(1') of edge orientation channel i and the edge orientation channel half-width 4 0

) 0 € [0)-A,. 00)+Ay], O0)=id,, A, =z/N

Note that successive channels overlap by 4 0 Successive channels must overlap because curves with pixels whose edge

orientations lie near the border between adjacent non-overlapping channels can be missed. Although the exact value is
not important, N should be chosen such that A 9 is neither too large nor too small. We typically use N = 20 (channels of

width 18°). If 4 9 is too restrictive, it will be difficult to form edge curves within a single channel because edge
orientations are noisy. If A 9 is too large, the disparity between orientations of edges within a channel might be too large.

Edge curves (often broken) are extracted from maps of fully thinned edges using standard boundary following
techniques. An eligible edge pixel (i.e., an edge pixel not yet assigned to an edge curve) is first chosen as a seed pixel
for boundary following. If the seed pixel has one or two neighbors (i.e., eligible edge pixels in its 8-neighborhood), then
the boundary is traced from the seed pixel in one or two directions. Otherwise, the seed pixel is the only edge curve
pixel. Once an edge pixel has been traced or chosen as a seed, it becomes ineligible. Boundary following from a traced
pixel that is not a seed can continue only if the traced pixel has exactly one neighbor.

A " and Lcomposiw have meaning in the context of traditional edge detection: 4 " is a threshold on edge strength for edges

extracted from gradient local maxima, and L is an edge de-cluttering (cleaning) parameter. Our approach to

composite
extracting broken edge curves can be viewed as a generalization of traditional edge detection when N > 1 edge
orientation channels are considered and a third parameter Lchannel for curve length is factored in. Specifically, in
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Fig.3 (a) Gradient directions (h) gradient magnitudes and (c) dense edges for the image
block and sub-block in Fig.2.

traditional approaches, the edge map £ to de-clutter by extracting curves with at least L edge pixels is formed by

composite
applying some gradient strength threshold 4 02 0 to the gradient local maxima. In our approach, £ is instead formed by

separating the map of all gradient local maxima (4 0= 0) into N > 1 edge orientation channels, separately de-cluttering

each channel by extracting curves with at least Lch edge pixels, and recombining the de-cluttered

<L .
annel composite

channels. Note that for 4 0 0, our approach degenerates to traditional edge detection when either N =1 or Lchannel =



> (. Although the exact values assigned to these parameters are not important, too

, L ) =1(3,20).
channel °> ~~ composite

=0), and then de-cluttered (L =3). The
channel channel

edge channels were extracted from the dense edge map shown in the middle of the last row of Fig.3 for which the
gradient estimation parameters were (p, k) = (5,2). The sets of first all cluttered channels and then all de-cluttered
channels were recombined into two composite curve maps. Fig.5 illustrates what happens when these composite curve

maps are increasingly de-cluttered. One can see that from the standpoint of extracting extended curves, Lchannel and

We require L

>L
composite —  channel
many edges can get removed from each channel when Lchannel is too large. We often use (L

Fig.4 shows three edge orientation channels, first unprocessed (L

play important separate roles. It was only by using LC ha together, that most of the extended

composite nnel and Lcomposite
edge curves were extracted and most of the edge clutter was simultaneously suppressed (see the lower right hand image
in Fig.5).

channel 0: [-9°, 9°] channel 8: [55°, 73°] channel 12: [99¢ 117°]

(a) Lchannef =0

(b) Lc."'annef =3

Fig4 (a) Cluttered and (b) de-cluttered edge orientation channels extracted from the dense edge map shown in
the middle of the last row of Fig.3.

4. BROKEN POLYLINES FROM BROKEN CURVES

It is easier to quantify the connectability between broken edge curves when they are modeled as polylines. A robust
splitting scheme for segmenting edge curves into polyline segments was proposed in [23]. An edge curve represented as
a sequence of 8-connected edge pixels is first modeled by the line segment that connects the curve endpoints. The
[, B, 7] parameterization of the line L containing distinct edge curve endpoints with column and row coordinates [¢ 0" 0]
and [CI ,rj] is given by

®) actpr=y, [ fi ] = L, =ryocy—c, . ac,+ fir,]
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Fig5 Maps ofbroken curves formed by recombining the complete sets of (a) cluttered and {b) de-clutterad edge
orientation channels referred to in Fig 4.

The squared distance from a point [¢',7'] to the line L is
2 ’ ! — ’ ! 2 2 2
(€)) D°([c, ], L) = (ac+Br—y)"/(a”+ ")

The edge curve pixel [¢’,7'] that maximizes the distance D from L is found. If D([c¢',#'],L)>D 0 (L), the edge curve is
split by adding a polyline vertex at [¢',7']. We define the distance threshold to be

(10) D, (L) = min(D llc,~c,.r,—r,ll/4)

where Dmax is the modeling parameter that regulates the accuracy of the polyline. As Dmax decreases, the disparity

between an edge curve and its polyline model tends to decrease, while the number of polyline vertices tends to increase.
In practice, high quality polylines with modest numbers of vertices can be obtained by using Dmax = 3 pixels.

