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Abstract

Gridded guns are useful for producing modulated electron beams.  This modulation is 

generally limited to simple gating of the beam, but may be used to apply structure to the 

beam pulse shape.  In intense beams, this structure spawns space charge waves whose 

dynamics depend in part on the relative strengths of the velocity and density variations 

which comprise the initial current modulation.  In this paper, we calculate the strengths of 

beam current and velocity modulation produced in a gridded electron gun, and show that 

under normal conditions the initial modulation is dominated by density variation rather 

than velocity variation.
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I. INTRODUCTION

Advanced accelerator applications, such as intense x-ray sources, future linear 

colliders, and heavy ion fusion, increasingly require high current, low emittance beams.  

The beams used in many of these applications are ultimately accelerated to relativistic 

energy, but they are all nonrelativistic and dominated by space charge forces when 

initially created.  These space charge forces can drive instabilities and inhomogeneities

that can lead to emittance growth, coherent synchrotron radiation, and other disruptive 

phenomena, even after the beam becomes relativistic.  Heavy ion fusion presents unique 

challenges, as it requires the propagation of intense [1] nonrelativistic beams over 

distances on the order of 1 - 10 km [2].  These beams will be extremely susceptible to 

emittance growth and other difficulties associated with space charge waves launched 

from unintended modulation of the beam during generation and transport.  These 

emerging applications are driving a renewed interest in intense beams and space charge 

waves.

In general, current perturbations which launch space charge waves may be due to 

variation in beam velocity, density, or both.  The dynamics of the waves depend in part 

on the relative strength of the velocity and density contributions to the initial perturbation 

[3].  Work at the University of Maryland has focused on studying space charge wave 

propagation in the context of low energy electron beam transport systems.  In this paper, 

we calculate the relative strengths of the velocity and current modulation that can be 

achieved in gridded Pierce-focusing [4] electron guns, and look at some consequences for 

beam dynamics.  Nonrelativistic velocities, electron transit times which are fast compared 
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to changes in applied voltages, and beam modulation wavelengths which are long 

compared to the beam pipe radius, will be assumed throughout.

II. BEAM MODULATION

A. Gridded Guns.

The techniques used for analysis of planar triodes are also useful for the analysis 

of nonconverging gridded guns [5,6].  Both gridded guns and triodes may be operated in 

three regimes:  saturation, amplification, and cutoff.  In saturation, the current is limited 

by space charge, and is governed by the Child-Langmuir equation [7].  If the magnitude 

of the grid voltage is increased sufficiently, the gun will be brought into triode 

amplification mode, where the current is governed by
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where J is the current density produced from the cathode, TK is a constant depending 

on the geometry of the triode, gkV is the voltage between the cathode and grid, akV is the 

voltage between the cathode and anode, and µ is the triode amplification factor [6].  If 

the magnitude of the grid voltage is increased even more so that 

0≤+
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ak

gk
V

V , (2)

the gun will be driven into cutoff, so that no current will escape.  

If the gun is operated in pulsed mode, the voltage applied between the grid and 

cathode will contain both a DC component and a pulsed component, as shown in Fig. 1.  

Normally, the strength of the pulser voltage and the DC bias voltage will be adjusted to 

drive the gun fully into cutoff or fully into saturation, producing a flat-top beam pulse.  
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To deliberately produce a structured beam pulse, the bias voltage is adjusted to keep the 

gun in triode amplification mode at the top of the cathode pulse. The desired modulating 

signal is then applied between the grid and the cathode. This modulating signal may also 

arise accidentally, since any ringing, droop, or other structure on the pulse will be 

replicated in the current produced from the gun [5].  Such unintended structure is almost 

always present in the output signal of pulsed power systems, like the pulse forming lines 

frequently used to supply the pulsed voltage )(tVP .  

B. Strength of Velocity Modulation

Modulating the grid-cathode voltage as shown in Fig. 1 will result in a beam 

carrying velocity and density modulation, the strengths of which can be calculated [5].  

