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Abstract 
 
We have developed new algorithms to model complex biological flows in integrated 
biodetection microdevice components. The proposed work is important because the 
design strategy for the next-generation Autonomous Pathogen Detection System at 
LLNL is the microfluidic-based Biobriefcase, being developed under the Chemical and 
Biological Countermeasures Program in the Homeland Security Organization. This 
miniaturization strategy introduces a new flow regime to systems where biological 
flow is already complex and not well understood. Also, design and fabrication of 
MEMS devices is time-consuming and costly due to the current trial-and-error 
approach. Furthermore, existing devices, in general, are not optimized. There are 
several MEMS CAD capabilities currently available, but their computational fluid 
dynamics modeling capabilities are rudimentary at best.    Therefore, we proposed a 
collaboration to develop computational tools at LLNL which will (1) provide critical 
understanding of the fundamental flow physics involved in bioMEMS devices, (2) 
shorten the design and fabrication process, and thus reduce costs, (3) optimize 
current prototypes and (4) provide a prediction capability for the design of new, 
more advanced microfluidic systems. Computational expertise was provided by 
Comp-CASC and UC Davis-DAS. The simulation work was supported by key 
experiments for guidance and validation at UC Berkeley-BioE. 
 
Introduction/Background 
 
BioMEMS devices.  Micro Electro Mechanical Systems, or MEMS, devices are ideal 
for the biodetection effort because they are small, low-powered and distributable.  
New biological and chemical pathogen detection systems, or ”bio-smoke alarms” 
such as the Biobriefcase at LLNL, will consist of several microfluidic components in a 
MEMS-based system with functions including polymerase chain reaction and 
immunoassay (see Figure 1).  This new design strategy improves the current 
Autonomous Pathogen Detection System through lower reagent consumption, lower 
operating and manufacturing costs, decreased reaction times, networkability and the 
ability to mass-distribute these miniaturized systems in a public setting. 
 
MEMS technology has advanced over the last few years but for the most part the 
resulting devices are early generation prototypes, generally of individual components 
cobbled together, that demonstrate proof-of-principle like the drug delivery system 
in Figure 2a.  Significant work remains to create integrated working devices like the 
micro-mixer in Figure 2b, and still more is required to optimize at the system level.  
The research and development needed for advances is costly and slow, however, 
because microfabrication and testing of devices can take on the order of months per 
cycle.  Current design strategies are ultimately trial-and-error.  Therefore, accurate 
CAD tools are needed to shorten the design/fabrication cycle of these devices. 
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There are several MEMS CAD capabilities currently available that have evolved from 
industry design tools for integrated circuits coupled with mechanical simulation 
capabilities. Furthermore, many, if not all, biosensors will have significant fluidic 
components because of the biochemical nature of the assays. While some of the CAD 
packages have rudimentary fluid dynamics modeling capabilities, for advanced 
design and optimization of biodetection systems it will be necessary to develop an 
advanced modeling capability to address and understand the fundamental physics 
and chemistry associated with complex biological flow in micro-environments. 
 
Complex biological fluids at the microscale.  One of the fundamental research 
problems in this project is polymeric fluid dynamics at the microscale.  The 
biochemical nature of biosensing and detection requires micro-processing of 
macromolecules (polymers) such as DNA or proteins via polymerase chain reaction 
(PCR) or immunoassay, respectively.  In a standard amplification and sequencing 
microprocessor 1010 molecules of bacterial DNA, each of which is approximately 1-2 
mm long when stretched out in solution, will have to pass through channels with 
characteristic length scales of 100 μm or less.  This flow regime presents new fluid 
mechanical issues, different from macro-scale flows, because (1) surface-to-volume 
ratios are extremely large in microchannels; (2) biological fluids demonstrate 
complex, non-Newtonian behavior; and (3) characteristic lengths of the 
macromolecules/cells approach those of the fluid channels. 
 
Modeling complex biological fluids is a challenge because their non-Newtonian 
constitutive behavior is not easily represented.  For example, a highly concentrated 
solution of suspended polymer molecules such as DNA may be represented at large, 
system-level scales with a continuum viscoelastic constitutive model.  This flow 
scenario is typical of a post-amplification process in a PCR device where it is 
computationally prohibitive to discretely represent every DNA molecule.  However, 
when the inter-polymer spacing is comparable to geometry length scales as in a 
microscale flow, a continuum approximation is no longer appropriate.  Instead, a 
discrete molecular approximation is needed, but at a computational expense.  On the 
other hand, in a pre-amplification detection environment very few DNA molecules 
may be present in the flow as a result of some collected air sample that has been 
fluidized; downstream, only a single molecule needs to be captured for amplification.  
In this case a discrete molecular approximation is appropriate, but smaller scale 
chemistry must be included in the model for the capture process.  Figures 3 and 4 
demonstrate these continuum and molecular behaviors, respectively. 
 
