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ABSTRACT 

 
Gradient direction matching (GDM) is the main target identification algorithm used in the Image Content Engine project 
at Lawrence Livermore National Laboratory. GDM is a 3D solid model-based edge-matching algorithm which does not 
require explicit edge extraction from the source image. The GDM algorithm is presented, identifying areas where 
performance enhancement seems possible. Improving the process of producing model gradient directions from the solid 
model by assigning different weights to different parts of the model is an extension tested in the current study.  Given a 
simple geometric model, we attempt to determine, without obvious semantic clues, if different weight values produce 
significantly better matching accuracy, and how those weights should be assigned to produce the best matching accuracy. 
Two simple candidate strategies for assigning weights are proposed – pixel-weighted and edge-weighted. We adjust the 
weights of the components in a simple model of a tractor/semi-trailer using relevance feedback to produce an optimal set 
of weights for this model and a particular test image. The optimal weights are then compared with pixel and edge-
weighting strategies to determine which is most suitable and under what circumstances. 

 
Keywords: image processing, computer vision, object recognition, relevance feedback, edge matching, model 
matching, gradient matching, component weighting 

1. INTRODUCTION 

The Image Content Engine (ICE) is an ongoing project at Lawrence Livermore National Laboratory to produce systems 
for extracting domain specific semantic information from large volumes of imagery and evaluating queries using this 
semantic information [1]. The initial application domain is aerial and satellite surveillance imagery of broad areas. The 
system will be able to combine imagery information from various observation modes, including optical, hyper-spectral, 
and synthetic aperture radar. ICE uses GDM for object matching when a sufficiently accurate solid model of the target 
objects is available and the image resolution is suitable. GDM is described in [2] and outlined below. Several areas are 
identified where it seems likely that modifications could improve the matching accuracy. The main subject of this paper 
is an experiment where we evaluate different model component weighting strategies by comparing the weight 
assignments with the weight assignments produced by using relevance feedback. 
 
1.1. Gradient Direction Matching 
 
GDM is a solid model-based edge-matching algorithm that does not does not require explicit extraction of edges from 
the source imagery. The edge identification is instead done to projections of 3D solid models, which are free of sensor 
and environmental noise. The purpose of GDM is to find target instances in imagery, based on a 3D solid model of the 
target. The operation of GDM is based on several assumptions about typical imagery and target objects. 
 
1. The locations, orientations, obscuration and even existence of targets in the image are unknown.  
2. The background, illumination conditions, and surface properties of the target objects are unknown, but we assume 

there will be some, unknown, intensity difference between surfaces and between surfaces and the background 
(because a majority of the edges will need to be visible).  

3. On pixels near visible edges, the gradient of the image intensity will be approximately perpendicular to the edge.  
4. The magnitude of the gradient is unknown and unimportant - in fact we usually want to consider gradients that differ 

in direction by 180° degrees as equivalent.  
5. The intensity and the direction of the gradient of the intensity at all image locations which are not near edges are 

completely unknown, and can be (and should be) ignored. 
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1.2 Spatial Domain GDM Algorithm 

 
Given these assumptions we can formulate the spatial domain GDM algorithm: 
 

1. Calculate the gradient of the image intensity and save the direction at each pixel, discarding the magnitude.  
2. Project the 3D solid model of the target, at a series of orientations, into the image coordinate system doing 

visible surface determination and building a set of “model gradient direction” maps.  
3. For each pixel

! 

p  in the source image and each model orientation, calculate a similarity match value 

! 

Sp , that 
represents how well the model gradient direction map for that orientation matches when centered on location 

! 

p  
in the image.  The matching function is based on the difference of the image gradient direction, 

! 

" , and the 
model gradient direction, 

! 

" , at each corresponding pixel. The entire raster of similarity values is called the 
similarity surface. Instances of the target at particular locations in the source image are expected to produce 
local maxima in the similarity surface at those locations.  

