
UCRL-CONF-219596

Dynamic Program Phase
Detection in Distributed
Shared-Memory Multiprocessors

E. Ipek, J. F. Martinez, B. R. de Supinski, S. A.
McKee, M. Schulz

March 7, 2006

IPDPS Workhop on the NSF Next Generation Software
Program
Rhodes, Greece
April 29, 2005 through April 29, 2005

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Dynamic Program Phase Detection in
Distributed Shared-Memory Multiprocessors
Engin İpek1 José F. Martı́nez1 Bronis R. de Supinski2 Sally A. McKee1 Martin Schulz2

1 Computer Systems Laboratory 2 Center for Advanced Scientific Computing
Cornell University Lawrence Livermore National Laboratory

Ithaca, NY 14853 USA Livermore, CA 94551 USA
{engin,martinez,sam}@csl.cornell.edu {bronis,schulz}@llnl.gov

Abstract— We present a novel hardware mechanism for
dynamic program phase detection in distributed shared-
memory (DSM) multiprocessors. We show that successful
hardware mechanisms for phase detection in uniprocessors
do not necessarily work well in DSM systems, since they
lack the ability to incorporate the parallel application’s
global execution information and memory access behavior
based on data distribution. We then propose a hardware
extension to a well-known uniprocessor mechanism that
significantly improves phase detection in the context of DSM
multiprocessors. The resulting mechanism is modest in size
and complexity, and is transparent to the parallel application.

I. INTRODUCTION

Analyzing the time-varying behavior of applications has
been the subject of several studies [5], [7], demonstrating
that relying on average whole-program statistics can lead
to misconceptions about a program’s actual behavior, and
result in poor architecture optimization decisions. Yet in
spite of such behavior changes over a program’s entire exe-
cution, application behavior is typically repetitive, and can
be classified into distinct phases—collections of dynamic
execution regions, not necessarily consecutive, exhibiting
similar behavior and thus requiring similar resources. In
phase-adaptive systems, hardware phase detectors monitor
runtime metrics at the granularity of fixed sampling inter-
vals, and classify these intervals into program phases [4],
[8] to guide hardware reconfiguration.

Hardware phase detection has been studied extensively
for uniprocessors. To our knowledge, however, no pub-
lished work yet discusses general solutions to hardware
phase detection in parallel systems. In this paper, we ad-
dress hardware phase detection in the context of distributed
shared-memory (DSM) multiprocessors. Specifically, we:

• Illustrate how uniprocessor approaches that only
consider instruction working sets are generally not
portable to DSM multiprocessor environments, and
the quality of their phase detection degrades quickly
with the system size.

• Propose and evaluate a low-overhead architectural
mechanism that captures data distribution, latency,
and contention effects of a DSM multiprocessor set-
ting. This results in markedly improved phase detec-
tion for a variety of parallel applications.

Accumulator Footprint Table

Phase ID

H
A
S
H

+
Instructions

since Last Branch

Branch Instruction
Address

Fig. 1. Example of BBV phase detector.

• Introduce a new tool, the CoV curve, that helps
quantify the quality of phase detection of a particular
mechanism across multiple operating points.

II. OVERVIEW

In phase-adaptive systems, a phase detector collects
program statistics at runtime and, at regular sampling
intervals, determines whether the program incurred a phase
change. This information is passed to a phase predictor,
which infers the phase for the next sampling interval. Fi-
nally, a reconfiguration module tunes the system based on
this prediction, by trying different hardware configurations
at different intervals that belong to the same phase. Once
tuning is complete, the best configuration is selected, and
subsequently applied whenever that phase is predicted.
This trial-and-error process may hurt performance, and
thus it must be conducted efficiently.

