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1 Summary

Suppose that we are given two probability densities po(E’) and p;(E’) for the energy E’
of an outgoing particle, po(E') corresponding to energy Fy of the incident particle and
p1(E") corresponding to incident energy E;. If Ey < Ej, our problem is how to define
pa(F') for intermediate incident energies

Eo=(1-a)Fy + aF, (1)

with 0 < a < 1. In this note I consider three ways to do it. I begin with unit-base
interpolation, which is standard in ENDL and is sometimes used in ENDF. I then describe
the equiprobable bins used by some Monte Carlo codes. 1 close with a discussion of
interpolation by corresponding-points, which is commonly used in ENDF.

2 Why this interpolation is an issue

What we have to be careful of is to ensure that our interpolation method preserves the
normalization

/ p(B,E)dE' =1 2)

for all incident energies Fy < E < Ej.

To see why the normalization (2) might be a problem consider the following “rea-
sonable” example. Suppose that the energy densities are flat for two incident energies
Ey < En,

po(E')=1, 0<E <1

and

pi(E')=1/2, 0<E <2

See Fig. 1.
We don’t want to take a simple average of these densities. At incident energy

1
Ei/10 = E(gEo + Ey),

for example, because this would give the density shown in Fig. 2. The trouble is that for
incident energy close to Fy we immediately get a positive probability density on the whole
interval 1 < E' < 2.

Another bad idea is to mindlessly interpolate both the probability densities and the
lengths of the E' intervals. For the example shown in Fig. 1 this would give

p12(E") =3/4, 0<E' <3/2.
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Fig. 1. Distributions for Fy and Ej.
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Fig. 2. Straight interpolation.

at 1
By = §(E0 + Ey),

This density has the wrong normalization

/ p1j2(E') dE' = 9/8.

In this note I illustrate three better interpolation methods using as an example the
probability densities shown in Fig. 3,

n | 4E, for 0 < E' <1/2,
po(E') = { 41— E"), for1/2<E <1 (3)

and

pi(E)=q 2 F

= , for 1< E' <A4.
36 or <

The motivation for this example, besides being simple, is that the higher-energy incident
particle gives a higher-energy peak in the probability density for the energy of the outgoing

particle, and it also gives a longer tail.

E'/2, for 0 < E' <1,
(4)
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Fig. 3. Example distributions

3 Unit-base interpolation

Unit-base interpolation is defined in the Omega manual [1] on pages VI-19 to VI-22.
The idea behind unit-base interpolation is that the total probability remains 1 if the
interpolation is done on a fixed interval 0 < 77 < 1. Therefore, if we have a probability

density p(E’) defined on an energy interval E ;. < E' < E] . we make the change of
variable
E El"nln (El,'ﬂa.X El"nln) (5)
with 0 <7 <1, and we work with the scaled density
(1) = (Emax — Emin)P(Binin + (Binax — Emin)7)- (6)

This mapping maintains the normalization

1 Ell'na,X
| ntmydn= [ pEyar =1
0 E!

min

I now show that the unit-base mapping (6) gets the normalization right under inter-
polation. Suppose that we have two probability densities IIy(n) and II;(n) both on the
interval 0 < 7 <1 and both normalized

1
| mmdn=1, j=o1.
For 0 < a < 1 we define the interpolated unit-base probability as
Ia(n) = (1 — )o(n) + ally(n). (7)

It is clear that
/ My(n)dn=(1-a)+a=1.
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fig. 4. Interpolated by unit base

So, the normalization does come out right. To get the interpolated probability density
Pa(E') it remains only to interpolate the energy intervals (E! ; , El..) and to invert the
mapping (6). For the densities pyp and p; of (3-4) shown in Fig. 3 the unit-base interpolation
at @ = 1/2 is given in Fig. 4.

In order to understand why the graph in Fig. 4 looks as it does, it is useful to investigate
unit-base interpolation in the original (E, E') energy space. It is clear that the length of
the E' energy interval

L= Erlna.x - Erlnin
plays a determining role in the mapping (6). Let Ly denote the length of the E’ energy
interval for the probability density pg and L; the length of the E' energy interval for p;.