4. The similarity surfaces are combined by taking the maximum value over all orientations at each pixel. 
5. Local maxima in the combined similarity surface are identified and disambiguated. 
6. A list of image tiles centered on the local maxima is presented to the image analyst, sorted by match similarity. 
 

The key here is to use a matching function based on the difference of the gradient direction angles of the image and the 
model (which ignores the magnitudes of the gradients) and to double the angles (which makes differences of 180° 
disappear). The formula for the similarity at a pixel (at one model orientation) in the spatial domain is: 

(1)  S(c,r)  =  
1
2 + 

1
2 ∑

(j,k) ∈ m

 

 a(c+j,r+k) b(j,k) cos[2θ(c+j,r+k) - 2β(j,k)] 

   
where: 
 
a is the image pixel gradient direction weight (usually 1, but 0 if there is insufficient gradient magnitude at a pixel) 
b is the model pixel gradient direction weight (between 0 and 1) 
θ is the image gradient direction (angle) 
β is the model gradient direction (angle) 

! 

(c,r)  is the pixel location in the image 

! 

( j,k) is the pixel location in the model projection 
m is the set of all pixels in the model projection with non-zero weight 
 
1.3 Frequency Domain GDM 
 
Spatial domain matching is far too inefficient for production use so a much more efficient FFT based implementation is 
used.  The flow of information is shown in figure 1. The flow is the same for spatial domain processing, except cross-
correlation is replaced by FFT based cross-correlation. 

 
This transformation into the frequency domain is possible because equation (1) is equivalent to equation (2) below. 
 

(2)  S(c,r)  =  
1
2 + 

1
2 Re 







∑
(j,k) ∈ m

 

  a(c+j,r+k) e2iθ (c+j,r+k) b(j,k)e2iβ(j,k)  

  
 
which is in the form of a cross-correlation that can be calculated efficiently in the frequency domain using the Fast 
Fourier Transform: 
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(3)  S(c,r)  =  
1
2 + 12 Re [ FFT−1 [ FFT [ a(c,r) e2iθ(c,r) ] x FFT [ b(−c,−r) e2iβ(−c,−r) ] ] 

 

The right half of the inner formula, FFT [ b(−c,−r) ei2β(−c,−r) ], is pre-calculated for each model orientation and stored. 

The left half, FFT [ a((c,r) ei2θ(c,r) ], is calculated once per block of the image (this includes calculating the gradient 
directions, θ). The outer loop is one block multiplication and one inverse FFT to be performed once per block per 
orientation. Because there are many orientations (typically 60-100) and many image blocks (typically thousands) these 
inverse FFT operations dominate the run time of the GDM algorithm.  
 

 
Figure 1: Gradient Direction Matching 

 
1.4 Potential Performance Improvements 
 
The cross-correlation core of GDM algorithm is strictly structured and does not allow for modifications without 
sacrificing the great efficiency of the FFT implementation. But the procedures used to generate the inputs and process the 
outputs of the cross-correlation are more flexible. Are there any pre-processing methods that can be applied to the input 
image to enhance the matching accuracy? Various methods of gradient determination in each image block are possible, 
which method gives the best matches? We usually use a 3x3 Sobel gradient operator with no preprocessing. How should 
the 3D solid model be structured to give the best matches? How should the projection and sampling of the desired 
gradient directions be done? Various methods of weighting the pixels in the expected gradient direction rasters are 
possible, which of these gives the best matches? Once the match surfaces for each orientation are generated, what is the 
best way to extract the potential match locations? Once the potential match locations are extracted, are there post-
processing methods that will improve the ranking of valid matches while reducing the rankings of false alarms? 
 