Our baseline uniprocessor phase detector is Sherwood et
al.’s BBV mechanism [8] (Fig. 1). Intervals are classified
into phases based on execution frequencies of their basic
blocks. This information is tracked using an array of
hardware counters called accumulator, which is hashed
by branch instruction addresses, and used as a vector to
compute the Manhattan distance between it and every
vector in a footprint table recording previously calculated
accumulators. If the distance to the closest footprint vector
is smaller than a certain distance threshold, the interval
is classified into the same phase. Otherwise, the interval
is regarded as an instance of a new phase, and the
accumulator is transferred to a footprint vector.

A statistical metric for evaluating phase detectors is
the Coefficient of Variance (CoV). For a given program
phase, its CoV of CPI (or simply CoV) is the ratio of the
standard deviation to the mean of the all the per-interval

CPI values in that phase. The identifier CoV is then defined
as the average of all per-phase CoVs, weighted by how
many intervals belong to each phase. A phase detector
that classifies intervals into perfectly homogeneous phases
yields a CoV of zero, and CoV increases as phases deviate
from this ideal interval homogeneity.

CoV is naturally smaller with a higher number of
phases, since fewer intervals belong to each phase—in the
extreme case, every sampling interval would constitute a
distinct phase (each requiring tuning), with CoV trivially
zero. Conversely, all sampling intervals could be placed
in the same phase, and thus tuning overhead would be
minimal—but most likely futile, as the resulting CoV
would be prohibitively large. To quantify this trade-off, in
the next section we introduce the CoV curve, which plots
CoV against a measure of tuning overhead (the fraction of
intervals that are spent in tuning).

III. PHASE DETECTION IN DSM

We conduct detailed simulations of a DSM multiproces-
sor with up to 32 nodes. Table I shows several architectural
parameters of the system we model. We use two appli-
cations from the SPLASH-2 suite (LU and FMM) [10]
and two applications from the SPEC-OMP suite (Art and
Equake) [9]. Table II lists the applications and input sets.

TABLE I
SUMMARY OF SIMULATED ARCHITECTURE.

Parameter Value
Processor Frequency 2GHz
Functional Units 6 ALU, 4 FPU
Fetch/Issue/Commit 6/6/6
Register File 128 Int, 128 FP
Branch Predictor 2,048-entry gshare
L1 16kB, direct-mapped, 1 cycle
L2 2MB, 8-way, 32B, 12 cycles
Memory SDRAM interleaved, 75ns, 2.6GB/s
Network Hypercube, wormhole, 400MHz

pipelined router, 16ns pin-to-pin

TABLE II
APPLICATIONS USED IN THE EXPERIMENTS.

Application Input Set
LU 512×512 matrix, 16×16 block
FMM 65,536 particles
Art Minnespec–Large
Equake Minnespec–Large

A. Uniprocessor Scheme on DSM

We evaluate the efficacy of the BBV uniprocessor
scheme in a DSM environment by adding a BBV phase
detector to each processor in our simulation framework
(Section III). Each detector consists of a 32-entry accu-
mulator and a 32-vector footprint table. We use a LRU
replacement algorithm. The interval size in each processor
is 3M committed non-synchronization instructions, divided
by the number of processors in each configuration, so that
configurations with similar number of phases also have
similar number of intervals per phase (and thus tuning
overhead) even as the system size scales up (and thus each
processor executes less code). We examine two hundred
threshold values. We compute identifier CoV curves for
each processor, and then average them together to obtain

the overall system-wide CoV curve. Figure 2 shows the
results.

As expected, when the BBV phase detector is applied to
a DSM context, it classifies intervals poorly as the number
of processors grows. For instance, with two processors,
LU achieves CoV values under 10% with as few as
seven phases.1 At eight and 32 nodes, however, the CoV
value for seven phases rises dramatically to about 40 and
70%, respectively. In fact, when running on eight and 32
processors, LU only achieves a 20% CoV with 25 phases—
a two-fold degradation with nearly four times as many
phases as the two-processor case explained above.