At the intermediate incident incident energy F, (1) the length is
L,=(1-a)Ly+ al;.
With this notation the unit-base interpolation (7) takes the form
Lopa(Eqy) = (1 — ) Lopo(Ey) + aLipi(EY). (8)
The energies E], for 0 < o < 1 used in (8) are those obtained from (5) for fixed 7,
E, = Er,nin,a + Lan.

For the densities pg and p; of (3-4) this interpolation is to be done along the diagonal lines
in Fig. 5. In this figure the top of the trapezoid 77 is generated by the discontinuity in the
derivative of p; at E' = 1, and the top of trapezoid T, is generated by the discontinuity
in the derivative of py at E' = 1/2. For p;/, shown in Fig. 4 the region 0 < E' < 5/8
lies in trapezoid Tj, the region 5/8 < E' < 5/4 lies in trapezoid Tb, and the region
5/4 < E' < 5/2 lies in trapezoid T3. It is also significant that for each of the trapezoids
T, Ty, and T3 the ratios of the lengths of the two vertical sides is the same, namely L;/Ly.

4 Equiprobable bins

For a probability density p(E’) on an energy range Eni, <= E' <= Eyax suppose that
we want N equiprobable bins, with N a positive integer. These bins are the intervals

4



B
2 T
1 T
1/2] .
Ey Ey

E

Fig. 5. Unit-base interpolation in energy space

delimited by the numbers €; such that

[° pmyam = L )
Emin N

for j =0,1,...,N. It is clear that ¢ = E/;,, and it follows from the normalization that
eN = Bl -

Warning. The condition on the probability density is only that p(E’) > 0 on the
energy range Fni, <= E' <= Epax. If it should happen that p(E’) = 0 on a subinterval,
then the values ¢; defined by (9) may not be uniquely determined. This could occur, for
example, if p(E') is the probability density of a set of discrete gamma lines. It is not a
good idea to use interpolation by equiprobable bins is such situations.

For interpolation by equiprobable bins between a probability density po(E') at incident
energy Fy and density p; (E’) at incident energy F1 we use (9) to calculate the bin edges
€;(0) for pg and €;(1) for p;. For an intermediate incident energy

Ea = (1 — a)E'o + aE'l
with 0 < a < 1 we use interpolated bin edges
ej(a) = (1 — a)e;(0) + ag;(1).
On the interval €;_1(a) < E’ < ¢;(a) we define the probability density p,(E’) to be

1
N(ej(a) —€j—1(a))

5
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Fig. 6. Equiprobable bins for pg
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Fig. 7. Equiprobable bins for p;

This value is chosen to make

€j(@) , |
/ej_l(a) pa(E')dF' = —.

With N = 8 the equiprobable bins for the probability density po(E’) of (3) are shown
in Fig. 6, and the equiprobable bins for the density p;(E’) of (4) are shown in Fig. 7. The
interpolated equiprobable bins for p;/(E') are shown in Fig. 8.

The (E, E') energy space version of this interpolation is illustrated in Fig. 9. In fact,
we are doing unit-base interpolation within each trapezoid in this figure, but now Ly and
Ly in equation (8) refer to the lengths of the vertical edges of the trapezoids. Hence, the
ratio L1 /Ly differs from one trapezoid to another.

It is interesting to investigate the continuum limit of equiprobable bin interpolation
as N — oo. For interpolation of the densities po(E’) of (3) and p1(E') of (4) this limit is
shown as the continuous curve in Fig. 8. In this discussion we need to be careful of the
mathematical terminology. Up to this point we have worked only with probability densities
p(E'), namely, nonnegative functions such that
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Fig. 9. The view in energy space



The analysis of equiprobable bin interpolation is based on the corresponding distribution
function F(E') defined by the integral

El
F(E') = / p(E") dE".
EI

min

In fact, it follows from (9) that the equiprobable bin edges ¢; for j = 0,1,..., N are
obtained from the inverse to the distribution function,

1 (J
GJZFl(N>

In view of the warning given above, I assume in this discussion that F(E') is strictly
increasing
F(E}) > F(E}) whenever E!

min

< E| < E), < E]

— max*

(10)

This condition implies that F~!(y) is uniquely defined for 0 < y < 1.
With this background, we see that the continuum version of interpolation by equiprob-
able bins proceeds by the following steps.