In this paper we examine modifications to the model projection, rendering, and gradient extraction operation. 
Specifically we address the question of assigning weights to the pixels in the expected gradient direction rasters. We 
consider the idea that visible edges in the image might carry approximately the same amount of “matching information” 
suggesting that weighting pixels inversely proportional to projected visible edge length might give better matching 
accuracy. We also consider the idea that each pixel carries approximately the same amount of “matching information” 
and should be weighted approximately equally unless there is specific ad hoc knowledge that some parts of the model are 
more significant. We use the technique of relevance feedback to adjust the weights and improve the matching accuracy 
for some test images and then compare these improved weights with the performance of edge length based weighting and 
equal pixel weighting. 
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1.5 Weighting the Model Gradient Direction 
 
The first weighting technique used with GDM is to weight all pixels equally if they are within a threshold distance of a 
visible projected model edge. All other pixels are weighted zero. This gives very reasonable matching performance, but 
is subject to considerable quantization noise. As the configuration, size, location, or orientation of the model is changed 
slightly, the weights of pixels switch suddenly from one to zero or zero to one. It is difficult to see if the similarity 
changes are due to a better or worse match, or just due to quantization noise. 
 
The weighting technique was then changed so that pixels directly centered on a visible edge are weighted the highest and 
the weights of other pixels are based on how far the pixel center is from the visible edge using a smoothly varying 
function. This improved the matching accuracy slightly, but importantly eliminated many of the spatial quantization 
artifacts. Small changes in the model or projection no longer caused sudden jumps in the similarity value. 
 
The weighting technique was then extended to allow the modeler to specify the significance of various components of 
the model when building the model. The projection and rendering code then multiplied the distance-based weight by the 
model-specified weight to get the final weight used for each pixel. A multi-level hierarchical scheme was adopted so 
weights could be given to sub-structures at various levels, down to polygons or even single edges. The weight of the 
lowest level component is the product of its weight and the weights of all of the higher level components to which it 
belongs. This introduces a great deal of flexibility in model building but leaves open the question of what weights should 
be used to give the best match. 

 
One can always concoct situations where one type of weighting is better than another. Consider the case of a model that 
is a thin rectangle. There are two long sides with many pixels and two short sides with far fewer pixels. When looking 
for targets with this model, any two parallel line segments with the same spacing as the width of the rectangle will have a 
good match on most pixels (a large area with a uniform gradient will also be a good match). The thinner the rectangle is, 
the worse this problem becomes. The pixels on the short sides of the rectangle provide all the discrimination between 
rectangles of the correct length and longer objects. In some situations (such as plowed fields) weighting the short ends of 
the rectangle more heavily would clearly improve the relative matching of the desired shape compared to the many false 
alarms in the fields. Does this generalize to a mix of imagery? Perhaps weighting the pixels of all edges inversely 
proportional to their visible projected lengths (so that all edges contribute to the matching with equal total weight) gives 
better matching performance than weighting pixels independently of the visible projected edge length (so that all edges 
contribute to the matching with total weight proportional to their visible projected lengths). Or perhaps the plowed field 
background is atypical and such an approach is usually counterproductive leading to reduced accuracy. 
 
The visible parts of a single component, when projected at different model orientations, may differ greatly. This includes 
differences in size and shape as well as possibly being partly or wholly obscured by other parts of the model. Assuming 
the component is visible at a given orientation, how should its contribution vary with orientation? Because our test 
images are near nadir looking and our model is so simple, the lengths of the projected edges and visibility of the edges 
will not vary significantly with model orientation so we cannot investigate this question directly. However we hope that 
this experiment will suggest a direct relation between edge length and best weight, and that relation might generalize to 
edge lengths that vary with orientation (a subject for further study). 

 
2. EXPERIMENTAL METHODOLOGY 

 
To investigate some of these questions we have selected a very simple model (figure 2) so that the effects of changes in 
the weighting strategy should not be hidden by the model complexity. Even though the model is very simple, it is still 
quite useful for some realistic search scenarios.  Our model is of a large vehicle, a typical tractor/semi-trailer 
combination. The simplicity of the model is suitable for resolution levels of approximately 0.5 to 1.0 meters per pixel 
where much additional target detail is not visible. We have chosen to treat each of the eight edges of this model as a 
separate component. The aspect ratio of the semi-trailer is about 5.5 so we expect to observe some thin rectangle effects 
as described above. Near nadir looking imagery is used in this experiment so a full 3D model is not needed.  
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Figure 2. Simple tractor/semi-trailer model with 8 components 
 

The procedure for this experiment is to use relevance feedback (RF) to optimize the component weights for best 
performance using a representative test image. The optimized component weights can then be used for matching the 
same type of target in other images.  The values of the optimized weights should directly suggest which of the two ad 
hoc weighting strategies under consideration is superior. Our test image is a commercially available Digital Globe 
Quickbird image with a resolution of 16k×16k and ground sample distance of 0.6 meters of a section of Moscow.  The 
image contains a mix of urban, forest and water areas, with many roads, cars, trucks and railroads. 

