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Abstract

Using the energetic material Pentaerythritol Tetranitrate (PETN) as a specific example of molecular 

crystal, we describe the development of a simple coarse-graining procedure by grouping several atoms or 

whole functional groups into single charge-neutral beads. As compared to fully atomistic calculations the 

coarse-grained model speeds up simulations by more than two orders of magnitude. Yet, by adjusting only

two parameters in the coarse-grained interaction, the model accurately predicts the lattice constants, 

sublimation energy, pressure-volume curve up to P=10 GPa, and energetically the most stable facets. 

Computed surface and desorption energies, bulk modulus, and equilibrium morphology are reported as well.  
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Molecular crystals are becoming increasingly important in numerous applications ranging from drugs,

pigments, agrochemicals, dyes, optoelectronic materials, and energetic materials used in detonation devices. 

Better utilization of such materials warrants a good understanding of the morphological properties of the 

crystals, as well as the response of exposed surfaces to external factors like temperature, impurities, solvent, 

and so on. With the availability of sophisticated inter-atomic interactions or force fields, parameterized 

primarily for organic molecules, it is becoming increasingly possible to study the surface kinetics and the 

morphological evolution of such materials at the atomic level via classical molecular mechanics [1]. 

However, typical molecules in such materials are uncharged and non-polar, and all the important dynamics 

is governed by weak inter-molecular interactions of short spatial range, while a significant part of atomistic 

molecular dynamics (MD) gets consumed in computing both intra-molecular and Coulombic energies and 

forces. One way to overcome this inefficiency is to coarse-grain a group of atoms into single charge-neutral 

“beads”. The resulting decrease in the intra-molecular degrees of freedom and the absence of long-ranged 

electrostatics can significantly increase computational speed, while fewer inter-molecular interaction 

parameters can make it easier to fit select experimental parameters of interest for specific materials systems.

In this Letter we consider the energetic material Pentaerythritol Tetranitrate (PETN), and develop a 

simple coarse-grained interaction potential for use in MD or Monte Carlo simulations. As compared with 

fully atomistic calculations the coarse-grained potential is found to be more than 100 times faster. The 

fitting of a single length and a single energy term in the nonbond interaction yields not only accurate lattice 

constants, but several other properties, including sublimation energy, and pressure-volume (P-V) curve 

with excellent accuracy as compared to room-temperature experimental measurements. Additional 

quantities, i.e., dominant facets in the equilibrium morphology are also in agreement with existing 

experimental literature. 

Fig. 1 displays the fully atomistic structure for both PETN molecule and crystalline unit cell [2] along 

with their coarse-grained representations. The experimental structure is body-centered-tetragonal (i.e., 

cba ≠= , and γβα == = 90º). In the coarse-grained model each of the four NO2 groups are lumped into 

a pendent “B”-bead, while the remaining atoms are grouped into a central “A”-bead. Even without any 

imposed symmetry constraints such a coarse-grained crystal, upon energy minimization (with a coarse-
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grained interaction potential described below), relaxes into a configuration with body-centered-tetragonal 

symmetry. In other words, although our initially constructed coarse-grained crystal is not constrained to 

any specific symmetry, the relaxed structure conforms to the symmetry: cba ≠= , and γβα == = 90º

[3]. As for interactions between the coarse-grained beads, only a minimal set is considered: (1) the 

intramolecular A-B bond interaction, chosen to be of the harmonic form: 20 )()( ABABbondABbond brKrE −= ; 

and (2) the B-B nonbond interaction, chosen to be in the 12-6 Lennard-Jones form 

})/(2)/{()( 612
BBBBBBBBBBBBvdw rrDrE σσ −= . Note that this later interaction is operative between both 

intra-molecular and inter-molecular B-beads, i.e., the 1-3 interactions are explicitly included. The inter-

molecular interactions, represented solely by the B-B nonbond term govern most physical properties of 

interest for this system (vibrational properties were not of interest in this study). With only two nonbond 

parameters BBD and BBσ at our disposal, we could aim at accurately fitting two experimental quantities. 

With the room-temperature lattice constant a (9.38 Å) [2] and the room-temperature heat of sublimation 

(35.9 kcal/mol) [4] as these two fitting quantities we obtain BBD = 1.38 kcal/mol and BBσ = 4.84 Å. The 

bond interaction parameters bondK and 0
ABb are assigned generic values of 20.0 kcal/mol and 2.6 Å 

respectively [5]. All other interactions, including the B-A-B angle term, as well as inter-molecular A-A and 

A-B interactions are neglected.

