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The nature of the progenitors of short duration, hard spectrum, gamma-ray bursts1 (GRBs)

has remained a mystery. Even with the recent localizations of four short-hard GRBs, no

transient emission has been found at long wavelengths that directly constrains the progen-

itor nature. Instead, as was the case in studying the different morphological subclasses of

supernovae2, 3 and the progenitors of long-duration GRBs4, we suggest that the progenitors

of short bursts can be meaningfully constrained by the environment in which the bursts oc-

cur. Here we present the discovery spectra of the galaxies that hosted three short-hard GRBs

and the spectrum of a fourth host. The results indicate that these environments, both at the

galaxy scale and galaxy-cluster scale, differ substantially from those of long-soft GRBs. The

spatial offset of three bursts from old and massive galaxy hosts strongly favours an origin

from the merger of compact stellar remnants, such as double neutron stars or a neutron-star

black hole binary. The star-forming host of another GRB provides confirmation that, like su-

pernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types. This

indicates a class of progenitors with a wide distribution of delay times between formation and

explosion.

In the past four months the Swift and HETE-II satellites have discovered four GRBs whose

short duration (t < 2s) and spectral hardness place them within the short-hard GRB classification5–8.

Furthermore, each of these GRBs has been localized by its afterglow X-ray emission to within a

circle of radius 10′′ on the sky9–12. Although previous missions reported hundreds of short-hard

GRBs, none of these were promptly localized to less than a few arcminutes and so a counterpart
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association at other wavelengths proved elusive13, 14. The discovery of GRB 050509b and a fading

X-ray afterglow5 led to the first redshift and host galaxy association9 for a short-hard GRB, solving

the long-standing mystery over the distance scale and energetics for at least some members of this

class. The four events now localized offer an opportunity to study the population of host galax-

ies and large-scale environments, examine the energetics, and begin to constrain the nature of the

progenitors.

Based on positions of the afterglows, two of four bursts (050509b and 050813) are associated

with clusters of galaxies9, 15. Because only ≈ 10% of the mass of the Universe is contained within

clusters, this suggests that either galaxies in clusters preferentially produce progenitors of short-

hard GRBs or that short-hard bursts are preferentially more likely to be discovered and localized in

cluster environments9. We have examined the Swift X-ray Telescope data of the fields of the other

two GRBs (050709 and 050724) and found no conclusive evidence for diffuse hot gas associated

with massive clusters. Furthermore, a spectroscopic study of three bright galaxies near the X-ray

afterglow position of GRB 050724 show them all to be at different redshifts, disfavouring a cluster

origin for that burst. The cluster environments of at least two short-hard GRBs contrast strikingly

with the observation that no well-localized long-soft GRB has yet been associated with a cluster16.

Therefore, more sensitive observations of the fields of both historical and new well-localized short-

hard GRBs may be expected to show a significant preponderance to correlate with galaxy clusters.

We now turn to the putative galaxy hosts of short-hard GRBs. In three of four cases, the GRB

has been plausibly associated with a galaxy to better than a 99% confidence level (Figure 1). In the
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fourth case (050813), there are two galaxies located in the error circle with comparable magnitude

and one may associate the event with either of these. In Figure 2, we present the discovery spec-

tra of three short-hard host galaxies and a high-resolution spectrum of GRB 050709 which was

previously identified17. Three bursts are associated with galaxies exhibiting characteristic ‘early-

type’ spectra. The absence of observable Hα and [O II] emission constrains the unobscured star

formation rates (SFR) in these galaxies to SFR < 0.2M�yr−1 (Table 1), where M� is the mass of

the Sun, and the lack of Balmer absorption lines implies that the last significant star forming event

occurred > 1 billion years ago. The host galaxy of GRB 050709 exhibits strong emission lines

that indicate on-going star formation with a conservative lower limit of SFR > 0.5M�yr−1. These

observations clearly indicate that these short-hard GRBs occurred during the past ∼ 7 billion years

of the Universe in galaxies with diverse physical characteristics.

In contrast to what is found for short-hard GRBs, all of the confirmed long-soft GRB host

galaxies are actively forming stars with integrated, unobscured SFRs ≈ 1 − 10M�yr−1 18. The

galaxies have small stellar masses and bluer colors than present-day spiral galaxies 19 (suggesting

a low metallicity). We therefore conclude that the host galaxies of short-hard GRBs, and by ex-

tension the progenitors, are not drawn from the same parent population of long-soft GRBs. And

although long-soft GRBs are observed to significantly higher redshift than the current short-hard

GRB sample, one reaches the same conclusions when restricting to low-z long-soft GRB hosts 20.

