
UCRL-CONF-219628

Structures in Molecular Clouds:
Modeling

J. O. Kane, D. D. Ryutov, B. A. Remington, M.
Pound, A. Mizuta

March 8, 2006

Structures in #Molecular Clouds: Modeling
Houston, TX, United States
March 11, 2006 through March 14, 2006



This document was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor the University of California nor 
any of their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or the University 
of California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or the University of California, and shall not be 
used for advertising or product endorsement purposes. 
 

Updated October 14, 2003 



03/12/06 Mol. Cl. HEDLA 2006 JK1

Structures in
Molecular Clouds: Modeling

Jave Kane, Dmitri Ryutov, Bruce Remington
 Lawrence Livermore National Laboratory

Marc Pound, University of Maryland

Akira Mizuta, Max Planck Institute für Astrophysik, Garching
 
 
 
 
This work was performed under the auspices of the U.S. DOE 
by UC, LLNL under Contract W-7405-Eng-48. 



03/12/06 Mol. Cl. HEDLA 2006 JK1

Theory and modeling of molecular cloud structures has a long
history

M16
Williams, Ward-Thompson & Whitworth,
 Mon. Not R. Astron. Soc. 327, 788 (2001) 

M16 — RT
Spitzer, ApJ 120, 1 (1954)
Frieman, ApJ 120, 18 (1954)

Helix Nebula
Capriotti, ApJ 179, 495 (1973) Comets

Osterbrock, ApJ 125, 6220 (1957) 

Hydrodynamics, instability of ionization fronts
Kahn, Rev. Mod. Phys. 30, 1058 (1958)
Vandervoort, ApJ 135, 212 (1962)
Axford, ApJ 140, 112 (1964)
Arons & Max, ApJ 196, L77 (1975 )
Reipurth, A&A 117 (1983)
Bertoldi, ApJ 346, 735 (1989)
Bertoldi & McKee, ApJ 354, 529 (1990)
Williams, MNRAS 331, 693 (2002)
Lefloch & Lazareff, A&A 289, 559 (1994);
 A&A 301, 522 (1995)

Protestellar disks, AMR
Richling & Yorke ,A&A 327, 317 (1997)
Yorke & Kaisig, Comp. Phys. Comm., 89, 29 (1995)

Cooling
Neufeld et al., ApJS 100, 132 (1995)

Magnetic fields and turbulence
Ostriker,  Gammie, & Stone,  ApJ 513, 259 (1999);
ApJ 546, 980 (2001).

García-Segura and Franco,
ApJ 469, 171 (1996)

Protostellar disks
Richling & Yorke ApJ
539, 258 (2000)

Comets — RDI
Lefloch & Lazareff, A&A 289, 559 (1994);
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How do we make pillars in the laboratory?

Target Chamber of Nova laser

Radiation cavity
(hohlraum)

Omega
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We are planning laser experiments to test models of
formation of the Pillars — prototypes exist

1) Prototypical Rayleigh-Taylor
experiment

plastic 50 µm

Laser drive

2) Prototypical
Cometary experiment

copper
spheres

100 µm
foam

Laser drive

Remington, B. A. 1992, et al.,  Phys. Fluids B 4, 967

data

Klein, R. I., et al. 2000, ApJS 127, 379
Robey, H. F. et al. , submitted to PRL (2001) 

200 µm
data

We can test both the RT and cometary
models experimentally
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We first considered a compressible Rayleigh Taylor (RT)
model

shoc
k

Ablation
flow

H2 cloud

Spitzer, L. 1954, ApJ 120, 1
Frieman, E. A. 1954, ApJ 120, 18

1) compression

rarefaction

2) rarefaction

effective g

3) acceleration

time
Pillars

UV radiation
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The basic equations describe the hydrodynamics, absorption
and re-emission of radiation, and EOS

Hydrodynamics

EOS

thermal p. magnetic p.
Recombination
Absorption

a: photoionization cross-section, αB =case B recombination coefficient
J: incident photon flux, f =ni/n: ionization degree, γM=4/3      (f=0 --> grad(J)=max, f=1 --> grad(J)=0)

Mizuta et al.,ApJ 621, 803–807, (2005)
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Cooling and magnetic fields may matter

• The Eagle Nebula is thought to be transparent to the radiation in the
millimeter and sub-millimeter range (in part, because of strong sheared
flows).

• The relevant cooling functions were obtained in: D.A. Neufeld and M.J.
Kaufman, ApJ, 418, 263 (1993) and D.A. Neufeld, S. Lepp, G.J. Melnik,
ApJ Supplement, 100, 132 (1995)

• There exists a significant uncertainty in applying these results to the Eagle
Nebula, caused by uncertainties in the composition and ionization degree.