Table 1 lists the room-temperature values of the lattice constants, crystal density, bulk modulus, 

sublimation energy, and four points on the pressure-volume (P-V) curve as computed by the coarse-grained 

model described above, and compares with the corresponding experimental values and the values computed 

by fully atomistic calculations using a state-of-the-art force field COMPASS [6]. Finite-temperature 

quantities are obtained by performing NPT dynamics on a 6x6x6 supercell of the basic unit cell (512 

coarse-grained molecules), and averaging over a simulation time of 100 ps (following an initial 

equilibration run of 50 ps). The Nosé-Hoover thermostat [7], Parrinello-Rahman barostat [8], a time-step of 

0.001 ps, and nonbond-interaction-cutoff of 20 Å are employed in the NPT simulations. The heat of 

sublimation is computed by taking the difference of the average total energy of the 6x6x6 crystal 

normalized per molecule from the average total energy of an isolated coarse-grained molecule over an NVE 

dynamics run. The bulk modulus is obtained by fitting the low-P (< 0.5 GPa) part of the P-V curve to the 
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Murnaghan equation of state [9]. It is interesting to note that by adjusting only two parameters in the 

coarse-grained interaction we obtain accurate values for all lattice constants, the sublimation energy, and 

even the P-V curve up to P=10 GPa, as compared with room-temperature experimental data. Compared to 

experiment, the coarse-grained results are as good as or even better than fully atomistic COMPASS results. 

Only the room-temperature bulk modulus is underestimated by ~15-20 %. However, it should be noted that 

even the experimental value of bulk modulus is a highly sensitive function of the low-pressure (< 0.5 GPa) 

P-V data. Comparing the room-temperature results of Table 1 with the T = 0 results [10] we note that some 

of the quantities (most notably the bulk modulus) can display dramatic temperature dependence. Therefore, 

one should exert great caution when trying to fit calculated results at T = 0 to finite-temperature 

experimental observations, or when trying to compute quantities characterizing temperature-driven 

phenomena, e.g., thermal expansion coefficients, or melting point.      

Table 2 lists the computed surface energies for the important low-index surfaces of PETN. Due to the 

unavailability of these energies in the experimental literature, we compare coarse-grained values with those 

of COMPASS. For simplicity and the ease of comparison we compute the surface energies at T = 0 (i.e. 

energy minimization) using the room-temperature experimental lattice (a = b = 9.38 Å, c = 6.71 Å). Wulff 

construction [11, 12] with the surface energies is then used to compute the equilibrium morphology [13] 

(Fig. 2). Experimental morphologies are known to primarily expose the {110} and the {101} facets [14], 

with the ratio between the areas of the facets displaying a range of variation. Both the coarse-grained and 

the COMPASS morphologies primarily expose the {110} and {101} facets, in agreement with 

experimental observations. However, both the computed morphologies expose small amounts of a few 

other facets as well, i.e, {100}, {001}, and {211} facets. Although the overall agreement between the 

coarse-grained and COMPASS surface energies is quite satisfactory, one should note the discrepancy in the 

energetics of the {001} face, leading to its prominent presence in the coarse-grained morphology.  

Finally, with the aim of explaining recent experimental data on the evolution of crystal size and surface 

features as a function of temperature, we compute the desorption energies (at T = 0) of various molecular 

sites on the most exposed facet of PETN crystallites, i.e., the {110} family of planes. More specifically, we 

look at a molecule on the top of a defect-free flat surface, a molecule in the top layer of a flat surface, and 
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molecules on two different types of steps, i.e., one running along the <001> direction, and the other running 

along the <1 1 0> direction. Along the <001> steps, the PETN molecules are arranged in a straight line. For 

such steps we compute the desorption energy of a molecule belonging to a straight step, and that of a 

molecule at a step-kink (i.e. corner). The <1 1 0> steps, on the other hand, have a zigzag arrangement of 

molecules, and each site is almost like a kink. Results listed in Table 3 show that: (1) ad-molecules will 

easily desorb from flat surfaces at room temperature, unless they quickly diffuse to the nearest step 

(computed diffusion barrier is low, ~ 5-7 kcal/mol); (2) the desorption energy of a kink site is remarkably 

similar to the sublimation energy (both at T=0 [10] and at T=300K) both for our coarse-grained model and 

COMPASS, a clear indication of little surface relaxation; (3) there is a 6 kcal/mol difference in the pit-

formation energy computed by the coarse-grained model and COMPASS, which could be traced back to 

the difference in the computed sublimation energies (see [10] and Table 1). Arrhenius fits to limited atomic 

force microscope (AFM) data suggest a pit-nucleation-energy in the range of 55-70 kcal/mol, which 

encompasses both the coarse-grained and the COMPASS values. More accurate measurements are 

necessary for a finer resolution of the energy. 

