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IntroductionIntroduction
Multilayer coatings for the 7 EUV channels of the AIA have been 
developed1 and completed successfully on all AIA flight mirrors. 
Mo/Si coatings (131, 171, 193.5, 211 Å) were deposited at 
Lawrence Livermore National Laboratory (LLNL). Mg/SiC (304, 
335 Å) and Mo/Y (94 Å) coatings were deposited at Columbia 
University

EUV reflectance of the 131 / 335 Å, 171 Å, 193.5 / 211 Å primary 
and secondary flight mirrors and the 94 / 304  Å secondary flight 
mirror was measured at beamline 6.3.2. of the Advanced Light 
Source (ALS) at LBNL

EUV reflectance of the 94 / 304  Å primary and secondary flight 
mirrors was measured at beamline X24C of the National 
Synchrotron Light Source (NSLS) at Brookhaven National Lab.
Preliminary EUV reflectance measurements of the 94, 304 and 
335 Å coatings were performed with a laser plasma source 
reflectometer located at Columbia University

Prior to multilayer coating, Atomic Force Microscopy (AFM) 
characterization and cleaning of all flight substrates was 
performed at LLNL

Multilayer-coated AIA flight 
mirror pair at 335 Å (Mg/SiC, 
left) and 131 Å (Mo/Si, right)

1 R. Soufli, D. L. Windt, J. C. Robinson, E. A. Spiller, F. J. Dollar, A. L. Aquila, E. M. Gullikson, B. Kjornrattanawanich, 
J. F. Seely, L. Golub “Development and testing of EUV multilayer coatings for the atmospheric imaging assembly 
instrument aboard the Solar Dynamics Observatory”, Proc. SPIE 5901, 59010M (2005).
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where S(f) ≡ PSD (nm4),                        
f1= 10 -3 nm-1 , f2 = 5×10-2 nm-1
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AFM data on flight substrates at LLNL determine surface roughnesAFM data on flight substrates at LLNL determine surface roughness s 
and reveal morphology associated with specific polishing techniqand reveal morphology associated with specific polishing techniquesues
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obtained at LLNL on AIA flight substratesobtained at LLNL on AIA flight substrates
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Isotropic surface finish

σ = 0.14 nm rms σ = 0.51 nm rms

“Shadowing” is caused during multilayer deposition by sputtered species bouncing off hardware 
parts in the vicinity of the substrate, causing the multilayer to miss thickness/wavelength 
specifications in these areas

In the case of the AIA optics, the D-shaped mask is of particular concern for shadowing, which 
occurs around the center line of the optic:
(1) Within the substrate region that undergoes multilayer deposition
(2) Underneath the mask, in the region that is expected to remain covered

To maximize mirror performance, multilayer To maximize mirror performance, multilayer ““shadowingshadowing””
due to coating masks and fixtures needs to be minimizeddue to coating masks and fixtures needs to be minimized

Coated region Coated region 
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EUV reflectance measurements vs. azimuth angle are performed at EUV reflectance measurements vs. azimuth angle are performed at r = 15 mm on a test r = 15 mm on a test 
AIA secondary to assess improvements in shadowing due to DAIA secondary to assess improvements in shadowing due to D--mask modificationsmask modifications

AIA mirrors benefit from DAIA mirrors benefit from D--mask design modifications mask design modifications ReflectometryReflectometry and scattering and scattering beamlinebeamline 6.3.2 (ALS)6.3.2 (ALS)
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Beamline Specifications
• Wavelength precision: 0.007%
• Wavelength uncertainty: 0.013%
• Reflectance precision: 0.08%
• Reflectance uncertainty: 0.08%
• Spectral purity: 99.98%
• Dynamic range: 1010

Precision Reflectometer
• 10 µm × 300 µm beam size
• 10 µm positioning precision
• Angular precision 0.01 deg
• 6 degrees of freedom
• Sample size up to 200 mm
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Peak wavelength and reflectance of 131 Peak wavelength and reflectance of 131 ÅÅ flight primary meet flight primary meet 
specifications in entire clear aperturespecifications in entire clear aperture
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Peak wavelength and reflectance of 131 Peak wavelength and reflectance of 131 ÅÅ flight secondary meet flight secondary meet 
specifications in entire clear aperturespecifications in entire clear aperture
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*∆R = predicted reflectance loss due to high-spatial 
frequency roughness, based on AFM measurements of the 
substrate and on a multilayer growth model

EUV reflectance of flight mirrors is consistent with AFMEUV reflectance of flight mirrors is consistent with AFM--
measured substrate roughnessmeasured substrate roughness
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Flight substrate topography causes EUV reflectance variations Flight substrate topography causes EUV reflectance variations 
consistent with EUV scattering consistent with EUV scattering 

Loc. A (r = 90 mm, ϕ = 0°), Rpeak = 31.7 % 

Loc. C (r = 75 mm, ϕ = - 30°), Rpeak = 34.2 % 
Loc. D (r = 75 mm, ϕ = 30°), Rpeak = 34.6 % 

Loc. B (r = 90 mm, ϕ = 60°), Rpeak = 32.2 % 

Mo/Si-coated flight mirrors at 
193.5 Å (right) and  211 Å (left)
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