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Abstract. We applied a 0.3 mJ, 1.7 ns, 46.9 nm soft X-ray Argon laser to ablate the

surface of large band gap dielectrics: CaF2 and LiF crystals. The ablation versus the

fluence of the soft X-ray beam has been studied varying the fluence in the range of 0.05-3

J/cm2. An ablation threshold of 0.06 and 0.1 J/cm2 and an ablation depth of 14 and 20 nm

have been found for CaF2 and LiF, respectively. These results define new ablation

conditions for these large band gap dielectrics, which can be of interest for the fine

processing of these materials.

OCIS codes 140.7240, 140.3330, 160.4670

Recently, a lot of experimental work (see, for example, Ref. [1-7]) has been devoted to the laser

ablation of hard dielectrics for their crucial role in the field of photonics and the fabrication of

micro-optical devices. Most of these dielectrics, such as CaF2, LiF, BaF2 and SiO2 is

characterized by ultra large band gaps (Eg ≈12.0, 13.6-14.5 or 9.1 eV for CaF2, LiF and BaF2

respectively8,9), so that they are highly transparent to the optical radiation up to the vacuum

ultraviolet (where hν <Eg). A large number of investigations have been performed on these

materials using different laser wavelengths and laser pulse durations. Mostly, they have

concerned two different regimes: irradiation by ns vacuum ultraviolet excimer lasers1-3,6,7 and

irradiation by ultra-intense optical picosecond- and femtosecond-laser pulses1,4,5,7. A more

efficient mode of ablation of these dielectrics should be expected using extreme ultraviolet

(EUV) and soft X-rays (hν >>Eg), due to the large linear absorption of this radiation by these

crystals. However, only very recently, great advances have been made in developing reliable



EUV and soft X-ray sources with a sufficiently large power content10-12. In this Letter we have

studied the laser ablation of CaF2 and LiF crystals by focusing a 46.9 nm, 1.7 ns soft X-ray Ar

laser and analyzed the ablated surfaces using scanning electron microscopy (SEM) and a vertical

profilometer. The etch rates of these crystals have shown a well-defined threshold behavior with

ablation thresholds at 0.06 for the CaF2 and 0.11 J/cm2 for LiF. These values are about two

orders of magnitude lower than those typical of the conventional ns-UV laser light and determine

new ablation conditions for the studied dielectrics characterized by a large linear absorption of

the laser radiation.

The measurements were performed using the strongly saturated 46.9 nm, 0.3 mJ, 1.7 ns soft X-

ray laser source pumped by a fast capillary discharge in a pure Ar gas11,13. The laser beam had

annular structure with divergence of 5 mrad and was focused on the samples by a 12 cm-focal-

length spherical Ir mirror, located at 200 cm from the capillary output with the mirror plane

forming an angle of 85° with the beam axis (reflectivity ~15%). The laser energy was monitored

shot by shot with a calibrated vacuum photodiode11 collecting a small fraction of the laser beam

by a Lloyd-mirror beam slitter located along the beam axis. The fluence was varied by changing

the position of the sample along the optical axis of the mirror. Unfortunately, the great simplicity

of this system is paid at the cost of several limitations. Firstly, the focused beam is strongly

dominated by the optical aberrations that produce an elongated shape of the beam and limit the

focusing resolution to only a few tens of micrometers. In this concern, using a corrected optical

system one could expect an ablation resolution well below 1 µm14. Secondly, the optical

aberrations of the optical system can produce an irregular illumination of the sample and a non-

planar wavefront of the beam. Thirdly, it should be noticed that by moving the sample along the

optical axis of the mirror, we have changed not only the fluence but also the curvature of the



wavefront and this, in principle, can affect the results of the measurements. Regarding the

fluence, for each exposure, we assessed an average fluence on the sample by measuring the area

of ablated craters and the energy of the beam. The effect of the shape of the beam wavefront and

its variation with the sample position was difficult to evaluate14 and, presently, was not taken

into consideration. Despite the poor focusing resolution, we reached the maximum laser fluence

of 3 J/cm2, which is well above the ablation thresholds (see data below). In these measurements,

we operated in a multi-shot irradiation mode using 25 shots for each ablation. The CaF2 samples

consisted of 2-mm thick plates optically polished on both sides, while the LiF samples consisted

of 1-mm thick plates polished on one side. The samples were placed in an evacuated

environment at the pressure of 10-4 Torr. The ablation was studied analyzing the craters produced

on the surfaces through a vertical profilometer (TENCOR) and an atomic force microscope

(AFM). Scanning Electron Microscopy (SEM), employed in back scattered electron mode, was

used as a complementary experimental technique, for the visual inspection of the damage

topography.

Figure 1 (a) shows two vertical profiles of the craters obtained in CaF2 at 0.36 J/cm2 and 3 J/cm2.

