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Abstract

This paper presents an analytical solution of reactive transport with equilibrium
and kinetic reactions. A benchmark model of A <+ B <+ C — chain reactions is
developed for the purpose of verifying numerical computer codes and qualifying
mathematical models. A reaction matrix is derived for both the equilibrium and
first-order kinetic reactions and further decoupled as a diagonal matrix. Therefore,
the partial differential equations (PDEs) coupled by the reaction matrix can be
transformed into independent PDEs, for which closed-form solutions exist or can be
derived. The analytical solution derived in this paper is compared with numerical
results.
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1. Introduction

Several numerical computer codes have been developed in the past for modeling reactive transport
in porous media (e.g., Nitao, 1998; Xu et al., 1998; Clement et al., 1998, 2000). A wide range of
reactions at various time scales, such as chemical, biochemical, and geochemical reactions, is coupled
in partial differential equations and solved accordingly using ODE (ordinary differential equation)
solvers for kinetics and using DAE (differential algebraic equation) solvers for equilibrium reactions.
In order to verify and qualify numerical computer codes, appropriate analytical solutions have to
be used as references. However, due to the lack of an analytical solution of the transport with both
kinetic and equilibrium reactions, numerical codes are only benchmarked by comparing numerical
results against analytical solutions with first-order kinetics (Sun and Clement, 1999; Zhang and
Woodbury, 2002; Prommer et al., 2003; Zhang et al., 2005). Reactive transport coupled with
equilibrium reactions has not yet been qualified. In this paper, we propose a benchmark problem of
a sequential equilibrium and first-order kinetic reaction chain and provide a closed-form solution.



2. The Reactive Transport System

We consider here the transport with two-step equilibrium chain reactions and one-step first-order
kinetic reaction with the following overall stoichiometry,

k1 ka ks
A+— B+~ C —. (1)

Reactions between A and B, and between B and C are assumed to be reversible and equilibrium,
which can be expressed as

B C
k::, k:: 2
T3 YT B (2)

where k; and k» are equilibrium constants (dimensionless), 4, B, and C are the equilibrium con-
centrations of species A, B, and C, respectively. Besides the equilibrium reactions, species C is also
under first-order kinetic reaction,

dc

— = —k3C 3

dt s 3)
where k3 is the first-order reaction rate [T~!]. If all reactions are instantaneous, the equilibrium
concentrations can be determined as

A=A-X
B=B+X-) (4)
C=C+Y —ksC
where
A
[X] zl[k1+k1k2 -1 —(1—ks) B (5)
Yy a k1ko kika —(1+4 k1)1 —k3) c

a=1+k; + kiks.

When the reaction terms are coupled, the partial differential equations of transport are written

dA

OB

5—5(3)4-2\?—37

%—f =L(C)+Y - ksC, (6)

where L is the advection-dispersion operator expressed as
L(A)=V-(V-DA-vA),

and D [L2T 1] is the tensor of dispersion coefficients and v [LT 1] is the vector of velocity. Refor-
matting (6), the reactive transport system can be expressed in matrix format

de 1 —(k’l + klkg) 1 (1 — k3)
a =L (C) +Fe, F=-— k1 —(1 + k‘lk‘g) k‘l(l — k3) (7)
a k1ko k1 ko —(1 + ki + k’lkzkg)

where ¢ = [A B C]7.



3. An Analytical Solution

The reaction matrix, F, is diagonalized as

F =SAS™ ', (8)
where
—1
1—k 0 1 5 e !
S=| 0 1-k Kk |, ST'=-| & =B K |,
-1 =1 kike T 1 1-ks
-1 0 0
A= 0 -1 0 ; ’7:a—k1k2k3. (9)
0 0 _ kikoks

Substituting (8) into (7) and multiplying by S™! yield

Oa

5 L(a) + Aa, a=S"lc. (10)

In terms of concentration a, each PDE in (10) is independent of other two PDEs. The reaction
terms are decoupled in the “a” domain. Thus, we can write

a; = fi(.’L',t, )\,’), \V/Z = 1,2,3, (11)

where A = —diag([\1 A2 As]), and A\; = Az = 1 and A3 = ki1koks/a. For example, the analytical
solution of Bear (1979, p.~268) can be applied to the transport in a semi-infinite column:

a? VX _ +
fi(z,t) = L exp (—) [exp(—B;z)erfey; + exp(B;z)erfey;t] , (12)
2 2D ' ¢
where
4D2 D

172 0o
Bi = ( v + ﬁ) , erfe(n) =1—erf(n) = %/ exp(—T1?)dr,
n

__z—(v+4AND)Y?t . x4+ (v+4AND)YEH
Vi T T ez 0 T T e

i=1,2,3.

Finally, the closed-form solution is derived as ¢ = Sa.

4. Application

As a demonstration of the analytical solution, we consider the transport of the three reactive
species in a one-dimensional system. Both analytical and numerical solutions (using RT3D, Clement
et al., 1998) are computed along the one-dimensional column of 40 meters discretized using 40 evenly
spaced elements. The boundary condition assumed is the same as that used in deriving the basic
analytical solution (12). The dispersion coefficient and velocity are assumed to be 0.4 m?d~! and
0.5 md™!, respectively. The equilibrium constants k; and ky are assumed to be 1.5 and 2.0, and the
first-order reaction rate, ks, is 0.02 d—'.
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Figure 1. Comparison of analytical solutions against RT3D results at 50 days.