Figure 3 is experimental evidence obtained in this project (discussed in more detail 
later) that proves the hypothesis that the presence of long-chain polymers in a 
Newtonian solvent (e.g., Boger fluid, DNA) can cause a bulk fluid to demonstrate 
both viscous and elastic behavior even at micro-molar concentrations.  This behavior 
is drastically different from canonical flows as seen in the vortex enhancement in re-
entrant corners.  One potential problem scenario of this phenomenon occurring in a 
biosensor is the diffusion of a macromolecule across streamlines into one of these 
large recirculation zones, then degradation or even breaking of the molecule in the 
vortex due to shear and finally diffusion back across streamlines to be processed 
downstream without full character.  It is important to be able to predict this type of 
behavior in a device where there is a need to control the working fluid and 
simultaneously manipulate and detect biological species in the fluid. 
 
Figure 4 demonstrates the conformational changes of DNA molecules as they move 
through a micro-valve [1].  Experiments show that long-chain polymers migrate 
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away from regions of high shear.  Also, DNA molecules stretch out in accelerating 
flow regions, and recoil in decelerating flow or stagnant regions.  These types of 
dynamics are relevant because they can affect assumed device performance in a 
biosensor, supporting the hypothesis that molecular-scale processes can have 
substantial system-level effects. Clearly, a design capability to predict the location of 
a DNA molecule, and when it can be transported through a microdevice without a 
change in character, would be a significant advantage over trial-and-error. More 
importantly, the ability to rationally design a bioMEMS device to predictably stretch 
out a DNA molecule on demand would have enormous impact on the development of 
advanced biosensors using single molecule identification. 
 
Research Activities 
 
We set out in this project to develop two approaches to modeling particle-laden fluids 
at the microscale.  The first is a new continuum algorithm for modeling DNA in 
solution at the microscale as a viscoelastic fluid.  The second is a particle 
representation of polymers in fluid to predict the fate of an individual DNA molecule 
in complex microdevice components.  A benchmark or model problem was 
considered for each approach. 
  
The High Weissenberg Number Problem.  Since DNA is a long-chain polymer in 
solution, like a Boger fluid, we chose to model it at the continuum level with the 
Oldroyd-B constitutive equation.  This is an acceptable scale to model from a device 
design perspective as bulk fluid velocities and pressure drops are the key parameters 
for flow control.  Historically, Oldroyd-B fluids have suffered from the inability of 
numerical methods to compute solutions beyond a frustratingly low value of the 
Weissenberg number (elasticity) in 4 to 1 sudden contraction flows with solvent 
viscosity ratio of 1/9, a benchmark problem known as the High Weissenberg Number 
Problem (HWNP) [8-12].  Computational symptoms of the problem include large 
normal stresses near geometric singularities and worsening of the problem with 
refinement.  The critical high Weissenberg number value is O(1).   Furthermore, 
axisymmetric contractions have received much attention in macroscale Oldroyd-B 
flows because of the large recirculation zones that develop in the salient corner of 
the contraction [13].  Our focus was on planar contractions because of MEMS 
fabrication limitations, and microscale flows; vortex enhancement in the corner is 
less intense at the macroscale [14, 15]. 
 
DNA extraction model problem.  As a test problem for particle-fluid coupling we 
focused our effort on modeling DNA extraction in a polymerase chain reaction (PCR) 
chamber as part of the Biobriefcase microfluidic-based pathogen detection system.  
The primary extraction technique currently being pursued by our device collaborators 
at LLNL is a packed bed reactor (Figure 13a), which is essentially a small tube 
packed with approximately 50μm-diameter glass beads.  The physical model 
presents a 3D multi-scale problem where DNA molecules must be resolved along 
with the flow geometry.  A second PCR extraction design is a pillar chip which is an 
array of cylindrical obstructions in a shallow microchannel (Figure 13c).  Though a 
3D problem this latter design lends itself to 2D models.  The restriction to 2D is 
useful and can be reduced to model a single molecule traveling through a smaller 
section of the array.  This is the model problem where we honed our algorithm 
development to model relevant physics and chemistry for full 3D problems. 
 