 
2.1 Relevance Feedback Algorithm 
 
The relevance feedback [3] algorithm is widely used in content-based image retrieval work. In the standard RF approach, 
there is a set of images tiles 

! 

T = {t
k
}
k=1
K .  Each tile in the set, 

! 

t
k
, is characterized by a feature vector 

! 

f
k

= {f
k,i = 1,N} , 

where N is the total number of features in the vector.  Typically, the features 

! 

f
k,i  that constitute the feature vector 

represent various statistics (mean, variance, color histogram, response to edge detector, etc) that describe the tile at a 
range of image resolutions.  In our application each feature will be a similarity measure for a model component. In the 
standard formulation there is a query tile 

! 

t
0
 and its corresponding feature vector 

! 

f0 = {f0i ,i = 1,N} , and the goal is to 
find tiles in T that are “similar” to 

! 

t
0
.  This is done by tuning a set of weights, 

! 

w
k

, so that the norm of the weighted 
distances 

! 

wk ( f0k " f i,k )  is small for “relevant” tiles and large for “non-relevant” tiles.  Any well behaved norm can be 
used. Define 

! 

S
i
 to be the similarity of tile, 

! 

t
i
, to the query tile, 

! 

t
0
, as: 

 

(4)  Si  =  ∑
k=1

N

 wk ξk(i,0)  

 
Where 

! 

"
k
(i,0)  is the normalized difference of the k-th feature between the i-th tile and the query tile.  The distances are 

normalized so that the standard deviations are equal. The RF algorithm then adjusts the weights,

! 

w
k

, so that the 
discrimination  between relevant and non-relevant tiles is improved. 
 
The RF algorithm can be written as the following sequence of steps: 
 
1. Calculate the matrix of feature similarity values 

! 

Si (m,n) , between i-th features of m-th and n-th tile 
2. Calculate the mean 

! 

µ
i
 and the standard deviation 

! 

"
i
for each column of 

! 

Si (m,n) .  
3. Initialize feature weights, 

! 

w
i
= 1/N ,     

! 

i = 1..N  
4. Compute the similarity values between each (k-th) tile and the query tile 

! 

t
0
, 

! 

s
i
(k,0) = [f

ki
" f0i ]

2 , and normalize them 

! 

s
i
(k,0)"#

i
(k,0) 

5. For each tile in T, calculate the overall similarity between the tile and the query as the linear combination of 
normalized feature similarities 

! 

"
i
(k,0) , 

 S(k)  =  ∑
i=1

N

 wi ξi(k,0),     

! 

k = 1..K  

6. Rank all tiles 

! 

t
k
 according to their similarity values 

! 

S(k) . The tiles are ranked in the order of decreasing similarity 
values and a predefined number of top matches are displayed to the human analyst who issued the query.  We will call 
the set of displayed matching tiles 

! 

M . Clearly, 

! 

M " T . 

  4   2 

3 

1 
6 

   7 

   5 
  8 
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7. The human analyst interactively marks tiles in 

! 

M  as “relevant” (set 

! 

M
R
" M ), or (optionally) “non-relevant” 

(

! 

M
NR

" M
R

).  Some tiles can be left unmarked; they will be considered “neutral” and will not affect the procedure. 
8. The feedback from users is incorporated by adjusting the weights 

! 

w
i
 in equation (4) to emphasize features which are 

seemingly more important for the matching.  This is done as follows: 
 

a) Reset all weights to zero, 

! 

w
i

= 0 ,  

! 

i = 1..N   
b) Analyzing the tile rankings based on the similarity values for individual features 

! 