• Still, most probably, the cooling time is much shorter than the
hydrodynamic time, meaning that the shocked material cools down to its
initial temperature ~40 K at a short distance behind the shock front.

• This would mean that the gas behind the shock would be compressed to the
density two orders of magnitude higher than evaluated by M. Pound.

• As is well known, this paradox can potentially be resolved by introducing
the magnetic field.
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A random magnetic field may restore ordinary hydrodynamics
with an effective adiabatic index

• In order to make the magnetic pressure an important player in the pressure
balance, one has to have the magnetic pressure in the shocked material to
be~ the ablation pressure, B2/8π~pabl. The latter, according to M. Pound, is
~1.3⋅108 erg/cm3, yielding the required magnetic field strength, B~600 µG

• The pre-shocked magnetic field can be 1.5 – 2 times weaker, depending of
the adiabat (we mean here the adiabat relating the magnetic pressure and
the plasma pressure, not the gaseous pressure, which is small because of
strong radiation)

• For a random magnetic field, the adiabat index is 4/3; for a regular
magnetic field parallel to the shock front it is 2, yielding the density
compression rate of 7 and 3, respectively.

• If the magnetic field is random, the overall hydrodynamics does not differ
significantly from the case where the pressure is simply a gas pressure. For
the regular magnetic field, the anisotropic nature of the magnetic stress
tensor may introduce some new physics

Ryutov et al., Proc. 5th Conf. HEDLA, AIP 703, 415 (2004).
Ostriker,  Gammie, & Stone,  ApJ 513, 259 (1999); ApJ 546, 980 (2001).



03/12/06 Mol. Cl. HEDLA 2006 JK1

We wrote a code with Van Leer hydro, simple ray tracing, and simple
models for opacity and absorption

PROMETHEUS New code

Kane J et al., ApJ 478, L75 (1997);
Remington B A et al. Phys. Plasmas 4  (1994)

t=30 ns

0.2 millimeters

Radiograph from
Laser experiment, t =30 ns

Opacity
κ = f(T) (n/n0) κ0
f(T) = 1, T < T0

exp {[(T-T0)/(ATT0)2]}, T ≥ T0
T0 = 200 K,   AT = 200, n0 = 5 x 104 /cm3 ,
κ0 = 100 / <width of cloud>

Equation of State
Ideal gas γ = 5/3

Energy deposition
ΔF = F x exp(-κ dx)
u  u + ΔF/dx dt / ρ
F F - ΔF

4) We could vary EOS to model
•  isothermal (rapidly cooling) cloud
•  turbulent magnetic pressure

1) Evaporated
material has
low opacity

2) Cloud
absorbs in
thin surface
layer

3) Directed radiation is
absorbed as
specified by above
opacity
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The compressible model produces results consistent with
measured velocity and column density

compression acceleration

50k y 90k y 150k y 180k y170k y0 y 120k y

UV radiation

-0.4

-0.2

0.0

0.2

0.4

2.01.61.20.8
Log (projected distance)

 data
 Frieman
 Van Leer

Velocity

23.0

22.5

22.0

21.5

21.0
3210-1

Distance (10
18

 cm)

 old Column II data
 new Column II data
 Van Leer

 Density

λ

0.25 pc
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At first sight a pure cometary model seems more difficult
to reconcile with observations

23.0

22.5

22.0

21.5

21.0

20.5

20.0
3210-1

Distance (10
18

 cm)

 new data
 old data
 cometary

-0.4

-0.2

0.0

0.2

0.4

2.01.61.20.8
Log (projected distance)

 data
 Frieman
 thick cloud
 cometary

 

Capriotti, ApJ 179, 495 (1973) 

Helix Nebula

O’Dell, C. R. & Handron, K.,
AJ 111, 130 (1996)
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Intermediate ‘dense nuclei’ models are a compelling
possibility

Sugitani et al., ApJ 565 L28
(2002)

García-Segura and
Franco ApJ 469 171

(1996)

Mark McCaughrean and
Morten Andersen of the
Astrophysical Institute
Potsdam (AIP), and the
European Southern
Observatory (ESO).

Williams, Ward-
Thompson & Whitworth,
 Mon. Not R. Astron. Soc.
327, 788 (2001)
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The evolution of a perturbation in the linear regime varies
dramatically, depending on whether or not recombination is
included

• Perturbation grows  in
case w/o recombination.
• does not grow w/ 
recombination.