This model problem offers possibilities for processing polymer-laden fluids.  For 
example, when DNA-laden fluids flow through an array of pillars, size separation may 
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be achieved: longer molecules are slowed by their interaction with the pillars to a 
greater degree than are smaller molecules.  Pillar rods may also be electro-
chemically treated to promote selective binding of macromolecules, yielding a 
mechanism for ``sticking''.  Underlying flow fields in the vicinity of complex 
geometry variations, as in a pillar array or abrupt contraction, display steep velocity 
gradients.  The shear forces due to these gradients can be strong enough to break 
molecular bonds, a dynamic which can be useful in a PCR device but detrimental in a 
drug delivery system.  Another possibility for this model is design of a geometric 
configuration such as a contraction into a very narrow channel through which a 
polymer chain is ``threaded'' for single molecule detection or even sequencing.  The 
success of modeling such strategies relies critically on the fluid-molecule coupling 
that occurs in microdevice channels. 
 
Technical Approach 
 
Our work required advanced algorithmic features in order to treat the three-
dimensional, multi-scale, multi-species, multi-physics problems encountered in the 
DNA extraction model problem.  We rely upon high-resolution finite difference 
methods for the discretization of Newtonian and non-Newtonian fluids.  The 
continuum method is tightly coupled to a new particle representation with reverse 
coupling, including chemistry and electrokinetics.  We use a volume of fluid approach 
to treat irregular geometries.    The model is built on a software framework which 
contains the support for adaptivity, complex geometry and scalability needed for 
large scale simulation. 
 
Fluid discretization.  In our fluid continuum approach we solve the incompressible 
Navier-Stokes equations which will include a generic source term on the right-hand 
side of the momentum equation.  With this source term we couple the fluid to non-
Newtonian stress models such as the Oldroyd-B constitutive relation for the extra 
stress involved in polymeric flows [16] and others in a modular fashion.  It is 
through this source term that we also couple the particle representation.  Our 
underlying spatial discretization for these problems is high-resolution finite-difference 
methods (typically, second-order accurate in space). Our time discretization is the 
semi-implicit predictor-corrector approach of Bell, Colella and Glaz (BCG) [17, 18]. 
When applied to systems such as incompressible viscoelastic flow or advection-
diffusion equations, there are hyperbolic terms, parabolic viscous terms, and an 
elliptic divergence-free constraint.  Under these circumstances, one obtains methods 
that are second-order accurate in space and time, have a time-step constraint based 
on the advective time scale only (CFL condition), and involve the solution of very 
well-behaved linear systems, i.e., ones coming from standard discretizations of 
second-order elliptic and parabolic operators. This allows us to employ methods for 
solving these systems based on multigrid, that is, fast linear solver, concepts. 
 
Particle representation.  In order to track a molecule like DNA, we couple a 
particle method to the continuum model using a PIC, or particle-in-cell 
representation.  This is based on an approach (e.g., [19]) that represents the 
physical dynamics of large molecules as a collection of point masses “connected” 
with spring-like forces.  Fluid-molecule interactions, approximated as Stokes drag 
with a stochastic thermal (Brownian) component, affect both the particle's Newtonian 
time evolution, and act also to change the fluid's dynamics.  This approach to 
particle-fluid coupling distinguishes our strategy from those of other workers, who 
consider the fate of biomolecules in prescribed flow fields.  At high polymer 
concentration, and in channels with molecular length scales, the full coupling is 
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important and can be uniquely addressed by our method.  The particle-fluid 
interaction is short-ranged, so many complications of the PIC methodology (as used 
in plasma physics, for example) do not apply here.  The basic notion of grid-to-point 
local mappings and inverse mappings is used.  The only long-range interaction is the 
incompressibility constraint, a divergence-free condition on the velocity field which, 
via the momentum equations, requires the particle-fluid interaction force to be 
divergence-free as well.  Strategies for accelerating the convergence of this method 
are suggested in [20]. 
 
Volume of fluid/embedded boundary methods.  In order to treat complex 
geometries we use a volume-of-fluid representation of the discretized solution near 
the boundary [21-23].  This technique is also known as the embedded boundary 
method.  In this approach, the surface is represented by its intersection with an 
underlying rectangular grid, or a cookie-cutter approach. This leads to a natural, 
finite-volume discretization of the PDE on irregular control volumes adjacent to the 
boundary.  However, the primary unknowns are assumed to live at the centers of the 
Cartesian grid control volumes, i.e., as if the boundary wasn't there.  Such an 
approach has been shown to give consistent and stable  discretizations, even in the 
case of moving boundaries [24]. It is also routine to prescribe fluxes through the 
irregular boundaries using this approach.  One of the principal advantages of the 
embedded boundary method is that the problem of generating the description of the 
geometry on the grid starting from surface tessellations produced, for example, by a 
CAD system has been completely solved [25]. 
 