In summary, even as the BBV mechanism has been
shown to successfully characterize the behavior of se-
quential applications by simply tracking the distribution
of executed basic blocks [8], several factors limit its ef-
fectiveness in a DSM environment running parallel codes.
First, the behavior of a thread may be affected by the
other threads executing in the system by means of data
sharing patterns, memory traffic, network congestion, etc.
Second, data distribution (e.g., local vs. remote accesses)
may affect the behavior of the code executing on a node,
even when a processor executes precisely the same code
without interaction with others. Unfortunately, the BBV
alone cannot (and was never meant to) capture these
multiprocessor-specific factors.

B. DSM Phase Detector

We propose a per-processor, on-chip data distribution
vector (DDV) that extends the BBV to track data distri-
bution and contention. Each DDV contains a frequency
matrix F , a distance matrix D, and a contention vector C.
Figure 3 shows an example of a BBV+DDV-based phase
detector for one processor in a two-processor system.

Committed memory accesses are accounted for in the
frequency matrix, according to the home of the memory
block they access.2 This is available to the on-chip memory
controller, particularly since the access has already taken
place at the time the memory operation commits (and thus
any TLB miss or other address translation step has already
been serviced).

This information is queried by all processors, regularly
on a per-interval basis. Notice, however, that intervals
are defined independently by each processor, based on
the number of (locally) committed instructions. Hence, to
convey information that is consistent with the requestor’s
interval boundaries, each processor keeps separate fre-
quency counts of its accesses on behalf of each processor
in the system. Such counts are zeroed every time the
corresponding processor queries their content (see below).

Specifically, in an n-processor system, each frequency
matrix has n n-entry frequency vectors Fi—one per pro-
cessor, including itself—, for a total of n × n frequency
counters. At each processor p, counter Fij keeps track, on
behalf of processor i, of the number of loads and stores

1Recall that fewer phases generally imply less tuning overhead.
2Factors that are likely to be tainted by device reconfiguration, such

as whether the access hits or misses in the cache, are not considered.

0.01

0.1

1

0 5 10 15 20 25

Id
en

tif
ie

r
C

oV
 o

f C
P

I

of Phases

FMM CoV Curves

32P
8P
2P

 0.01

 0.1

 1

 0 5 10 15 20 25

of Phases

LU CoV Curves

32P
8P
2P

 0.01

 0.1

 1

 0 5 10 15 20 25

of Phases

EQUAKE CoV Curves

32P
8P
2P

 0.01

 0.1

 1

 0 5 10 15 20 25

of Phases

ART CoV Curves

32P
8P
2P

Fig. 2. Baseline BBV results. Note the logarithmic scale on the y axis.

committed by processor p that accessed data with home in
node j since processor i last started a new interval.

Every time processor p commits a load or a store
operation that accesses data with home in node j, it
increments all Fkj , 1 ≤ k ≤ n. When a processor i
reaches the end of an interval, it requests all Fi vectors
in the system. As other processors hand out their Fi

vectors, they each reset their local copy, thus initiating a
fresh count for the next interval on behalf of processor
i. Meanwhile, processor i adds all n vectors (including
its own) into its n-entry contention vector C. Then, it
computes its data distribution scalar value (DDS) locally
as follows:

DDS =
n−1∑
j=0

FijDijCj

where Dij is a measure of the distance from node i to
node j (1 if i = j). (D is a matrix of pre-programmed
constants.) Each term j of the summation captures, for the
interval under consideration, (1) the frequency with which
i accessed data with home j, (2) the distance between
nodes i and j, and (3) the system-wide contention for data
with home in j. The overall sum is a measure of i’s “cost”
of accessing data during that interval.

After i computes its DDS, it uses it in conjunction with
its BBV accumulator to find its phase in the footprint table.
Specifically, the processor uses one BBV and one DDS
distance threshold. If one or more entries in the footprint
table yield both an accumulator Manhattan distance and a
DDS difference below their respective pre-set thresholds,
the entry with the smallest Manhattan distance is taken.
If no footprint table entry satisfies this condition, a new
entry is allocated, possibly replacing an old one, and both
accumulator and DDS are stored. Finally, i resets its own
Fi vector (as well as its accumulator), and a new interval
begins for i.