Log scale number density contour ;in
later phase

agrees with
classical RT

Without

Large growth

With

No growth

Mizuta et al.,ApJ 621, 803–807, (2005)

λ

0.25 pc
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The effect of including recombination in the linear regime
leads to a strong damping of perturbation growth

ablation frontablation front

Photon flux contour

Log scale number
density contour

Absorption profile is
quite  different,  because
 the recombination rate
has dependence on n2.

Stabilization mechanism
Concavity

Greater extinction

Reduced ablation pressure

With recombinationWithout recombination

With small initial
perturbation (linear regime)
“ionization damping”
dominates: no RT growth

Vandervoort, ApJ 135, 212 (1962)
Axford, ApJ 140, 112 (1964)
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Mizuta Eagle Nebula Pillar II model at
460 ky vs. Pound column density and
velocity data

log_10 density contours in model

y (pc)

x (pc)

optically thin column density and velocity:
n_H2(x,y) = [1-f(x,y)] × rho(x,y) / m_H2
rho_col(y) = ∫ n_H2(x,y) dx
v_y_col(y) = ∫ n_H2(x,y) × v_y(x,y) dx / rho_col
dmass = 2π (x-x0) dx dy n_H2(x,y) × m_H2

central pillar

edge pillar

data

model

central
pillar

edge
pillar
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y (pc)

x (pc)

central pillar

edge pillar

Mizuta Eagle Nebula Pillar II model at
400 ky vs. Pound column density and
velocity data

central
pillar

edge
pillar

data

model

Helix Nebula
Capriotti, ApJ 179, 495 (1973) 
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In the absence of recombination, and without acceleration, the Directed
Radiation instability can seed significant non-linear structure that

grows by shadowing.

‘directed’

t = 0 ns t = 0.2 ns t = 0.5 ns t = 1.0 ns t = 2.0 ns t = 2.6 ns

‘diffuse’

λ = 10 µm, η0 = 0.5 µm  and the target turned by π/8 on the grid and tabular EOS
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With a flat interface turned on the grid, stairstepping leads to  growth of
l ≈ 8 mm with directed radiation, which leads quickly to a disrupted

shell in the acceleration phase

‘directed’

t = 0 ns t = 0.5 ns t = 1.5 ns t = 2.0 ns t = 2.6 ns t = 3.25 ns
‘diffuse’

Grid
edge
effect

60 µm

8 µm
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Next we consider RT and cometary models using divergent
rays and large cylindrical volume to allow diverging outflow

Grid and rays (schematic)

z (pc)

r (
pc

)

initial  cloud

star

• dJ/dr = -a n (1-f) J   -3 J /r

divergence

•Weighted averages are used for df in zones crossed by multiple rays

Refs.
 Richfield, Yorke, etc.
Stone, Norman (Zeus)

Lefloch & Lazareff
1994 A&A, 289, 559
1995 A&A, 301, 522
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• I use Akira's spatial resolution in the cloud, and his EOS. I use his initial thermal and magnetic
pressure, with modification in the cometary core (below). I use his molecular cooling rate.

• The star luminosity is 1.2e50 photons/s.

• For the cometary simulations the initial cloud is spherical with a power law density profile. I’ve
tried various profiles, attempting to match the visible morphology and Marc’s data. I limit the
initial p_M(r,z) in the core so that the cloud and surrounding material are in pressure equilibrium.
The initial star is 2 pc from the core.

• For the RT simulations, I use Akira's thin cloud parameters, but with finite lateral extent, as
suggested by ground based images. The initial star is 1.5 pc from the core, since the cloud will
move. I show a case with a 25% initial density perturbation. I've also tried dropping the central
flux for 10 kyr at the start of the acceleration phase, as Akira did, and I've tried no perturbation;
the results are all similar.



03/12/06 Mol. Cl. HEDLA 2006 JK1

t = 25 kyr t = 300 kyr

RT model Initial  nH(t=0,cm-3)

25% perturbation

Star at z = -1.5 pc

log10(nH) contours
3
3.5
4
5

The RT simulations show no growth, although a
cometary shape might slowly be reached. Ray
divergence means the center is pushed harder, but the
edges see increased flux due to outflow divergence.

star cloud

positions in pc
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R(pc)

M(r)/Msol
z (pc)

1.5e6
5e3
10

Initial log_10 nH(z, r=0, cm-3)
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t = 0

t = 25 kyr t = 100 kyr

t = 50 kyr t = 250 kyr

t = 200 kyr

t = 150 kyrt = 75 kyr

t = 125 kyr

log10(ρ)

star
cloud

positions in pc
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Sugitani et al., ApJ 565 L28
(2002)
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z (pc)

Projected velocity (arbitrary offset in v)
Pound    12CO        13CO
 simulation

Pound projected column ρ

Simulated
log10(nH) contours
3
3.5
4
5

1.5e6
5e3
10

t = 250 kyr, projection angle 20º

ground-based image

Column
II

Simulation smeared with
R(FWHM) = 0.0325 pc

Star at z = -2 pc

O stars

Thompson

simulation

Initial nH(z, r=0, cm-3)
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z(pc)

r(pc) log10(p/k)
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•  The cometary model does well in velocity gradient and morphology.