Our complex geometry approach using embedded boundaries is complementary to a 
fast and accurate technique to extract surface data from medical images without loss 
in geometric detail [3, 4].  Anatomical surfaces are extracted by means of level-sets 
methods that accurately model the complex and varying surfaces of pathological 
objects such as aneurysms and stenoses. The surfaces obtained are defined at the 
sub-pixel level where they intersect the Cartesian grid of the image domain. It is 
therefore straightforward to construct embedded boundary representations of these 
objects on the same grid. While most classical techniques require construction of a 
structured mesh that approximates the surface in order to extrapolate a 3D finite-
element gridding of the whole volume, our method directly simulates the flow inside 
the extracted surface without losing any complicated details and without building 
additional grids.  This feature makes the embedded boundary method superior to 
body-fitted unstructured grids used for finite element simulations.  With the 
embedded boundary method meshing is more tractable and less expensive 
computationally, especially in the case of a moving boundary as re-gridding is 
unnecessary, requiring only a conservative movement of the boundary. 
 
Electrokinetics.  The working fluid in our models is typically driven by pressure.  
However, microfluidic devices also use a voltage drop, and thus an electric field, to 
drive flow.  The origin of electrokinetic phenomena is the interaction of an applied 
electric field with the thin electrically charged layer that forms at fluid-solid 
interfaces.  In this interfacial region, the electric field induces a body force in the 
charged fluid which drives fluid flow.  However, because the electrically charged 
region of the fluid, often referred to as the diffuse-charge or Debye screening layer, 
is very thin (typically only 1 to 100 nm thick), the coupling between the electric field 
and the fluid flow only shows up in the mathematical formulation as a slip-velocity 
boundary condition.  The boundary conditions for the electrostatics problem can be a 
bit more complicated depending on the material properties of the solid phase and the 
dynamics of diffuse-layer charging [26].  For the purposes of this project, we have 
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assumed that the solid phase is nonpolarizable and that the characteristic time-scale 
of diffuse-layer charging is very small relative to the characteristic time-scale of the 
fluid flow.  These approximations allow us to use a simple homogeneous Neumann 
boundary condition for the electrostatics problem.  It is worth noting that the 
electrostatics problem is completely decoupled from the fluid flow.  As a result, the 
full problem can be solved by first solving for the electric field and subsequently 
solving the Navier-Stokes equations using boundary conditions calculated from the 
solution to the electrostatics problem. 
 
Software approach.  We built our new physics algorithms on the Chombo 
structured-grid framework which is being developed at LBNL under the DOE Office of 
Science SciDAC program as part of the Applied Partial Differential Equations 
Integrated Software Infrastructure Center (APDEC ISIC).  Chombo provides 
adaptive, embedded boundary/volume-of-fluid solvers and high performance, 
parallel support for all the major algorithmic components in this project.  This 
includes elliptic solvers for incompressible flow based on multigrid, higher-order 
hyperbolic methods for advection and second-order time integrators.  It is written in 
C++ and FORTRAN.  Releases are freely available to the public for download.  The 
Chombo framework also contains an interface for receiving CAD and image 
descriptions of geometry and converting to embedded boundary Cartesian meshes. 
 
Results/Technical Outcome 
 
We have developed two state-of-the-art numerical algorithms that have been used 
to simulate microscale biological flows in the two model problems. 
 
Higher-order non-Newtonian continuum modeling and validation.  The first is 
a fundamentally new approach to the numerical modeling of viscoelastic continuum 
flow in an effort to model semi-dilute and concentrated solutions of DNA in 
contraction channel flows [27-29].  Our first approach to discretization of the 
viscoelastic equations of motion (incompressible Navier-Stokes equations, modified 
to include a polymeric contribution to the deviatoric stress, plus the Oldroyd-B 
constitutive relation for the polymer stress) was a semi-implicit method based on 
Lax-Wendroff [27, 29], with a projection method to enforce incompressibility [17, 
18] and a continuous splitting of the viscoelastic terms using Duhamel's formula 
[29].  The algorithm is convergent and stable for a single CFL condition for the full 
range of elastic flows, including the benchmark ``high Weissenberg number'' 
problem of steady-state viscoelastic flow in 4:1 abrupt contractions, where all other 
methods have failed for the past 30 years.  With this method we were able to 
perform preliminary validation studies involving low concentration solutions (Figure 
5).  A graduate student in our group at UCD and LLNL, Andy Nonaka, has been 
working on a higher-order approach to this algorithm.  He has also performed the 
simulations for further validation studies of low concentration solutions. These 
studies have compared results from the viscoelastic flow algorithm with velocity 
fields and pressure drops from DNA experiments performed by another graduate 
student in our group, at UCB, Shelly Gulati (Figure 6) [30].  Shelly has also recently 
demonstrated experimentally large recirculation zones in the flow of a semi-dilute 
DNA solution in the salient corners of planar contractions (see Figure 3).  This is a 3D 
viscoelastic, microscale phenomenon.  Large areas of recirculation and vortex 
enhancement have been observed previously at the macroscale in axisymmetric 
contractions for viscoelastic, non-shear-thinning solutions, but not planar 
contractions, which are required in microfluidic devices due to fabrication limitations.  
Our viscoelastic Oldroyd-B model has not captured this behavior, and, therefore, an 
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improved constitutive relation may be needed (such as the addition of shear-thinning 
in the White-Metzner model). 
 