The computations were performed using MATLAB 6.1.0.450 (R12.1) on SunBlade 100. The CPU
time required for running the RT3D was 349.18 seconds while that required for the analytical solution
derived was 0.0118 seconds. As compared in Figure 1, the solution can be considered identical to
the numerical one although the analytical solution requires less CPU time.

With the analytical solution derived, we compute the snapshot concentration profiles of species
A, B, and C at 10, 20, 50, and 100 days as shown in Figure 2.
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Figure 2. Concentration profiles at 10, 20, 50, and 100 days.
When ¢ = o0, the long-time behavior of the solution can be demonstrated by replacing (12) with

fi(z,00) = al exp [(% — ﬂz) w] , Vi=1,2,3. (13)

Then, the steady-state solution is expressed as

o)== [ 8)5] Lo (5 - 2)




o) = f (- 5) o - 254 ]
o) = {122 o0 (8] g e[ ()

+ ky ks exp [(% - 53) a:] } . (14)

The steady-state concentration profiles of the three species for the given parameters are shown in
Figure 3.
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Figure 3. Steady-state concentration profiles of species A, B, and C when k; = 1.5, ks = 2.0, and
ks = 0.02.
When k3 = 0 (the first-order kinetics reaction stops), the analytical solution is simplified as one
of transport with two-step equilibrium reactions. Correspondingly, the steady state concentration
profiles are shown in Figure 4.
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Figure 4. Steady-state concentration profiles of species A, B, and C when k1 = 1.5, ky = 2.0, and
ks = 0.0.
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Figure 4 indicates that all three species reach constant concentrations, 0.1818, 0.2727, 0.5455,
respectively, when z > 5.0 m. The sensitivity of constant species concentrations to the equilibrium
constants, k; and ks, is shown in Figure 5.
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Figure 5. Sensitivity of steady-state concentration profiles of species A, B, and C to equilibrium
constants, k1 and ky when k3 = 0.0.

5. Conclusions

An exact solution is presented for transport in porous media with sequential equilibrium and first-
order kinetic reactions. In order to verify functionalities of numerical computer codes for reactive
transport with both equilibrium and kinetic reactions, a benchmark model of A ++ B ++ C— is
provided to cover reversible and irreversible, equilibrium and kinetic reactions. The solution of Bear
(1979, p.~268) is used as an example of basic solution (Eq. (12)) in the solution scheme for the
given initial and boundary conditions. However, the transform matrices derived in this paper for
the coupled reactions are applicable to any other initial/boundary condition if the corresponding
solution for a single species is available. This paper not only provides the exact solution for transport
with coupled equilibrium/kinetic reactions, but also offers a framework for deriving more closed form
solutions under various initial/boundary conditions. For this reason, we recommend that numerical
computer codes of reactive transport be verified using this benchmark model solution.

Appendix A: Mass Balance Equation of Species A

In this appendix, we demonstrate that the derived solution satisfies the mass balance equation.
For the purpose of simplicity, we use the steady-state solution in (14) to demonstrate £(c;)—X = 0.

Let

v v
& = 5D Bi,  mi = exp [(ﬁ - 5i) m] = exp (§ix) - (15)
Then,
v—1 1
o = 41 16
1 ~ m 7773 (16)

The first- and second-order derivatives of species A are

Oc -1 1
o =T Lo+ o an)
T Y Y
&c; v-1, 1.,
= - = . 1

The advective-dispersive flux is expressed

6201 661 Y= 1 D
= DI =g+ g -

Y
82 "oz ~y

-1
L(c1) =D &m — %'53773-

Y
(a)
Y 1 2 1 9
= —'y (D§1 - ’Ué'l) m + ; (D§3 - ’U§3) 73 (19)
(b)

On the other hand, using (5), the reaction term X' can be written as

Y- 1 1 k1k2k3
X = — . 20
~ T + 7 a 3 (20)
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In order to conserve the mass balance equation of species A, terms (a) and (b) in Equation (19)
should be

D& —vé =1, (21)
and
ki1kok
Dg — vy = == (22)
Since
’1)2 )\1 1/2 ’1)2 1 1/2
= 1 = —_— — = _ —
)\1 ) /61 (4D2+D) <4D2+D) ) (23)
we have
2 _ e _Y\ = _v v
D& = v = D&y (‘51 D) (ﬂl 2D) (ﬂlDJ“ 2)
2
_pl(e_ 2 \_p(L
o (- ) =n (1) -
Therefore, (21) holds.
Similarly,
_ k1k2k3 _ ’1}2 )\3 1/2 _ ’1)2 klkgkg 1/2
w= B a= (i p) = (i (@)
hence

DE —vés = & (D& —v) = (B — 555 ) (DBa + 3) ZD(@’?_%)'

k1kaoks k1kaks
=D = 2
( aD ) a. (26)

Thus, (22) is proved.
Substituting (24) and (26) into (19) for terms (a) and (b),

L(cr) = X. (27)
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