In summary, we demonstrate that for crystals of uncharged non-polar molecules like PETN, it is 

possible to reproduce a large number of structural, energetic, and thermodynamic properties using only a 

few parameters describing nonbond interactions of groups of atoms. These simplifications not only speed 

up calculations by more than two orders of magnitude as compared to fully atomistic calculations, but also 

expose the truly important interaction parameters governing the system properties. The resulting speed and 

accuracy should enable detailed exploration of kinetic, thermodynamic, and growth properties of such 

crystallites both from the melt as well as in the vapor phase. 

Acknowledgment: We would like to thank Alan Burnham for useful discussions. The work was performed 

under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore 

National Laboratory under Contract W-7405-Eng-48.
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Table 1. Important structural, energetic, and thermodynamic quantities of PETN: comparison between 

coarse-grained, fully atomistic (COMPASS), and experimental values (appropriate references indicated). 

All quantities are computed/measured at room temperature (T=300K). See [10] for computed results at T=0.

Property Coarse-grained COMPASS Experiment

Lattice constant a=b (Å) 9.38 9.35 9.38 [2]

Lattice constant c (Å) 6.70 6.67 6.71 [2]

α, β, γ  90o 90o 90o [2]

Crystal Density ρcrystal (g/cc) 1.78 1.80 1.78 [2]

Bulk Modulus B (GPa) 7.0 8.1 8.3 - 9.1 [15, 16]

Sublimation Energy ∆Esublimation (kcal/mol) 36.0 40.5 35.9 [4]

Volume strain (P=1 GPa) 0.07 0.06 0.07 [16]

Volume strain (P=2 GPa) 0.11 0.10 0.11 [16]

Volume strain (P=5 GPa) 0.18 0.17 0.18 [16]

Volume strain (P=10 GPa) 0.25 0.23 0.25 [16]
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Table 2. Surface energies (at T=0) of PETN for most stable low-index planes: comparison between coarse-

grained and fully atomistic (COMPASS) results. Corresponding Equilibrium morphologies are shown in 

Fig. 2.

Surface {110} {101} {100} {001} {111} {210} {201} {211}

Coarse-
grained

0.215 0.257 0.257 0.262 0.274 0.251 0.274 0.269Surface 
Energy 

(kcal/mol/Å2) COMPASS 0.210 0.273 0.275 0.331 0.299 0.261 0.299 0.279
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Table 3.  Desorption energies of various sites on (110) surface (at T=0) – comparison between coarse-

grained and COMPASS calculations. All steps are of single-molecular height. 

Desorption Energy (kcal/mol)

Desorbing species

[on the (110) surface]
Coarse-grained COMPASS

Ad-molecule on a flat surface 20.0 19.2

Molecule in the top layer of a flat surface* 59.6 65.5

Molecule in a straight <001> step† 47.3 48.6

Molecule at a kink of <001> step** 39.9 43.8

Outer molecule in a <1 1 0> step‡ 40.2 43.4

*Removal of such a molecule initiates the formation of a hole or pit. Therefore, such desorption energy 
could be interpreted as a pit-formation energy.

†Such desorption leads to the formation of two nearest-neighbor kinks.

**Such a kink-molecule has exactly half the neighbors as compared to a molecule in the bulk crystal.
Therefore, under small surface relaxation (as is the case here), such desorption energy is equal to the 
sublimation energy [10]. We have verified this also for T=300K.

‡The <1 1 0> step on the (110) surface is molecularly zigzag. Thus the position of the outer molecules is 
almost like a kink site.
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Figure captions:

1. Schematic showing the coarse-graining procedure: (a) Coarse-graining of a PETN molecule, where the 

central C atom and its four C-neighbors, the associated H-atoms, and the bonded inner O atoms (i.e. all 

atoms shown in stick representation) are coarse-grained into the central “A”-bead, while each NO2

group (in ball & stick representation) is coarse-grained into a pendent “B”-bead; (b) Coarse-grained 

PETN crystal.

2. Equilibrium morphologies of PETN obtained from the surface energies of Table 2. (a) Coarse-grained 

equilibrium morphology; (b) COMPASS equilibrium morphology. Predominantly exposed facets are 

indicated by their Miller indices.
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Figure 1
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Figure 2