"
i
(k,0) .  For each feature 

! 

i , 
define the set of best matches ranked according to 

! 

"
i
(k,0)  as 

! 

M
i
.   

c) Count the number of times the relevant tiles from 

! 

M
R

 appear in 

! 

M
i
.  For each occurrence, increment 

! 

w
i
 by 

one. 
d) (Optional, if 

! 

M
NR

is defined.)  Count the number of times the non-relevant tiles from 

! 

M
NR

 occur in 

! 

M
i
. For 

every such occurrence, decrement 

! 

w
i
 by one. 

e) Check if the resulting weight 

! 

w
i
 is negative.  If so, reset to zero. 

f) Re-normalize the weights, 

! 

wi = wi / w j
j=1

N

"  

This procedure will assign more weight to features for which the set intersection 

! 

M
i
"M

R
 is maximized.   

9. Go to step 5 if the weights have not converged. 
 
The sequence of steps 5-9 is repeated until weights 

! 

w
i
 converge.  Given a good descriptive set of image features and 

consistency of user's feedback, the weights should converge to a set of values that improve the retrieval precision for this 
particular query

! 

t
0
.  The resulting set of weights can be stored for future queries related to the same tile

! 

t
0
, or similar 

tiles. 
 
2.2 Applying RF to GDM Weights 
 
The summation in equation (1) runs over all projected edge pixels.  This can be rewritten as sums over components as 
follows: 

(5) 

! 

S(c,r) =
1

2
+
1

2 ( j,k)"Pc
# a(c+ j,r+k)b( j,k) cos 2[$(c+ j,r+k) % &( j,k) ]

c=1

Nc

#  

 
where

! 

N
c
is the total number of components in the model, and 

! 

P
c
is the set of edge pixels corresponding to c-th 

component. Factoring out the component weights 

! 

ˆ w j  so that 

! 

b(c,r) = ˆ w j " b (c,r)  for all pixels constituting a given 
component j yields  
 

(6) 

! 

S(c,r) =
1

2
+

1

2
ˆ w k a(c + i,r+ j ) " b (i, j ) cos 2[#(c + i,r+ j )

(i, j )$Pk

%
k=1

Nc

% &'(c,r) ]   

 
Finally, we can denote 
 

(7) 

! 

"k =
1

2
a(c + i,r+ j ) # b (i, j ) cos 2[$(c + i,r+ j )

(i, j )%Pk

& '((c,r) ]  

 
where  

! 

"
k
 is the similarity value for k-th component between the model and the thumbnail. Substituting (7) into (6), we 

obtain  
 

(8) 

! 

S(c,r) =
1

2
+ ˆ w 

k
"

k
k=1

N
c

#  

 
 

which is nearly identical to equation (4), for which we know the RF procedure.  The feature (or component) similarities 

! 

"
k
 are still normalized to the interval [0,1].  The only difference between equation (4) and equation (8) is an extra 
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additive constant of 1/2.  Note however, that the algorithm remains unchanged if 

! 

S(k)  in equation (4) has an additive 
constant, because any such constant will preserve the relative ranking of the tiles. 
 
The RF algorithm applied to GDM an be summarized as follows: 
 

1. Run normal GDM to find local maxima of the similarity surface 

! 

S(c,r) .   
2. Disambiguate candidate matches and display the cleaned candidate list of thumbnails ranked according to their 

similarity values.  Denote the returned list of thumbnails 

! 

M = {t
k
}
k=1
M  

3. For each i-th candidate thumbnail, compute the component similarity values 

! 

"
k(i) using equation (7), for all 

components in the model.  These are computed separately in the spatial domain, since in normal GDM 

! 

S(c,r)  is 
calculated by FFT.  It is important to realize that the component-based similarity values 

! 

"
k
 do not change 

during RF iterations.  It therefore makes sense to store them in computer memory.  As we mentioned above, the 
values 

! 