The novel concept in this work is a continuous splitting of the viscoelastic stress 
terms using Duhamel's principle that partitions terms into explicitly-determined 
hyperbolic and implicitly-determined elliptic parts.  This splitting improves the CFL-
limited stable time step by orders of magnitude for some problems while retaining 
the viscous and elastic limiting behavior of the original PDE.  Starting with linear 
analysis we determine the eigenvalues of the system and prove hyperbolicity 
(positivity of the stress) by introducing the inverse deformation gradient.  We can 
then define a new wave speed from the quasi-linear advection form of the system 
and design to the viscous and elastic limits of the original PDE, while allowing some 
elastic freedom in recovering the viscous limit for well-posedness (see [29] for 
details).  Oldroyd-B can then be re-written where the left-hand side is hyperbolic and 
well-posed, and the right-hand side contains proper and improper source terms. 
 
Our algorithm is stable for a single CFL condition for the full range of elastic flows -- 
from the viscous to the elastic limits -- including HWNP, where all other methods 
have failed for several decades.  The algorithm also proved to be surprisingly robust 
in resolving elastic shear waves in an incompressible flow of a Maxwell fluid  
(Oldroyd-B with μs=0).  If viscosity is added to the Maxwell fluid then hybrid effects 
of elastic wave propagation and steady-state viscous behavior can be seen.  If 
enough viscosity is added then the critical HWNP limit can be reached at critical 
elastic Mach number,  Ma=1, where We=1 and Re=1.  (This assumes that Ma is 
defined  by the total viscosity, not just the polymer component as in  [29].)  We 
have shown that even though the fluid looks to  be steady-state at the HWNP limit it, 
in fact, is not steady as there  is underlying wave behavior occurring.  We further 
note that in the elastic limit we required μp/λ to be finite for well-posedness, i.e., to 
prevent degeneracy in the quasi-linear system. 
 
One other result from this algorithm that is noteworthy is the presence of singular 
structure in the solution just downstream of the contraction corner.  It has not been  
determined if this behavior is physical or a numerical artifact [29, 31], though some 
members of the non-Newtonian fluid  mechanics community embraced this result in 
discussions during the  XIVth International Workshop for Numerical Methods in Non-
Newtonian  Fluids, in Santa Fe, NM, June 2005 [32].  Coupled with our  other finding 
of underlying wave propagation, we believe that  refinement is needed to not only 
obtain solutions in the asymptotic  regime of convergence but also to resolve the fast 
underlying waves, which may be one in the same problem. 
 
Fluid-particle coupling algorithm.  The second foundation of our computational 
effort is an approach for modeling ``bead-rod'' polymers whose dynamics are fully 
coupled to an incompressible viscous solvent [6, 7].  In this algorithm, long chain 
polymers such as DNA are represented as a chain of nodes separated by fictitious 
rigid rods [33].  The nodes are subject to forces by the fluid--both viscous Stokes 
drag and stochastic (thermal, Brownian motion); and the solvent experiences equal 
and opposite body forces.  It is in this sense of obeying Newton's third law of motion 
that we consider the dynamics to be ``tightly coupled''.  Additionally, the polymer 
nodes may experience elastic collisions with domain boundaries.  With this numerical 
algorithm, we have been able to simulate polymer-boundary interactions which occur 
in size-separation and extraction devices (Figure 7).  This algorithm promises to 
demonstrate for the first time the effect of a semi-dilute or concentrated solution of 
discretized particles on a fluid. 
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Particle interactions.  In the freely-jointed ball-rod model we initially implemented, 
as with many other current implementations (e.g., [34]), crossing of rod sections is 
allowed.  The resulting behavior has a strong theoretical foundation (e.g., [35]) and 
is therefore important for algorithm validation, but does not respect the correct non-
crossing physical behavior of real molecules. Furthermore, macromolecules like DNA 
are charged, and chemically active. They interact through screened Coulombic 
interactions and migrate in response to imposed electric fields. Microfluidic 
separators have been designed based on the increase of residence time with 
molecule length in packed bed geometries, or through chemically-mediated 
residence time enhancement achieved by binding selective proteins to channel 
surfaces.  These physical effects are characterized by intra-polymer, inter-polymer, 
and polymer-wall interaction potentials which may be long-ranged.  We incorporated 
these Coulombic interactions into our model using a short-range Debye-Hückel 
potential.  Results for intra-polymer and polymer-structure interactions are shown in 
Figure 8. 
 