For a nonrelativistic beam accelerated through a voltage 0V , the beam velocity is given 

by

m
qVv 0

0
2

= . (3)

A perturbation  )(tV∆ in the accelerating voltage will produce a perturbation of 

approximately

)(
2

)(
0

1 tV
mV
qtv ∆= (4)

in the beam velocity.  The strength of this velocity perturbation can be written in 

dimensionless form as

0

max1

v
v

=δ , (5)
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where 
max1v is the maximum value of the initial velocity perturbation.  The velocity 

perturbation strength is therefore related to the applied voltage by

0

max

2V
V∆

=δ . (6)

The total (unperturbed) voltage through which the beam is accelerated in a gridded gun is

the sum of the cathode-grid potential gkV and the grid-anode potential gaV ,

gagk VVV +=0 , (7)

and (in the configuration of Fig. 1) the cathode-grid potential is the difference of a DC 

bias voltage BV and the cathode pulser voltage )(tVP .  Since the cathode pulser voltage is 

used to gate the beam, it will take two nominal values:  zero when emission is 

suppressed, and a nonzero value 0PV when beam is being extracted.  The accelerating 

voltage when beam is extracted is then

BPga VVVV −+= 00 . (8)

If a perturbation is superimposed on 0PV , then eq. (6) becomes

[ ]BPga

P

VVV
V

−+

∆
=

0

max

2
δ , (9)

where 
maxPV∆ is the maximum strength of the perturbation in the pulser voltage.

C. Strength of Current Modulation.

The dimensionless current perturbation strength can be defined as the ratio of the 

maximum perturbation in beam current to the unperturbed current, measured as the beam 

exits the gun:
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The current in a gridded gun operating in triode amplification mode is 
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where A is the cross-sectional area of the cathode.  The acceleration voltage gaV is 

generally much greater than the control voltage BP VtV −)( , so that the control voltage 

may be neglected in the third term of eq. (11).  Any perturbation in the pulser voltage will 

create a perturbation in the beam current, the maximum value of which is given by
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The strength of the current perturbation in the beam exiting the gun is then given by 
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D. Ratio of Modulation Strengths

The ratio of the current and velocity perturbation strengths is therefore given by
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Since the control voltage is assumed to be much smaller than the accelerating voltage, 

this equation may be rewritten as
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Two special cases of this equation are of particular interest.  First, when the grid 

and cathode are at the same potential, 00 =− BP VV , and the ratio of modulation strengths 

becomes equal to three times the amplification factor:

µ
δ
η 3= . (16)

Second, as the gun approaches triode cutoff, the denominator in eq. (15) will approach 

zero, and ∞→δη .  In both of these cases, the strength of the current perturbation 

exceeds that of the velocity perturbation.  In fact, eq. (15) implies that the strength of the 

current modulation will always be much larger than the strength of the velocity 

modulation provided that 

BPga VVV −>>
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This requirement holds in all conventional gridded guns.  

Fig. 2 shows the ratio δη , calculated from eq. (14), as a function of grid-cathode 

voltage normalized by grid-anode voltage.  Curves are shown for several values of 

amplification factor.  For a given amplification factor, making the control voltage more 

negative will reduce beam current and ultimately drive the gun into triode cutoff, such 

that ∞→δη .  For an infinite amplification factor, cutoff occurs when the grid-cathode 

voltage is zero, while for an amplification factor of one, cutoff could only occur when the 

grid-cathode voltage is comparable to the accelerating voltage, violating our assumption 
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that BPga VVV −>> 0 .  However, within that assumption, 3→δη for unity amplification 

factor.  Note that for small grid-cathode voltages and amplification factors greater than 

about 5, δη >> and the beam modulation is dominated by density modulation.

E. Space Charge Limited Operation

The preceding discussion assumed that the gun was operating in triode 

amplification mode.  If the gun is operating in space charge limited mode, modulating the 

grid-cathode voltage will still result in production of a modulated beam.  Since electrons 

produced from the cathode must still travel through the grid and anode, the beam velocity 

will still be given by eq. (3) and eq. (8), and the velocity modulation will still be given by 

eq. (9).  However, the current drawn from the gun in saturation is no longer given by eq. 