"
k
 are already normalized to the interval [0,1], so there is no need for explicit normalization at each step 

here. 
4. Initialize component weights, 

! 

ˆ w 
k

= 1 N
c

, where 

! 

N
c
 is the total number of components in the phase boundary 

set P. This assigns equal weight to all components of the model. 
5. Compute the total similarity 

! 

S(i)  for each i-th thumbnail using current weights 

! 

ˆ w 
k

, according to equation (8).  
6. The set of relevant thumbnails, MR, are marked.   
7. For each component k, sort the similarity values 

! 

"
k
 in the descending order, and call the set of top-ranked 

values 

! 

M
k
 Reset the corresponding weight to zero, 

! 

ˆ w 
k

= 0 , and then follow the increment/decrement strategy 
for weight updating.  After updating the weights, reset negative ones back to zero, and normalize so that 

! 

1 = ˆ w 
k

k=1

N
c

" . 

8. Go to step 5. 
 

The sequence of steps 5-9 is repeated until the weights 

! 

ˆ w 
k

converge.  The resulting final values of 

! 

ˆ w 
k

 can be stored for 
future searches of the same object model. 
 
The use of an RF procedure in an automated test procedure that does not prompt for the selection of relevant tiles at each 
iteration implies the knowledge of the exact locations of true objects in the images is available to the system.  This 
information is derived by visually examining the images and marking the locations of all trucks. This information is 
stored and used on each successive RF iteration to derive the relevant/non-relevant sets of thumbnails.  For the RF 
procedure, we used the top 500 thumbnails with respect to their overall similarity values computed by GDM algorithm.  
This represents the base set, M.  The size of the sets 

! 

M
k
 which are used to update the component weights, is 100 tiles 

each. 
 

3. RESULTS 
 

The initial weights for the truck model were chosen so that each edge contributed an equal amount to the matching. Thus 
each pixel on a edge was weighted roughly inversely proportional to the length of the edge. This initial weighting 
corresponds to the horizontal dotted line in figure 3a. The second dotted curve in figure 3a shows the values of the 
weights after one iteration of RF. The solid line represents the converged weights after several iterations. The final 
values are a reasonable approximation of weighting each edge proportional to the length of the edge (equivalently 
weighting each pixel about the same). This tends to validate the second proposed ad hoc weighting strategy - uniform 
pixel weighting, while tending to discredit the first ad hoc weighting strategy - uniform edge weighting. The only 
significant variation from the uniform pixel weighting for this model was that the front edge of the truck cab (edge 6) 
was found to be much more significant than the rear edge of the truck cab (edge 8) and more significant than sides of the 
cab (edges 5 and 7). The long edges of the semi-trailer contributed the most to the performance of the matching. One 
might assume that this was due to higher similarities (better matches) of that component in the image, but in fact after 
examining the data we found that long edges had significantly lower similarity values in the non-relevant thumbnails. 
They were the best rejecters of false alarms. 
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It is apparent that the RF algorithm converges very quickly on this test data. The results were nearly ideal after only one 
iteration. This was not very significant to us in this application as GDM is much slower than RF. 
 
As a means to compare the performance of the algorithms, we use Receiver Operational Characteristics (ROC) curves 
for the detections.  ROC curves show the cumulative number of true reported matches as a function of the number of 
returned thumbnail pages.  This quantifies the number of image thumbnails a human analyst would have to review, 
before a specified fraction of true matches to the model are be found.  Figure 3b shows the ROC curves for the training 
thumbnails used in the RF training. A significant improvement in the ROC curve is observed. 

 
Derived component weights                                           ROC curves  –  training data 

 
Figure 3. Relevance Feedback results. 

The solid line denotes the final (converged) solution, while the dashed lines show successive iterations. 
 