The entire process is handled by dedicated hardware
in each node, and we envision the BBV+DDV structures
stored in a small, dedicated on-chip memory module,
which allows system scalability (e.g., by sizing DDV
structures depending on n) and even multiprogramming
(e.g., by replicating such structures, as we briefly address
later). More details on the actual hardware implementation
are beyond the scope of this paper.

The communication cost involved in the computation
of DDS by processor i is n − 1 exchanges with as many
processors. Assuming 32 2GHz processors, IPC = 1, and

DDS Footprint
F

DDS

D CFootprint Table
0
1

0 1

Ac
cu

m
ul

at
or

0
1

P0

P1

Fig. 3. Example of a BBV+DDV-based phase detector of a
processor in a two-processor system. Shaded objects denote
DDV hardware. In the figure, F, D, and C stand for Frequency
matrix, Distance matrix, and Contention vector, respectively.

a “real-world” interval length of 100M instructions,3 the
overall sustained bandwidth requirement of this mecha-
nism is about 160kB/s. If modern memory controllers can
handle 1.5GB/s, then the overhead of this mechanism is
under 0.15% of the peak bandwidth. Thus, we expect the
mechanism to account for a negligible overhead in systems
of that scale.

We briefly comment on a couple of other issues:

• Our phase tracking mechanism can capture parallel
program behavior under both static and dynamic mod-
els of execution. For instance, in a centralized task
queue implementation, variations in the distribution
or contention of the data accessed across tasks by a
processor would be captured by the DDV.

• In a multiprogrammed environment, the phase iden-
tification information can be incorporated into the
thread’s state on a context switch. Alternatively, phase
information associated with threads can be cleared at
the expense of more tuning.

IV. EVALUATION

To evaluate our proposed phase detector, we plot CoV
curves for eight and 32 nodes for the four applications
under study. The sampling interval size at each processor
is 3M committed non-synchronization instructions, divided
by the number of nodes in the system in each case. For
both BBV and BBV+DDV phase detectors, we use a per-
node BBV accumulator vector of 32 entries, backed by a
32-vector footprint table. Figure 4 shows the results.

When distance thresholds are high enough that the entire
program falls into a single phase, both detectors naturally
achieve the same CoV result. As the distance threshold
decreases, however, the number of phases increases, and
differences between CoV curves emerge as a result of

3Due to the reduced input set sizes of our applications, we use 3M
instruction intervals in our studies.

 0.01

 0.1

 1

 0 5 10 15 20 25

Id
en

tif
ie

r
C

oV
 o

f C
P

I

FMM CoV Curves (8P)

BBV
BBV+DDV

 0.01

 0.1

 1

 0 5 10 15 20 25

LU CoV Curves (8P)

BBV
BBV+DDV

 0.01

 0.1

 1

 0 5 10 15 20 25

EQUAKE CoV Curves (8P)

BBV
BBV+DDV

 0.01

 0.1

 1

 0 5 10 15 20 25

ART CoV Curves (8P)

BBV
BBV+DDV

0.01

0.1

1

0 5 10 15 20 25

Id
en

tif
ie

r
C

oV
 o

f C
P

I

of Phases

FMM CoV Curves (32P)

BBV
BBV+DDV

 0.01

 0.1

 1

 0 5 10 15 20 25

of Phases

LU CoV Curves (32P)

BBV
BBV+DDV

 0.01

 0.1

 1

 0 5 10 15 20 25

of Phases

EQUAKE CoV Curves (32P)

BBV
BBV+DDV

0.01

0.1

1

0 5 10 15 20 25

of Phases

ART CoV Curves (32P)

BBV
BBV+DDV

Fig. 4. BBV+DDV results. Notice the logarithmic scale on the y axis.

the different classification criteria. The BBV+DDV con-
figuration improves the CoV values achieved by the BBV
baseline across the board. Moreover, the benefits of using
the DDV over the BBV baseline increase with the number
of processors, as expected, since an increased node count
implies (a) more and longer accesses to remote data, and
(b) higher variability due to interactions among threads,
which are captured by the DDV.