The topography of the ablated areas depends strongly on the laser fluence. At the lower fluence

the inhomogeneous distribution of the laser intensity produces an irregular profile of the crater

(see dotted line). This effect can be attributed to an inhomogeneous heating of the surface. By

contrast, at values >1 J/cm2, the fluence is sufficiently high to produce evaporation of material

over the whole beam cross section. The ablated crater has, in this case, a conical shape with

regular vertical profile and deepness >1-1.5 µm (see solid line). The analysis performed at the

AFM (Fig. 1 (b)) for the case of Fig. 1 (a) (solid line) confirms the regularity and the deepness of

the ablated region. Similar behavior in the vertical profile of the craters is found in the case of



LiF. The behavior of the ablation rates/pulse versus the fluence is shown in Fig. 2. The

experimental points manifest a clear threshold behavior for both materials, which can be well

fitted by the standard expression15: L = d·ln(F/Fth), where L is the ablation rate, F and Fth are the

irradiation fluence and the fluence threshold respectively, and d is a characteristic ablation depth,

related to the effective absorption length of the radiation in the material. The results of Fig. 2

represent, to our knowledge, the first experimental data reported on these materials by a soft X-

ray radiation and show several interesting aspects. Firstly, we find very low ablation thresholds:

0.11 J/cm2 for LiF and 0.06 J/cm2 for CaF2, while with the nanosecond 248 nm laser beam the

typical values are in the range of 20-40 J/cm2 16. Secondly, the best fit of the experimental data

provides for d the values of 20 and 14 nm for LiF and CaF2, respectively. These values are in

agreement with the optical penetration depths (α-1 ~14 nm and ~10 nm) assessed for λ = 46.9 nm

from Ref. [17] and are about five orders of magnitude smaller than in the deep UV. This is due to

the large photon energy (hν = 26.4 eV) of the radiation, which induces efficient excitations of

electrons from the valence band into the vacuum level of the crystal. This strong interaction

introduces new ablation conditions for these large band gap dielectrics. Such a small value of d

could be of significant interest for the fine processing of these materials.

It is generally recognized that a better energy coupling of the laser energy with the material

should lead also to an improved morphology of the ablated region. Figures 3 (a) – (d) show the

SEM images of LiF and CaF2 irradiated with the fluence of 0.8 J/cm2 ((a)-(b)) and 3 J/ cm2 ((c)-

(d)). Irregular reliefs on the ablated region can be reasonably attributed to the irregular

distribution of laser fluence due to the diffraction of the beam and not to liquid waves formed by

the melting of the surface. An improved optical system should easily avoid these effects. This

analysis shows also that the ablation processes at 46.9 nm is accompanied by the formation of



micro-sized cracks inside the irradiated area. These cracks are due to the strong thermoelastic

stress on the surface and to the brittleness of the materials. An interesting behavior is that the

cracks are observed already very close to the ablation threshold at very low irradiation fluences

and increase with the number of pulses. In the case of LiF (see Fig. 3) cracks stand along

preferential directions, which should correspond to the cleavage planes of the crystal. The higher

density of short microcracks at the periphery (see Fig. 3 (a)-(c)) of the craters can be attributed to

the different thermoelastic forces acting inside and at the edge of the laser spot. As the fluence is

increased from the threshold, the evaporation of material is more efficient, cracks become less

evident and a cleaner condition of ablation is found. Fractures on CaF2 samples are typically less

evident and of smaller dimensions. They present irregular shape homogeneously distributed

through the irradiated area. Approaching 3 J/cm2 (Fig. 3 (d)), the mechanical stress of the surface

becomes so large to detach away from the surface macroscopic pieces of material and the quality

of ablation is lost. The presence of cracks even close to the ablation threshold is in contrast to

what is generally expected by the shortening of the laser wavelength and suggests the necessity

for the modeling and a better understanding of the ablation processes induced by EUV and soft

X-rays.

In summary, we have used 46.9 nm, 1.7 ns soft X-ray laser pulses to ablate the surface of

dielectrics with ultra large band gaps. Our results present two interesting aspects. Firstly, we can

reach a different ablation mode of these dielectrics characterized by large linear absorption

coefficient (with α-1 of ~15 -20 nm) and very low ablation thresholds: 0.1 J/cm2 for LiF and 0.06

J/cm2 for CaF2. These very short ablation lengths can be of interest for the fine processing of

these materials. Secondly, our measurements have shown that even in these new ablation

conditions, fractures and cracks are produced in the irradiated region. This second aspect



suggests the necessity for a better understanding of the physical mechanisms leading to the

ablation of hard dielectrics by EUV and soft X-rays.
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Figure captions

Fig. 1. (a) Experimental vertical profiles of craters produced on CaF2 by the 46.9 nm laser at the fluences of 0.36

(dotted line) and 3 J/cm2 (solid line) using 25 laser shots. (b) AFM image of the crater produced on CaF2 with the

fluence of 3 J/cm2.

Fig. 2. Experimental ablation rates/pulse versus the fluence of the 46.9 nm laser for LiF (full circles) and CaF2

(empty circles). The solid and the dotted lines are the results of the theoretical fittings obtained using the logarithmic

curve (see formula within the text) for the two materials, respectively.

Fig. 3. SEM images of the ablated spots. The pictures a) and c) are obtained on LiF with 25 shots at the fluence of

0.8 and 3 J/cm2. Pictures b) and d) are obtained at the same fluences as a) and c) respectively, on CaF2 crystals.