These results are encouraging, but will the derived weights help identify trucks in a random image?  After all, the 
weights were derived on a limited set of thumbnails (500 total), which may not represent the whole variety of thumbnails 
in the image.  Moreover, the set of weights was derived from a single image, which can be thought of as a “training set”.  
There is no guarantee that the derived set of weights will work for all images taken from different viewing angles, under 
different lighting conditions, regardless of terrain types, etc.  These are all valid concerns that needed to be addressed. 
. 
 

 
log(pages of thumbnails)                                                log(pages of thumbnails) 

Moscow  (full image)                                                         Madrid (full image) 
 

Figure 4. ROC curves for uniform edge weighted components (blue) and RF weighted components (red) 
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To address these concerns, we conducted a series of tests.  First, we considered whether the derived set of weights does 
improve the performance of the GDM algorithm on the remaining thumbnails in the test image.  To do that, we fixed the 
component weights in GDM to the RF-derived values, and re-ran the GDM procedure obtaining the new list of matches 
sorted by decreasing similarity.  Figure 4a shows the corresponding ROC curves for uniform (bottom curve) and non-
uniform (top curve) sets of weights.  The improvement due to weighting components is clear, and reaches as much as 
20% for a given number of thumbnail pages. Conversely, for a given fraction of true hits recovered, the number of 
thumbnail pages that need to be examined by a human analyst can be reduced by as much as a factor of 10 compared to 
the uniform edge weighting case.  The overall number of returned true hits is similar, 206 for non-uniform weighting and 
209 for uniform edge weighting.  In addition a second image was processed using the original and RF derived 
component weights. The results of those runs are shown in figure 4b. This second image was a section of Madrid, which 
contained, by visual inspection, 24 trucks. The RF derived weights produced better results, similar to the Moscow image. 
The conclusion here is that the component weights derived from a rather limited set of thumbnails (500 total) do go a 
long way in improving performance of the GDM algorithm.  
 
Next we addressed the issue of whether the weights would change given a different training image (terrain types, lighting 
conditions, viewing angles, etc).  The direct test would, of course, be to repeat the RF procedure on a significantly 
different image.  However, indirect evidence that these factors will not matter much comes from the following test: 
instead of replacing the training image, we replace the set of thumbnails from which the weights are derived.  Originally, 
we ran the RF procedure on 500 thumbnails with top similarity values.  According to our “ground truth” information, 
there were 194 relevant thumbnails among these 500.  In two additional tests, we randomized the non-relevant 
component, i.e. selected random non-relevant thumbnails from the whole set of GDM reported hits.  Moreover, we also 
reduced the number of relevant thumbnails among the 500 to only 50, instead of 194. Both these steps were implemented 
to significantly change the training thumbnails, to see whether this affects the weights.  Each test was run several times, 
using different random samples.  The results are shown in Figure 5.  The results indicate that the component weights 
remain rather stable even in the presence of random non-relevant components, and even when the “signal” (i.e. the 
number of true hits in the training set M) is low.  This result lends indirect evidence that some variation in the training 
image will not affect the component weights significantly. 
 
 

 
194 relevant 306 non-relevant                                      50 relevant 450 non-relevant 

 
Figure 5. Component weights derived with random sampling of 500 thumbnails 
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4. CONCLUSIONS 
 

We have applied the technique of relevance feedback to the selection of component weights for gradient direction 
matching. 
 

1. Changing the component weights used by GDM definitely alters matching performance significantly.  For one 
test image, we report the improvement of as much as 20% in terms of the detection efficiency (number of true 
hits with respect to the number of thumbnails examined), or a factor of 10 fewer thumbnails to examine, for the 
same detection probability. 

2. Relevance feedback is very effective in determining component weights for GDM. It converges quickly in as 
little as 1 or 2 iterations in our case. It also appears to be tolerant of varying the non-relevant parts of the test 
image. 

3. Training the weights on one image and using those weights on a different image was successful. The images 
were of similar resolution and quality so this result does show that more divergent images can continue to 
benefit from training on different images. 

4. The proposed uniform edge weighting ad hoc strategy was shown to be clearly inferior to the proposed uniform 
pixel weighting ad hoc strategy for this model and these images. 

5. Several other areas in the GDM process were identified where performance improvements might be made. 
Some additional research in these areas is planned. 
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