In FMM, for example, with 32 processors, BBV
achieves a 29% CoV using 25 phases. At the same number
of phases, the BBV+DDV detector reduces CoV to about
15%. The savings on the number of unique phases (and
hence tunings) required to achieve a given CoV value are
also dramatic: For instance, at a CoV value of 29%, the
addition of the DDV reduces the number of phases from 25
to 11. These same trends repeat for 8 processors, where
the addition of the DDV consistently improves the CoV
values and reduces the tuning overhead by at least half.

Overall, considering data distribution and access pat-
terns across the system leads to better phase detection,
improving CoV by factors of two to three in many of
configurations studied (for a fixed number of phases), and
often reducing tuning overhead by half (for a fixed CoV).
The importance of tracking data accesses increases with
processor count, which amplifies the benefits of the DDV
as systems are scaled up.

V. RELATED WORK

Efforts to better understand and exploit the periodic
behavior of programs extend back to Denning’s working
set studies [2]. More recent work focuses on understanding
and predicting the large-scale behavior of applications [7],
[5]. Dhodapkar and Smith explore compressed signatures
for uniprocessor instruction working sets [3], and compare
three online approaches to driving adaptations [4]. They
find the BBV signatures of Sherwood et al. [8] to yield
the most stable phases and prove most efficient at detecting
performance changes. In contrast, instruction working set
signatures give longer phases (thus requiring fewer retun-
ing intervals) than either BBVs or a conditional branch
count technique introduced by Balasubramonian et al. [1].

VI. CONCLUSIONS

We have explored dynamic phase detection in DSM
multiprocessors. We have proposed and evaluated a novel
hardware extension that builds on the BBV phase detector
mechanism originally developed for uniprocessors [8], but
yields significant improvements in both the quality and the
number of the identified phases over the BBV hardware
alone. It does so by tracking the access frequency, con-
tention, and distance to data touched by each processor.

We believe that future work in this direction should
move toward combining the insights derived from our
study with appropriate phase prediction mechanisms, to
ultimately steer hardware reconfiguration of DSM multi-
processors.

REFERENCES

[1] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory hierarchy reconfiguration for energy
and performance in general-purpose processor architectures. In
IEEE/ACM 33nd International Symposium on Microarchitecture,
pages 245–257, Dec. 2000.

[2] P. Denning. The working set model for program behavior. Com-
munications of the ACM, 11(5):323–333, 1968.

[3] A. Dhodapkar and J. Smith. Managing multi-configurable hardware
via working set analysis. In 29th Annual International Symposium
on Computer Architecture, pages 233–246, May 2002.

[4] A. Dhodapkar and J. Smith. Comparing program phase detection
techniques. In IEEE/ACM 37th Annual International Symposium
on Microarchitecture, pages 217–227, Dec. 2003.

[5] E. Duesterwald, C. Caşcaval, and S. Dwarkadas. Characterizing
and predicting program behavior and its variability. In International
Conference on Parallel Architectures and Compilation Techniques,
pages 220–231, Sept. 2003.

[6] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In 11th
Symposium on Architectural Support for Programming Languages
and Operating Systems, pages 165–176, Oct. 2004.

[7] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Auto-
matically characterizing large scale program behavior. In 10th
Symposium on Architectural Support for Programming Languages
and Operating Systems, pages 45–57, Oct. 2002.

[8] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction.
In 30th Annual International Symposium on Computer Architecture,
pages 336–349, June 2003.

[9] Standard Performance Evaluation Corporation. SPEC OMP bench-
mark suite. http://www.specbench.org/hpg/omp2001/, 2001.

[10] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-
2 programs: Characterization and methodological considerations. In
22nd Annual International Symposium on Computer Architecture,
pages 24–36, June 1995.

nijhuis2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