1. Given probability densities py(E') for incident energy Ey and p;(E') for incident
energy F, form the corresponding distribution functions Fy(E') and Fy(E').

2. Solve the equations y = Fy(E') and y = Fy(E') to determine the inverse distribution
functions E' = F; *(y) and E' = F; ' (y) on 0 <y < 1.

3. For 0 < a < 1 the interpolated inverse distribution function F; !(y) is definded as

Fl(y) = (1 —a)Fy H(y) + oF; H(y).

4. Get the interpolated distribution function y = F,(E’) by solving the equation E' =

Fil(y).
5. Differentiate to obtain the interpolated probability density
E = d F,(FE'
Pa(E') = dE o(E).

Interpolation by equiprobable bins is simply a finite-difference approximation to this
algorithm.

Let’s illustrate these ideas by applying them to the densities py and p; of (3-4). The
distribution function Fy(E") for po(E') is obtained by integrating (3),

2E" for 0 < E' < 1/2,

Fy(E') =
o(E) {—1+4E’—2E’2 for 1/2 < E' < 1.



Note that in the equation y = Fy(E') the interval 0 < E' < 1/2 corresponds to 0 < y < 1/2
and 1/2 < E' < 1 corresponds to 1/2 < y < 1. In inverting y = Fy(E') we take the
physically relevant square roots,

Y for 0 <y <1/2,

B=FR'w=1 "% 7 (11)
1— — for1/2<y<1.

If we apply the same operations to the probability density p;(E’) given by (4), we get
the distribution function

E"
y T fOI‘OSElgl,
Fl(E): 1 ZEI E12
—— 4+ ——-=— for1<E' <4.
3 3 12

For y = Fi(E') the interval 0 < E’ < 1 corresponds to 0 < y < 1/4 and the interval
1 < E' <4 corresponds to 1/4 <y < 1. The inverse distribution function is given by

B = () :{ V2y for 0 <y < 1/4, 12)

— V3T —y) for1/a<y<l.

Let us interpolate half way between these inverse distribution functions,

Fbw) = 5 (R () + P ). (13)

It is clear from (11-12) that this function is defined on the interval 0 < y < 1 and that it
is given by 3 different formulas, depending on whether 0 <y < 1/4 or 1/4 <y <1/2 or
1/2 <y < 1. Let us examine these regions one at a time.

On the interval 0 <y < 1/4 equation (13) takes the form

E = <1 + ?) V- (14)

The range of E' values is from
E' =0 for y=0

to

E,_4+\/§

1
f =-.
or y=7
Upon solving (14) for y, we get the distribution function

4
442

2
FI/Q(E’):( ) E"” for ogE'g#.



The probability density is the derivative

4
442

The algebra is more complicated for 1/4 < y < 1/2 because from (13) we obtain the

equation
_ 1 [y
Fipw = /8 +2- 30—,

In particular, y = 1/2 corresponds to

442
T

2
pl/Q(E') = ( ) 2F" for 0<E'<

%

E' =F;(1/2) =

| ©

It is possible to solve E' = Fl_/é(y) for y = Fy j5(E"), but I choose not to do it.
For 1/2 <y <1 we find from (13) that

E'=Fy(y) = g - <g +\/§) V1—y.

With the notation

ﬂ:g—k\/?_,,

we can easily solve this equation for y to get

1 /5 2
v=ra) = (3 )

for

9—£<E’<§.
4 2 - —2

The derivative of Fo(E’) is the probability density

tEy = 4 (1),

5 Interpolation by corresponding points

The ENDF documentation on interpolation by corresponding points [2] page 34 is not
entirely clear, so I give here my interpretation.

In the method of corresponding points the probability densities p(F, E') are piecewise
linear in the energy E' of the outgoing particle, and the same number N of data points
(E',p) are to be given for each incident energy E. Interpolation by corresponding points
is by unit-base interpolation (8) between adjacent points in the table. But the lengths Lg
and L; used in the interpolation are local.