The identification of three galaxies without current star formation argues that the accepted

progenitor model of long-soft GRBs (the collapse of a massive star21) is unviable as a source for
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the short-hard GRBs. Instead, the observations lend support to theories in which the progenitors of

short-hard GRBs are merging compact binaries (neutron stars or black holes22, 23). This inference

is supported through several channels. First, the redshift distribution of these short-hard bursts is

inconsistent with a bursting rate that traces the star-formation rate in the universe, unlike long-soft

GRBs, which do follow it. If we introduce a ∼ 1 Gyr time delay from starburst to explosion,

as expected from compact object mergers, the observed redshift distribution of these GRBs is

consistent with the star-formation rate24. Second, the lack of an associated supernova for all four

short-hard GRBs is strong evidence against a core–collapse origin. Third, our measured offsets

(fig. 1) of the short-hard GRBs from their putative hosts are compatible with predicted site of

merging compact remnant progenitors25, 26. Noteworthy, and somewhat counterintuitive, is that the

albeit small offset of GRB 050724 (2.36 ± 0.90 kpc) is near the median predicted merger offset for

such galaxies26.

The identification of the host galaxies and redshifts finally fixes the absolute burst energies.

Table 2 shows the inferred isotropic energy release in prompt γ–ray emission, along with its dura-

tion in the source rest–frames. These events suggest that short-hard GRBs are less energetic, typ-

ically by more than one order of magnitude, than their long counterparts, which typically release

a total γ-ray energy of 5 × 1050 erg when collimation is taken into account. The total isotropic-

equivalent energy in γ-rays, Eγ,iso appears to correlate with the burst duration, such that longer

events are also more powerful27. We find that Eγ,iso ∝ T ψ90 and ψ ≈ 3/2 to 2. The total energies,

durations, and the general behavior of the correlation between them are in rough agreement with

the numerical modeling of GRB central engines arising from compact object mergers28. Our fits
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to the available afterglow data indicate that the density in the circumburst medium is closer to that

found in the interstellar (n ≈ 1 cm−3) rather than intergalactic medium (n ≈ 10−3 cm−3). This

might suggest a selection bias where short-hard GRBs that occur in a dense external medium have

a brighter afterglow emission, and thus are more accurately localized9.

The association of short-hard GRBs with both star-forming galaxies and with ellipticals dom-

inated by old stellar populations is analogous to type Ia SNe. It indicates a class of progenitors with

a wide distribution of delay times between formation and explosion, with a tail probably extending

to many Gyr. Similarly, just as core-collapse supernovae are discovered almost exclusively in late-

time star-forming galaxies, so too are long-soft GRBs. As new redshifts, offsets and host galaxies

of short-hard GRBs are gathered, the theories of the progenitors will undoubtably be honed. Still,

owing to the largely featureless light of afterglow radiation, unless short-hard bursts are eventually

found to be accompanied by tell-tale emission features like the supernovae of long-duration GRBs,

the only definitive understanding of the progenitors will come with the observations of concurrent

gravitational radiation or neutrino signals arising from the dense, opaque central engine.
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Physical Properties of the Hosts of Short-Hard GRBs

GRB z ra Rb LcB SFRd Spectral Type

(kpc) (mag) (109L�) (M�yr−1)

050509b 0.2248 ± 0.0002 39 ± 13 16.8 ± 0.05 20 < 0.1 Elliptical

050709 0.1606 ± 0.0001 3.5 ± 1.3 21.1 ± 0.2 0.4 > 0.5 Late-type dwarf

050724 0.2576 ± 0.0004 2.4 ± 0.9 19.8 ± 0.3 2 < 0.05 Early-type

050813 (B) 0.719 ± 0.001 ... 23.43 ± 0.07 4 < 0.1 Elliptical

050813 (C) 0.73 ± 0.01 ... 22.57 ± 0.07 10 < 0.2 Elliptical

050813 (X) 0.722 ± 0.001 ... 22.75 ± 0.07 8 < 0.1 Elliptical

aProjected offset of the X-ray afterglow positions from the optical centraoid of the respective

host galaxies. The quoted error is an approximation to the uncertainty of the most likely offset r,

following appendix B of 4, which is required because offsets are a positive-definite quantity and not

strickly Gaussian. In general, r± σr does not contain 68% of the probability distribution function.

bR-band magnitudes. We convert the Sloan Digital Sky Survey r magnitude for 050509b29.

For the galaxies associated with GRB 050813 we have measured i-band magnitudes and converted

to R-band assuming R− i = 0.99 mag, appropriate for an elliptical galaxy at z = 0.7.

cThe R-band magnitudes were converted to B-band luminosities by assuming standard col-

ors for these spectral types, adopting the redshift listed in column 1, and adopting the standard

cosmology Ωm = 0.3, ΩΛ = 0.7 and Hubble’s constant H0 = 70kms−1Mpc−1. The luminosi-

ties have not been corrected for Galactic extinction and are reported relative to the Solar B-band
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luminosity.

dUnextincted star formation rate based on Hα and/or [OII] luminosity. Upper limits are 3σ.
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Inferred Burst Energetics and Durations

GRB Eγ,iso[erg] a T90/(1+z) [sec] b

050509b 2.75 × 1048 0.032

050709 2.29 × 1049 0.060

050724 1.0 × 1050 0.203

050813 1.7 × 1050 0.349

a Isotropic-equivalent energy Eγ,iso, computed using the observed fluence and redshift under

the assumption of a concordance cosmology with Ωm = 0.29, ΩΛ = 0.71 and Hubble’s constant

