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ABSTRACT

A comprehensive study of mantle anisotropy along the Red Sea and across Saudi Arabia

was performed by analyzing shear-wave splitting recorded by stations from three different

seismic networks: the largest, most widely distributed array of stations examined across Saudi

Arabia to date.  Stations near the Gulf of Aqaba display fast orientations that are aligned parallel

to the Dead Sea Transform Fault, most likely related to the strike-slip motion between Africa and

Arabia.  However, most of our observations across Saudi Arabia are statistically the same,

showing a consistent pattern of north-south oriented fast directions with delay times averaging

about 1.4 s.  Fossilized anisotropy related to the Proterozoic assembly of the Arabian Shield may

contribute to the pattern but is not sufficient to fully explain the observations.  We feel that the

uniform anisotropic signature across Saudi Arabia is best explained by a combination of plate

and density driven flow in the asthenosphere.  By combining the northeast oriented flow

associated with absolute plate motion with the northwest oriented flow associated with the

channelized Afar plume along the Red Sea, we obtain a north-south oriented resultant that

matches our splitting observations and supports models of active rifting processes.  This explains

why the north-south orientation of the fast polarization direction is so pervasive across the vast

Arabian Plate.
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INTRODUCTION

When deformed by dislocation creep, olivine in the upper mantle develops lattice

preferred orientations (LPO), where the fast a-axes become parallel to the induced shear, leading

to velocity variations with propagation direction (Christensen, 1984; Mainprice and Silver,

1993).  Shear waves encountering such anisotropic regions will split into two orthogonal

components, one traveling faster than the other.  The anisotropy can be characterized by the

polarization direction of the fast wave (ϕ) and the delay time between the fast and slow waves

(δt), and these measurements can be used to provide constraints on the mechanisms causing

deformation in the upper mantle (Silver and Chan, 1991; Vinnik et al., 1992).  In rift

environments, one may expect ϕ oriented perpendicular to the rift since LPO should develop

parallel to extension.  However, it has been shown in a number of rift environments, such as the

Baikal Rift zone, the Rio Grande Rift, and the East African Rift, that the observed ϕ is actually

closer to rift-parallel (Gao et al., 1997; Gashawbeza et al., 2004; Walker et al., 2004).  This may

indicate more complex rifting mechanisms or other deformation processes that overprint

extension signatures.  For the East African Rift, it has been suggested that anisotropy

observations are not associated with present-day plate motion and asthenospheric shear, but

rather reflect previous tectonic episodes whose anisotropic signature has been “frozen” into the

lithosphere (Gashawbeza et al, 2004; Walker et al., 2004).

Saudi Arabia and the Red Sea Rift zone offer an excellent environment in which to study

the seismic anisotropy associated with rifting and extension.  Several different types of models

have been proposed to explain how continental rifting in the Red Sea developed.  The passive

rifting model assumes simple shear conditions where extensional stresses are accommodated on

large-scale detachment planes extending through the entire lithosphere below the rift.  Flow
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beneath the rift is parallel to the direction of extension as the underlying asthenosphere is

passively upwelled, which would predict a rift-perpendicular ϕ (Wernicke, 1985; Voggenreiter et

al., 1988).  The active rifting model involves thinning of the lithosphere by flow in the

underlying asthenosphere and requires the presence of hot, ascending material (Camp and

Roobol, 1992; Ebinger and Sleep, 1998; Daradich, 2003).  In this case, local convection may

lead to more complicated flow patterns and therefore more complex anisotropy at depth.  Several

studies have suggested that these two end-member models may not be mutually exclusive; rifting

in the Red Sea may have been initiated by far-field collision and passive processes, followed by

more recent active processes associated with a mantle plume (Camp and Roobol, 1992; Ebinger

and Sleep, 1998; Daradich et al., 2003).

Several previous studies have examined the anisotropic characteristics in the vicinity of

the Red Sea Rift and show a fairly consistent pattern.  Using 8 PASSCAL stations across the

Arabian Shield (Figure 1), Wolfe et al. (1999) performed shear-wave splitting analysis and found

δt of 1.0-1.5 s and ϕ oriented approximately north-south.  Using receiver functions, Levin and

Park (2000) found evidence for a more complex anisotropic structure beneath PASSCAL station

RAYN (Figure 1), consisting of two dipping layers at depth, but again with a resultant ϕ oriented

north-south.  Further north, Schmid et al. (2004) and Levin et al. (2006) examined splitting at

several stations near the Gulf of Aqaba and the Dead Sea Transform Fault, where they found

average δt of about 1.3 s and ϕ slightly east of north, with some evidence for a more complex,

two-layer anisotropic model.  However, each of these studies was somewhat limited in their

station distribution and data availability.

In this study, we present a more comprehensive analysis of the anisotropic signature

along the Red Sea and across Saudi Arabia by analyzing shear-wave splitting recorded by
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stations from three different seismic networks.  This is the largest, most widely distributed array

of stations examined across Saudi Arabia to date.  We demonstrate that the north-south

orientation of the fast polarization direction is not just valid at isolated sites on the Arabian

Shield, but extends throughout the whole of Arabia.  We feel that the observations may be

influenced by fossilized anisotropy dating back to the Proterozoic, but are dominated by a

combination of both plate and density driven flow in the asthenosphere.