10
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Fig. 10. Corresponding points for our example

E=Fy | E=E
n| E' pl|FE p
0 00 O
1/2 2 | 1 1/2
1 014 0

Table 1. Corresponding points

11



I illustrate the process with a simple example with N = 3 based on the probability
densities (3-4) shown in Fig. 3. The corresponding data points are the vertices of the
triangles in Fig. 3, and they are given in Table 1.

These corresponding points determine trapezoids 77 and 75 in energy space, as dis-
played in Fig. 10. Let’s see what the corresponding points interpolation gives along the
bottom of the trapezoid T5 at the incident energy

1
Eyjg = 5(Eo + En).

The lengths of the vertical sides of T3 are

1
LO = 5 and Ll = 3,
and the average length is
7
Lijp=-.
/2= 7

Unit-base interpolation (8) in T5 therefore takes the form
7 1/1 1
£ 4)=-(z2+32).
1P12(3/4) =5 (2 + 32)
Consequently, we find that

pip(3/4) = 2

as viewed from T5.
The value of p;/5(3/4) as viewed from T; is different because for 71 the ratio of the
lengths of the vertical sides

Li_,
Ly

is different from the corresponding ratio for 7o
b .
Lo

This explains the jump discontinuity shown in Fig. 11. The full set of interpolated values
is given in Table 2.

Another problem with interpolation by corresponding points is that the lengths of the
data columns may not be the same. For example, it is not at all clear how to pair up the
data points in Table 3. Table 3 was obtained by inserting an extra point into the last 2
columns of Table 1.

My interpretation of interpolation by corresponding points is to extend the short list
by repeating the last pair, as in Table 4.

This extension is shown in energy space in Fig. 12. One peculiarity of extending the
corresponding points by a triangle, as [ have done with T3 is that from the T35 side of the
line from A to B the probability density p,(E') is the constant value that it takes at B.

The lack of a formal extension rule for different numbers of corresponding points is
significant, because every ENDF/B-VII and JEFF evaluation which calls for interpolation
by corresponding points happens to have different numbers of points.

12
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Fig. 11. Interpolation by corresponding points

E=FEy | E=Ey |E=E
n|FE p | E p |E p
110 0 0 0 0 0
211/2 2 |3/4 1 |1 1/2
211/2 2 |3/4 5/7 | 1 1/2
311 0 |5/2 0 4 0

Table 2. Interpolation by corresponding points

E—FE, | E=E,
n| E p |E p
110 00 O
201/2 2 | 1 1/2
31 03 1/6
4 4 0

Table 3. Unmatched points

13



E=FEy|E=Ey, |E=E
n|E p | E p |E »p
110 0 0 0 0 0
201/2 2 |3/4 1 |1 1/2
21/2 2 |3/4 4/5 | 1 1/2
311 0| 2 2/15|3 1/6
311 0|2 1/6 |3 1/6
41 052 0 |4 0

Table 4. Extended table.

4 C
3. 7, /B
EI
T
1 A
1/2. T
Eo Ey
E

Fig. 12. A triangular extension

14




6 Comments

The principal disadvantage of unit-base interpolation is that its division of the domain
in energy space into trapezoids with equal ratios of the vertical sides L;/Lj as in Fig. 5
may not be consistent with the physics of the probability densities. Interpolation by
equiprobable bins makes more sense to me physically, but it also has difficulties. As seen
in Fig. 8, the continuum limit gives a very reasonable interpolation, but for any finite
number of bins the approximation is poor in regions of low probability density. Another
drawback of equiprobable bins is that the process is undefined if p(E’) = 0 on an interval
interior to its domain of definition. This is a violation of the condition (10) which is
necessary for the method to work.

The primary difficulty with the method of interpolation by corresponding points is the
question of what to do when the number of points is not the same. I have made what
seems to me to be a reasonable guess. Another aspect to be aware of is that the method
generates discontinuities in the interpolated probability density as in Fig. 11 when the
ratio L1 /Lo changes from one energy trapezoid to the next.
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