Electrokinetics.  We addressed two test problems to verify our simulation capability 
for electro-osmotic flows: 2D flow in an empty rectangular channel with a DC electric 
field applied along the direction of the channel, and 2D flow around a circular post 
(with the same electro-osmotic mobility as the channel walls) in a rectangular 
channel with a DC electric field applied along the direction of the channel.  For the 
first test problem, the full analytical solution is known for both the steady-state and 
time-dependent problems.  For the steady problem, the velocity field is simply a plug 
flow determined from the parallel component of the electric field. For the time-
dependent problem, the velocity field is completely directed down the axis of the 
channel and only depends on the coordinate direction perpendicular to the channel.  
Figure 9 shows that the simulation is qualitatively correct; the slip-velocity at the 
boundary gradually diffuses into the interior of the channel and eventually reaches a 
steady-state which is a plug flow with the expected value of 0.1 cm/sec. 
 
For the second problem, there is no analytical solution, but it is known that the 
steady-state solution is a potential flow that is proportional to the electric field with 
the constant of proportionality given by the electro-osmotic mobility. Figure 10 
shows that near steady-state, the fluid velocity field produced by the simulation is in 
good agreement with this expectation.  While the fluid has not quite yet reached 
steady-state, the similarity between the electric and velocity fields is evident.  The 
value of the mobility computed by taking a few random points in the physical domain 
yields b=7.81e-04 which is getting close to the electro-osmotic mobility value of 
0.001 prescribed at the boundaries. Figure 11 shows the time evolution of the fluid 
flow in response to an instantaneously applied electric field at t=0 sec. 
 
We also applied the electrokinetic model to the staggered array geometry in the 2D 
fluid-particle model problem.  We were not able to carry this computation out to a 
meaningful time due to a numerical instability encountered for low Reynolds number 
flows.  This was unexpected as the semi-implicit approach for incompressible viscous 
flow should be stable for the advective CFL but also capture the viscous time scale.  
Figure 12 shows the electric field for this geometry.  We continue to work this 
problem out using Stokes flow initialization techniques. 
 
3D device simulation.  Both numerical algorithms – continuum and hybrid -- 
described above are robust and convergent for the model problems.  We also have 
results for flows in more realistic, complicated geometries that model Biobriefcase 
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designs (Figure 13a,c), including 3D (Figure 13b,d).  One exemplary fluid dynamics 
question which the Biobriefcase project engineers sought to answer was:  what is the 
largest operating flow rate for the device such that one DNA molecule is captured for 
amplification?  We were able to address this question with our fluid-particle model.  
Initially, we found that low Reynolds number flows are dominated by the Brownian 
motion of the particles, inhibiting flow-through in an extraction chamber.  On the 
other hand, the inertial effects in higher Reynolds number flows were too strong for 
polymer residence on a pillar.  In the end we “validated” the operating Reynolds 
number of 1 for the flow-through device where viscous and inertial forces are 
essentially balanced, allowing a moderate residence time of a polymer molecule on 
an array structure for amplification. 
 
Coupling of embedded boundary method to medical image surface 
extraction.  Our approach to complex geometry using embedded boundary methods 
has been leveraged to simulate cardio-pulmonary flows in realistic anatomies.   We 
demonstrated this new approach to anatomical flows on a patient-specific carotid 
artery with stenosis (Figure 14) and a trachea which has undergone tracheostomy 
(Figure 15).  The resolution of geometric detail in Figure 14 and 15 is a recent 
improvement over previous results in the field where surface meshes are a smooth 
representation of the original geometry, illuminating the advantage of our new 
approach over the previous state-of-the-art.  Resolution of geometric details is 
important because small scale perturbations in the flow can have downstream effect 
as seen in the highly-resolved 2D results of Figures 16 and 17.  This capability can 
provide clinicians with time-sensitive and accurate information needed to evaluate 
how pathologies form, how they evolve, and ultimately how they are effectively 
treated. 
 