Each time a new polyline vertex is added, two new edge curves are created, and an attempt is made to split them.
Convergence is achieved when none of the sub-curves that the original edge curve was divided into can be split further.
The resulting polyline models of edge curves are represented as sequences of polyline vertices. Additional polyline
attributes are derived and maintained for convenience. These include whether or not the polyline is closed, the length of
each polyline segment, the overall length of the polyline, and whether or not the two polyline endpoints are connected to
other polylines. Fig.6 shows polyline representations (Dmax = 3) for the de-cluttered broken edge curves in Fig.5(b).
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Fig6  Polyline representations based on D, = 3 for the broken edge curves in Fig.5(b).

5. ALIGNED CONNECTION OF BROKEN POLYLINES

The polylines extracted in the previous step are sometimes disconnected due to occlusion and noise. These broken
polylines should be connected if they are sufficiently close and well aligned. It is necessary to mathematically define
and quantify the aligned connectability between pairs of line segments in order to find and connect open ends of broken
polylines. Consider two line segments L i and L ,as shown in Fig.7. Let [c 7 1] be the open endpoint of L i closest to an

open endpoint of LZ, and let [c2 ,r2] be the open endpoint of LZ closest to an open endpoint of LI' For Ll and L2, the

degree of connectability is based on endpoint separation

4 2 2,12
(1 (L, .L) = [(c,=c,) +(r,;=ry)]
and misalignment angle
(12) mL L) 2 max(p,4) 0., ¢ :cos*’ﬂ k=1,2
=172 72 T Tk LI TIL, 1] ’

where L ; is the vector along L ; terminating on the connection point [¢ T 1], L 5 is the vector along L 5 emanating from the
connection point [c2 ,rz], and L() is the vector emanating from [CI ,rj] and terminating on [c2 ,rz] (see Fig.7). ¢k is thus
the angle between L 0 and L " Colloquially, m (L ; L 2) is the maximum angle a car driving along L ;or L 5 would have to

turn in order to travel on the connecting L , segment.

Fig.7 Geometry of aligned connectability between a pair of line segments



L i and L2 are potentially connectable as aligned line segments if o (L i L 2) < 50 and m (L . L 2) <m, for suitable
decision thresholds 50 > (0 and m : > 0. For o(L i ,LZ) < 6, , the degree of aligned connectability between L i and L2
increases as m (L i L 2) decreases. L i and L , are to be connected linearly if they are potentially connectable and there is
optimal two-way connectability between them. L J and L ,are said to be optimal two-way connectable if
(13) L =argmin m(L ,LZ) and L, = argmin m(L ,LI)

i 2
L:S(LL,) <3, L:oLL)<S,

Our approach for connecting broken polylines is similar to the approach found in [24] except that our approach requires
the optimal two-way connectability condition to be satisfied.

Once connected, polylines with overall length less than Lp can be removed. Fig.8 shows

olyline =40. We

have observed that smaller Lcomposi ‘e values lead to images that contain many short and closely-spaced broken

olyline = Lcomposite
connected polylines derived from the broken polylines in Fig.6 with various decision thresholds and Lp

polylines, while larger L values give rise to longer polylines that are separated by greater distance. In general,

composite
when starting from images with many short and closely-spaced polylines, smaller values of 50 are required to reduce the

number of spurious connections between distant segments that happen to be well aligned. On the other hand, when

starting from images generated using larger Lcomposi ” values, larger values for 50 are required to bridge the larger gaps.

At larger values of 50, the misalignment angle m 0 needs be smaller to reduce the number of spurious connections

between distant segments that are not well aligned, but with smaller values of 50, the angle for m  can be larger to

0
accommodate nearby segments that form a slowly curving road. For the examples provided in Fig. 8, the decision

thresholds 50 and m o are set manually. In operational practice, 50 and m 0 might be set statistically by deriving Bayesian

statistical thresholds from populations of existing broken polylines in images (a topic for future research).
6. SUMMARY AND FUTURE DIRECTIONS

A novel approach for automatically extracting extended curves such as roads from overhead images has been
presented. It extends traditional approaches to edge and curve detection by (1) using a geometrically motivated gradient
estimate which produces coarse noise-suppressed edges that are relatively precise with sharp corners (2) decomposing
maps of dense edges into separate edge orientation channels, de-cluttering each channel separately and extracting edge
curves from recombined channels, and (3) modeling the curves as polylines, identifying two-way optimal polylines for
aligned connection and connecting only those that are sufficiently close and aligned. Although several parameters are
involved, there are simple guidelines for choosing most parameter values, and specific values are usually not critical.
The exceptions are the decision thresholds for aligned connection of polylines which are now set manually. It should be
possible to use populations of short disconnected curves extracted from image blocks to derive Bayesian statistical
decision thresholds. A curve consolidation algorithm for replacing groups of closely separated parallel curves with
single connected curves that have thickness attributes is also needed. Finally, an algorithm for extending curves across
successive image blocks is needed so that curve extraction can be extended to overhead images of arbitrary size.
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Fig.8 Connected polylines derived from the broken polylines in Fig.6. Top row: connected polylines.

Bottom row: connected polylines overlay on original image.
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