•  The tip column density is higher than Marc's but actually lower than suggested by
Thompson et. al for Column I (2002 ApJ, 570, 749).

•  The density in the extreme tail is lower than Marc's, but the ground based image suggests
there is other material in the line of sight.

•  It appears difficult to both match Marc’s tip density and throw enough material into the
extreme tail. To approach Marc's density in the extreme tail, it seems the head must be
massive to stay back while the tail forms. Clumpiness of the actual initial cloud, unknown
line-of-sight structure, and the large wiggles in Marc's data should be kept in mind.

•  Other points:
(1) The cometary model predicts a long, low-density (< 1e3 /cc) extension to the tail, rather

than a sharp cutoff. The ground-based image may show wispy (limb-darkened?) hints of
this. Or, the tail may have collided with denser material. Could observations help?

(2) The tail radius fluctuates as material converges on axis behind the head and rebounds;
magnetic pressure and molecular cooling appear to damp this fluctuation.

(3) Like cooling, the magnetic pressure appears to be numerically unstable.
(4) The diverging outflow reaches the snowplow phase and stalls inside the simulation

boundaries.
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The dense intial nucleus holds the comet back

Lefloch & Lazareff, A&A 289, 559 (1994);
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Cometary model of Eagle Nebula Column II

z (pc)

Projected velocity (arbitrary offset in v)
Pound    12CO        13CO
 simulation

Pound projected column ρ

Simulated
log10(nH) contours
3
3.5
4
5

1e6
2e4
10

t = 500 kyr, projection angle 25º

ground-based image

Column
II

Simulation smeared with
R(FWHM) = 0.0325 pc

Star at z = -2 pc

O stars

Thompson

simulation

Initial nH(z, r=0, cm-3)
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Cometary model of Eagle Nebula Column II

z (pc)

Projected velocity (arbitrary offset in v)
Pound    12CO        13CO
 simulation

Pound projected column ρ

Simulated
log10(nH) contours
3
3.5
4
5

1.5e6
1.2e4
10

t = 425 kyr, projection angle 26º

ground-based image

Column
II

Simulation smeared with
R(FWHM) = 0.0325 pc

Star at z = -1.75 pc

O stars

Thompson

simulation

Initial nH(z, r=0, cm-3)
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With recombination, cometary models appear to do much better than RT
models in explaining Column II of the Eagle Nebula

• There is no RT growth in the linear or nonlinear stages, with a
cloud of infinite or finite lateral extent.

• Cometary models with a dense initial core appear to do well on
morphology, projected column density, and projected velocity, even
with simple treatment of deposition, cooling, and magnetic support
pressure, and with the on-the-spot approximation, ignoring diffuse
radiation (recombination to the ground state)

• Cometary models are simpler — symmetric, no assumptions about
orientation or initial perturbation
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Can you produce ‘Pillars’ by illuminating dense rods
embedded in a C foam or CH ablator with direct drive?

ablator

C (Cu, Al,…?) rod

80–200 µm
500–
800 µm

400–800 µm

25–50 µm

drive

C (Cu,
Al,…?)

rod

concept

rod
→ pillar

compressed
ablator

ablation
flow

time

direct drive experiment
C foam or

CH
ablator

direct
drive

spot
intensity
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Drive:
2400 J, 8 ns flat

Reflect away half of
energy at critical
surface

Spot: SG8
I~ exp[-(r/411
µm)4.6]

Next we try larger density ratio and structures: a 200
µm diameter C rod in 0.25 g/cm3 C foam in CALE

C foam
0.25 g/cm3

C rod ρ = 2.25 g/cm3

200 µm 800 µm

 800 µm

50 µm

direct
drive

spot
intensity
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100 µm

simulated
Radiographs

20 µm blurring

t=0

t=7 ns
κ=1 g/cm2

t=7 ns
κ=10 g/cm2

t=7 ns
density

t=7 ns,
symmetry
axis (r=0)

100 µm

T(ev)

ρ(g/cm3)

20

10

0

25

15

5

Quality of
radiograph images

improves with
larger structures
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halfraum

To investigate directional drive, we are considering indirect
drive designs

target
drive
beams

laser entrance
hole

r θ R
L

•By tilting the target we could also test the
Tilted Radiation instability model

Omega