Exit Plan 
 
The original exit plan for this LDRD was to use our results to leverage funding from 
DHS Advanced Scientific Computing based on modeling interest from the 
Biobriefcase team, an LLNL DHS-funded device project.  A simulation for DNA 
extraction in a 2D representation of a pillar chip was successfully performed as 
proof-of-concept [6, 7].  At the beginning of our last year of funding, DHS ASC 
decided to no longer fund simulation work.  We then focused our attention on follow-
on funding from NIH because our work is also applicable to the design of biomedical 
microdevices as well as cardio-pulmonary flows; both are important to the healthcare 
industry.  We have several proposals pending.  We are also seeking to continue basic 
applied math research of complex flows through the DOE Office of Science Applied 
Math Base Program.  Since this work leveraged the Chombo software developed 
under the DOE SciDAC program some aspects of this project are ongoing.  Our 
capability continues to attract interest from MEMS-based device projects at LLNL. 
 
Summary 
 
The result of this LDRD project is an LLNL capability to model complex biological 
fluids like DNA at the microscale for the purpose of designing and optimizing 
microdevice components.  We began this project intending to model a range of 
physical phenomena observed in microfluidic devices in order to provide a general-
purpose computational tool for device development.  For relevance to device projects 
at LLNL we concluded this work by focusing on the design needs of the Biobriefcase, 
specifically, DNA extraction chambers in the PCR module [5, 6]. 
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This work has led to several milestones notable in the scientific community.  The first 
is the development of an algorithm for continuum viscoelasticity which solves the 
High Weissenberg Number Problem, a decades old problem in the non-Newtonian 
flow community [29].  Though our interest was to use Oldroyd-B as a model for 
long-chain polymers (like DNA) in a fluid at the microscale, because of continuum 
scaling, our viscoelastic model and algorithm are also applicable to macroscale 
industrial flows such as polymer extrusion.  A second scientific achievement is the 
development of a fully coupled fluid-polymer algorithm which promises to 
demonstrate for the first time the effect of a semi-dilute or concentrated solution of 
discretized particles on a fluid [7].  In this hybrid algorithm we have also explored 
and modeled short-range interactions between polymers, as well as electrokinetic 
effects.  Finally, our methodology for treating irregular geometry has been coupled to 
a fast and accurate technique for extracting surface data from patient-specific 
medical images without loss in anatomical detail [3]. 
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Figure 1 Miniaturization design strategy for Autonomous Pathogen Detection System (APDS).  
Macroscale biochemical detection process will leverage microfluidic technology and housed in a 
small briefcase size device. 
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Figure 2 (a) Prototype integrated continuous monitoring and drug delivery system.  (b)  A working 
microfluidic mixer with canonical components developed under the DARPA μFLUMES program.  
(Liepmann, UCB BioE) 
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Figure 3 Continuum behavior of DNA in microscale flow.  Streak images comparing flow of water 
(left) and DNA (right) in a sudden planar contraction for increasing elasticity.  The viscoelastic 
behavior of this DNA solution is demonstrated by large, slowly recirculating vortices in the salient 
corners of image on the right.  Flow is from left to right in each image.  This data is a result of the 
project, and thus, proof of a hypothesis that DNA at microscale exhibits complex non-Newtonian 
behavior.  Gulati, Muller, Liepmann and Trebotich 

 
 

 
Figure 4 Variations in the conformation of DNA molecules traveling through a micro-check valve.  
The 5mm length scale shown is consistent for all the DNA pictures.  The molecules stretch out in 
the accelerating section of the flow and then recoil in regions of expansion flows [1]. 

–14– 



 

 

 
 
Figure 5 Preliminary low concentration validation.  Computational versus experimental velocity 
profiles at various locations before, at and after sudden contraction in microchannel.  
Agreement is good, but off a bit due to model geometry being different from experiment, 
particularly near the contraction as in plot on top right. 
 

 
  a   b     c 
 
Figure 6 Improvement of low concentration validation.  a) Experimental microchannel.  (b) Horizontal 
velocity computed with viscoelastic model.  (c) Comparison of experimental DPIV (red) and 
computational (blue) velocity profiles at contraction. [1] 
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Figure 7 Time sequence of genomic DNA flowing in 2D model of pillar chip PCR chamber.  No 
intra-polymer interaction (rods cross).  DNA molecule enters from left in (a), then wraps around 
bead in (b), is loosened by hydrodynamic and Brownian forces in (c) and is swept out of the 
chamber by the flow field in (d) and (e).  Color map indicates underlying flow field. [6, 7] 