H0 = 70 km s−1 Mpc−1. While these energies are systematically lower than for long-soft GRBs,

we note that with the energy range covered by Swift (15–350 keV) and the spectral properties of

the prompt emission, the derived values should be considered lower limits.

b Source rest–frame duration, measured in T90, the time when 90% of the total fluence of the

GRB is accumulated, beginning after 5% of the fluence has been accumulated1.
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Figure 1 Optical light montage of four host galaxy regions of short-hard GRBs. In

the case of GRB 050709 and GRB 050724 where optical afterglows were detected,

the GRB is projected to within 2′′ from the center of a galaxy with apparent magnitude

R < 19.5 mag. The likelihood of a chance association between these afterglows and the

putative host galaxies is less than 10−4 per event given the covering fraction of such ob-

jects on the sky. Similarly, the error circle containing GRB 050509b encompasses a single

bright galaxy which is the putative host galaxy 9 for which the chance of a spurious phys-

ical association with the burst is ∼ 10−3. Images were acquired on the Gemini North 8m

Telescope (GRB 050724, i-band; GRB 050813) and Keck 10m Telescopes (GRB 050509b,

R-band; GRB 050709, R-band) and processed in the usual manner. Processed images

were registered to an absolute world coordinate system with typical 1 σ rms uncertainties

of 150 milliarcsecond in each coordinate. We find the absolute positions of host galaxies

for 050509b, 050709, and 050724 as α(J2000) = 12:36:12.878 δ(J2000) = +28:58:58.95,

23:01:26.849 −38:58:39.39, and 16:24:44.381 −27:32:26.97, respectively. The ellipses

in each panel represent the astrometric position of the most accurate X-ray afterglow po-

sition reported (68% confidence interval for GRB 050509b9; 68% confidence interval for

GRB 050709 10; 68% confidence interval for GRB 050724 11; and reflect the uncertainty in

the astrometric tie between the X-ray and optical frame. The 90% containment radius pre-

viously reported for GRB 05081312 is shown as a large circle. With the same data, using

an optimized technique for faint transient localization9, we have localized GRB 050813

to α(J2000) = 16:07:56.953 ± 0.20 sec, δ(J2000) = +11:14:56.60 ± 1.45 arcsec. The
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smaller ellipse shows this 68% containment radius. This localization makes the host iden-

tification of B or even the fainter B∗ more likely over galaxy C. Adopting the redshift of the

putative host or cluster redshift (GRB 050813) a projection scale is shown at right in each

panel. The galaxies labeled in the panel GRB 050813 panel are referred to in figure 2. We

note that galaxies X (16:07:57.509 +11:15:02.13; i = 21.76 ± 0.03 mag), B (16:07:57.200

+11:14:53.09; i = 22.44±0.04), and C (16:07:57.008 +11:14:47.37; i = 21.58±0.04) show

consistent, red colors that suggest a cluster membership15. The brightest objects at the

edge of the large error circle (16:07:57.393 +11:14:42.79 and 16:07:56.850 +11:15:01.12)

are likely foreground Galactic stars. All images were smoothed with a Gaussian of 1.4–

1.6 pixels to enhance the contrast between detected objects and sky noise. North is up

and East is to the left.

Figure 2 Optical spectroscopy for the host galaxies of short-hard GRBs. With the

exception of GRB 050724, these data are the discovery spectra which established the

redshift of the GRB event and also the properties of the galaxy host and/or environment.

The data were acquired with the (a) Echellette Spectrometer and Imager on Keck II with

a 1′′ slit in echellette mode; (b) the DEIMOS spectrometer on Keck II obtained through a

0.7′′ longslit using the 600line/mm grating; (c) the LRIS spectrometer on the Keck I tele-

scope with the 600/4000 grism through a 1′′ longslit for the blue spectrum and the GMOS

spectrometer on the Gemini-North telescope using a 0.75′′ slit (following astrometry based

on a Magellan guide-camera image) and the R400 grating centered at 690nm for the red

spectrum; and (d) the GMOS spectrometer using the identical setup as (c). The data were
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fluxed using spectrophotometric standards taken with the same instrumental setups. The

absolute flux is uncertain, in particular, due to slit losses and is not corrected for redden-

ing by the Milky Way. The redshifts of the galaxies were measured through fits to the

spectral features indicated in the figure. We obtained spectra of two bright galaxies near

GRB 050724 (at positions 16:24:46.739 -27:32:28.90 and 16:24:43.344 -27:32:07.21) and

did not find them to be at the same redshift as the host galaxy; we therefore have found

no evidence the GRB 050724 is a member of a galaxy cluster. Note that we present

only the spectrum for galaxy B associated with GRB 050813 (figure 1). Our spectrum of

galaxy C shows a 4000Å break consistent with z = 0.73 and no significant emission lines,

galaxy X shows absorption features indicating z = 0.722 (see also 30), and we have no

redshift constraint for galaxy B∗ (i = 24.2 ± 0.1). The small projected distance between

these sources (≈ 40−100 h−1

70 kpc) and large velocity difference (∆v = 690−3000 km s−1)

strongly support the cluster nature of the progenitor environment for GRB05081315.
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