SHEAR-WAVE SPLITTING ANALYSIS AND RESULTS

Teleseismic data recorded on broadband instruments from three different seismic arrays

were used.  The largest array, the Saudi Arabian National Digital Seismic Network (SANDSN),

is operated by the King Abdulaziz City for Science and Technology (KACST) and includes 25

broadband stations distributed along the eastern edge of the Red Sea and across Saudi Arabia

(Figure 1).  Under a unique agreement with KACST, data from events occurring since 2000 have

been provided for study (Al-Amri and Al-Amri, 1999).  To supplement the SANDSN coverage,

we also analyzed data recorded by the 8 stations of the PASSCAL Saudi Arabian Broadband

Array, which operated from November 1995 to March 1997 (Vernon and Berger, 1998), as well

as data recorded between 1998 and 2001 from 2 stations deployed in Jordan, which are jointly

operated by the Jordan Seismological Observatory, Lawrence Livermore National Laboratory,

and the U.S. Geological Survey (Rodgers et al., 2003; Figure 1).

We primarily analyzed SKS phases recorded at these stations, but S phases and a few

SKKS observations were also included to improve the incidence angle and back-azimuth

coverage.  The phases of interest were band-pass filtered between 0.05 and 1 Hz to remove long-

period signal and high frequency noise.  For events displaying clear signal, measurements of the

splitting parameters, including ϕ, δt, and their associated errors, were made using the approach
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of Silver and Chan (1991).  In total, we selected 104 records of SKS phases, 7 records of SKKS

phases, and 24 records of S phases, using a total of 135 events.  See the electronic auxiliary

material for details on which events were used, examples of the waveform analysis, and the

resulting measurements.

The splitting parameters from different events at each station were averaged to find an

overall resultant and these are shown in Figure 2.  In general, the stations display a north-south

oriented ϕ with an average δt of 1.4 s, similar to the findings of previous studies throughout the

area (Wolfe et al., 1999; Levin and Park, 2000; Schmid et al., 2004; Levin et al., 2006).

Statistical analyses, including the student t-test and weighted averages (Taylor, 1982), were used

to examine the variation in splitting observations at individual stations more closely and to

compare the observations from different stations to one another.  None of the stations showed

significant back-azimuth variation, implying that multiple layers of anisotropy or dipping

anisotropic symmetry axes are not required, and the observations at most stations were

statistically indistinguishable.  The stations near the Gulf of Aqaba (Figure 2 inset) are a noteable

exception.  While statistically similar to one another, this group of stations displays a statistically

different (at a 95% confidence level) average ϕ that is rotated further east than the other stations

examined.

DISCUSSION

Gulf of Aqaba Stations

The statistically different measurements in the Gulf of Aqaba region are similar to

observations made at nearby stations by Schmid et al. (2004) and Levin et al. (2006).  At the two

stations they examined, Schmid et al. (2004) found an average ϕ of 3˚-8˚ east of north and a δt of

about 1.3 s.  They argue that the fast axis orientation is parallel to the Dead Sea Transform (DST)
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system and believe that this orientation is due to the strike-slip motion between Arabia and

Africa.  Levin et al. (2006) examined both one- and two-layer models fitting the splitting

parameters in this area, and they argue that the data can be best fit by a two-layer model, where

neither layer has a ϕ parallel to the DST.  Their interpretation is that the two-layer model reflects

deformation in the asthenosphere caused by absolute plate motion overlain by fossilized

anisotropy.  Our observations at stations near the DST can be fit by a two-layer model similar to

the one proposed by Levin et al. (2006); however, this fit is not statistically better than our one-

layer model given the larger degrees of freedom.  Therefore, we feel that the splitting

observations at the Gulf of Aqaba stations can be best explained by a one-layer model whose ϕ is

oriented parallel to the DST.  This concurs with the findings of Schmid et al. (2004) and is

similar to observations made along other transform boundaries where fault parallel shear in the

mantle is believed to generate the anisotropic signature (Vinnik et al., 1992; Bostock and

Cassidy, 1995; Russo et al., 1996).

Stations across Saudi Arabia

Aside from the additional complexity in the Gulf of Aqaba area, most of the splitting

parameter observations across Saudi Arabia are very consistent.  Yet, a straightforward

explanation for these observations is difficult to apply.  The observed north-south ϕ is not

oriented perpendicular to the Red Sea Rift and therefore does not support a passive rifting model.