  
a      b    

  
c      d 

  
e      f 
 

Figure 8 Time sequence of intra-polymer and polymer-structure interactions.  (a) Nearly 
entangled polymer.  (b)  Short-range attachment.  (c) Acceleration around pillar due to Brownian 
perturbation and hydrodynamic drag. (d) More acceleration of the tail and slowing of the head in 
stagnation region in wake of pillar.  (e)  Accelerated tail catching up with stagnated head.  (f) Re-
entanglement in wake. [2] 
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Figure 9 Fluid flow in a rectangular channel driven by an electrokinetic slip-velocity at the 
top and bottom boundaries at times t=0.00012 sec, t=0.00037 sec, t=0.00049 sec, 
t=0.00073 sec, t=0.00171 sec, and t=0.00281 sec (ordered left to right, top to bottom).  A 
potential drop of 1 V in the x-direction is instantaneously switched on at t=0 sec.  The 
channel is 100 μm wide, the fluid is an aqueous solution with a kinematic viscosity of 
0.01 cm2/sec, and the electro-osmotic mobility is 0.001.  With this set of parameters, the 
steady-state plug flow should have a velocity of 0.1 cm/sec which is essentially what is 
observed by time t=0.00281sec. [5] 

 
 
Figure 10 Comparison of electric field to steady fluid flow field in a rectangular channel 
containing a cylindrical post near steady-state (t=11.572 sec).  The top row compares the x-
component of the electric and velocity fields (electric field on left, velocity field on right); the 
bottom compares the y-components.  Electrokinetic slip occurs at the top and bottom 
boundaries as well as on the surface of the post.  A potential drop of 10 V in the x-direction 
is instantaneously switched on at t=0 sec.  The channel is 1 cm wide, the post has a radius 
of 1 mm, the fluid is an aqueous solution with a kinematic viscosity of 0.01 cm2/sec, and the 
electro-osmotic mobility on all physical boundaries is 0.001. [5] 
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Figure 11 2D fluid flow in a rectangular channel containing a cylindrical post at times  
t=0.0610 sec, t=1.221 sec, t=4.272 sec, t=6.104 sec, t=8.545 sec, and t=11.572 sec 
(ordered left to right, top to bottom).  Electrokinetic slip occurs at the top and bottom 
boundaries as well as on the surface of the post.  A potential drop of 10 V in the x-direction 
is instantaneously switched on at t=0 sec.  The channel is 1 cm wide, the post has a radius 
of 1 mm, the fluid is an aqueous solution with a kinematic viscosity of 0.01 cm2/sec, and the 
electro-osmotic mobility on all physical boundaries is 0.001. [5] 

 
 
Figure 12 Electric field for a rectangular channel containing a staggered array of cylindrical 
posts (Ex on left, Ey on right).  Electrokinetic slip occurs at the top and bottom boundaries as 
well as on the surface of all posts.  A potential drop of 1 V in the x-direction is 
instantaneously switched on at t=0 sec.  The channel is 2 mm wide, the each post has a 
radius of 25 μm, the fluid is an aqueous solution with a kinematic viscosity of 0.01 cm2/sec, 
and the electro-osmotic mobility on all physical boundaries is 0.001. [5] 
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Figure 13 DNA extraction chambers:  device and model.  (a) Flow-through PCR thermal cycler 
(top) contains a packed bed DNA extraction chamber (external view at bottom) which is packed 
with 50μm beads.  (b) Cut-away view of 3D continuum model for packed bed geometry with 
beads. (c) Pillar chip with SEM of array channel. (d) 2D continuum model (pressure data) for 
array channel. [6] 

   
  a   b   c   d 
 
Figure 14 Patient-specific stenotic carotid artery:  image to mesh to simulation.  (a) Volume rendering 
from MRI.  (b)  Level-sets on image slice.  (c)  Detail of extracted surface intersecting Cartesian mesh 
(embedded boundary method). (d)  3D simulation of continuum flow representing pressure. [3] 

    
a   b    c   d 

 
Figure 15 Patient-specific trachea with tracheostomy:  image to mesh to simulation.  (a) Volume 
rendering from CT.  (b)  Level-sets on image slice.  (c)  Detail of extracted surface intersecting 
Cartesian mesh (embedded boundary method). (d)  3D simulation of air-flow representing pressure.  
Note the geometric details in the rippled surface. [4]10 
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a      b    

  
c      d 

Figure 16 2D slices of patient-specific stenotic carotid artery.  (a) Normal velocity with streamlines, 
middle seed points.  (b)  Normal velocity with streamlines, upper seed points.  (c) Normal velocity with 
streamlines, lower seed points. (d) Pressure with contours. 

  
a      b    

  
c      d 

Figure 17 Patient-specific trachea with tracheostomy.  (a) Normal velocity with streamlines, lower seed 
points.  (b)  Normal velocity with streamlines, upper seed points.  (c)  Vorticity. (d)  Pressure with 
contours. 
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