Also, the orientation of ϕ is at least 30˚ different from the reported absolute plate motion

direction (Figure 2).  It is possible that the anisotropic signature obtained could be the result of

fossilized anisotropy in the lithosphere, where ϕ is aligned parallel to the northerly strike of

accreted terranes and sutures dating back to the Proterozoic assembly of the Arabian platform

(Stoeser and Camp, 1985; Stern, 1994).  Other cratons have been shown to display ϕ aligned
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parallel to Precambrian geology, and similar observations have been made in other rift

environments as well (Gashawbeza et al., 2004; Silver, 1996; Walker et al., 2004).  Using

common percentages of anisotropy (4-5%; Mainprice and Silver, 1993), the lithosphere would

need to be about 140 km thick to obtain the observed δt.  However, xenolith temperature and

seismic tomography studies indicate that the lithosphere thins to about 75 km near the Red Sea

Rift (Almond, 1986; Camp and Roobol, 1992; Benoit et al., 2003) and receiver function analysis

suggests that the lithospheric thickness is variable across the Arabian Shield (Tkalcic et al.,

2005).  Therefore, while fossilized anisotropy may contribute to the observed splitting

parameters, it is unlikely the dominant cause.

Therefore, we feel that the observed splitting parameters are the result of a complex

interaction of mantle flow in the asthenosphere.  Shear caused by the absolute plate motion,

which is directed approximately 40˚ east of north at about 22 mm/yr (Figure 3; DeMets et al.,

1994; Reilinger et al., 1997), may affect the alignment of mantle minerals.  However, it has also

been suggested that flow radiating from the mantle plume beneath Afar is channelized towards

the Red Sea Rift (Ebinger and Sleep, 1998), which is oriented approximately 30˚ west of north.

Assuming that the strain caused by the plume flow is comparable to that of the plate motion, we

can combine these two flow orientations, similar to the vector approach of Silver and Holt

(2002). This gives an overall resultant that is oriented with a north-south alignment (Figure 3).

Mantle flow parallel to extension along the rift, such as in the passive rifting model,

would also display a similar orientation to the plate motion.  However, since the north-south

orientation is also observed far from the rift axis, we favor the absolute plate motion as the

contributing vector.  Several other lines of evidence also help support our conclusions.  Seismic

tomography models have shown that the upper mantle beneath the western portion of the
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Arabian Shield is anomalously slow, with velocities increasing towards the continental interior

(Debayle et al., 2001; Benoit et al., 2003).  These observations are attributed to thermal

differences beneath Saudi Arabia and indicate much hotter mantle beneath the Red Sea than

beneath the interior of the shield, which is consistent with plume flow directed beneath the rift.

Surface wave and receiver function analysis shows that there is a change from vertical flow in

southwest Saudi Arabia to horizontal flow further north, also consistent with the presence of

channelized flow from the mantle plume (Tkalcic et al., 2005).  Daradich et al. (2003)

demonstrated that the higher elevations along the Red Sea Rift and the overall tilt of the Arabian

plate result from viscous stresses associated with large-scale mantle flow from the Afar plume.

In addition, Schilling et al. (1992) found isotopic evidence for mantle mixing between depleted

asthenosphere and plume flow in Saudi Arabia, supporting the idea that an interaction of flow is

occurring at depth.  This combination of both plate and density driven flow may explain the

observed anisotropic signature and is consistent with an active rifting model.

CONCLUSIONS

Teleseismic data recorded by the broadband instruments from three different seismic

arrays have been used to examine shear-wave splitting along the eastern edge of the Red Sea and

across Saudi Arabia.  Stations in the Gulf of Aqaba display fast orientations that are aligned

parallel to the Dead Sea Transform Fault.  However, aside from this group, our observations

across Saudi Arabia show a consistent pattern of north-south oriented fast directions with delay

times averaging about 1.4 s.  While fossilized anisotropy related to the Proterozoic assembly of

the Arabian Shield may contribute to our observations, we feel that the anisotropic signature is

best explained by a combination of plate and density driven flow in the asthenosphere.

Combining the northeast oriented flow associated with absolute plate motion with the northwest
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oriented flow associated with the mantle plume beneath Afar generates a north-south oriented

resultant that matches our splitting observations.
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FIGURE CAPTIONS

Figure 1.  Station map showing the different arrays used in this study.  The blue triangles are the

broadband stations of the Saudi Arabian National Digital Seismic Network (SANDSN), the

yellow triangles are the PASSCAL Saudi Arabian Broadband Array, and the red triangles are the

two stations in Jordan.  The corresponding names for each station are listed.

Figure 2.  Map showing average splitting parameters.  The bold, center lines at each station are

oriented in the station’s average ϕ and the length of the line is scaled to the average δt.  The

dashed “fans” show one standard deviation of the fast angle.  The inset provides a closer view of

the Gulf of Aqaba stations, whose respective names are also listed.  The stations are the same as

in Figure 1.  The absolute plate motion direction is shown by the black arrow (DeMets et al.,

1994; Reilinger et al., 1997).

Figure 3.  Vector examination of plate motion (red arrow) coupled with channelized plume flow

(blue arrow) beneath Saudi Arabia, similar to the approach of Silver and Holt (2002).  If we

estimate that the absolute plate motion is oriented 40º clockwise (CW) from North at a rate of

about 22 mm/yr and that the channelized plume flow is oriented approximately 30º counter-

clockwise (CCW) from North, then the rate of plume flow needed to obtain a north-south

resultant (black dashed arrow) is about 27 mm/yr.  Combining plate driven flow with density

driven flow may explain the north-south oriented ϕ observed.
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