(11), but rather by the Child-Langmuir Law [6,7]

2/3
0AVKI DS = , (18)

where DK is a constant depending on gun geometry, and the limiting voltage 0V is the 

anode-cathode voltage of eq. (8).  Small changes in the grid-cathode voltage will produce 

current perturbations with strength
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and the ratio of current perturbation strength to velocity perturbation strength is 

3=
Sδ

η , (20)

which is the same as for a gun of unity amplification factor operating in triode 

amplification mode. This is a result of the expressions for current perturbation strength 

in space charge limited mode and triode amplification mode, which differ only by the 
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presence of a factor of µ in eq. (13).  Since most gridded guns have relatively large 

amplification factors, the extraction of large current perturbations will be easier when 

operating in triode amplification mode rather than space charge limited mode.

F. Negative Transconductance

Based on the sign convention of Fig. 1, and within the limits of our assumptions, 

we have shown that the ratio δη generally varies between 3 and ∞+ .  This implies that  

δη is always positive.  In order for δη to be negative, an increase in the pulser 

voltage -- or equivalently, a decrease in the bias voltage -- would decrease the current 

drawn from the gun.  In other words, the gun's transconductance

( )BPgk
m VtV

I
V
Ig

−∂
∂

=
∂
∂

=
)(

(21)

would have to be negative.  In theory, the transconductance of a triode is positive and 

varies as the one-third power of beam current [6].  However, a negative (or zero) 

transconductance can occur under certain conditions in practical electron guns.  Fig. 3 

shows current as a function of bias voltage measured on the University of Maryland 

Electron Ring gun [1], compared to a theoretical curve based on the ideal planar triode 

assumption [5].  For this test, the pulser voltage waveform remained unchanged but the 

bias voltage was varied.  At VVB 40= , the gun is in saturation.  Increasing the bias 

voltage should bring the gun into triode amplification mode and reduce beam current.  

Instead, the current increases.  This is believed to be caused by the use of an aperture 

plate to reduce the beam current, as shown in Fig. 1 [5].  As the bias voltage increases, 

current inside the gun will decrease according to eq. (11).  The Pierce geometry is 

intended to balance the transverse space charge force in a full-current beam, but will 
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cause the reduced-current beam to converge.  The cross-sectional area of the beam 

decreases faster than its current, so that the current density will increase.  As long as the 

beam radius is larger than the aperture radius, the current passing through the aperture 

will be the product of the aperture area and the incident beam density, so that the current

passing through the aperture will initially increase as the bias voltage increases.  Once the 

beam radius is smaller than the aperture radius, all of the current produced by the gun 

passes through the aperture, and continuing to increase the bias voltage causes the beam 

current to decrease.   The result of this effect is that the gun has an operating region 

where it exhibits negative transconductance, allowing generation of waves with a 

negative (or zero) value of δη .  This may be useful for the production of some special 

space charge wave configurations discussed in Ref. [3].

III. BEAM DYNAMICS

A. Space Charge Wave Velocity

Modulation applied to an intense beam will evolve through the production of 

forward- and backward-traveling space charge waves, referred to as fast and slow waves 

[3].  This is true regardless of whether velocity modulation or density modulation 

dominates.  It is also true regardless of the source of the modulation.  Figs. 4 and 5 show 

examples of fast and slow wave propagation, and their effect on the beam current profile.  

In Fig. 4, the beam modulation is applied by modulating the grid voltage, while in Fig. 5 

a laser pulse was applied to the cathode of the same gun to generate additional current by 

photoemission [8,9].  In both cases, the result is a density-dominated perturbation 

launching fast and slow space charge waves, and the differences seen in the evolving 

beams are due to differences in the shape of those initial perturbations [10].
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Fast and slow waves travel in the beam frame at the velocity [11]
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where q is the fundamental charge, 0ε is the permittivity of free space, 0m is the mass of 

the electron, γ is the relativistic factor, and 0I is the nominal beam current.  The 

geometry factor )/ln(2 abg = depends on the beam radius ( a ) and the beam pipe radius 

( b ), and is generally of order one. The ratio of the wave speed to the beam velocity, in 

the nonrelativistic limit, is 
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The quantity 23
00 VI is the perveance of the gridded gun for a given value of the 

cathode-grid voltage.  This equation indicates that the wave speed will be much smaller 

than the beam velocity except for unusually large values of g and perveance.

B. Density, Velocity, and Current Disturbances

The fast and slow space charge waves consist of disturbances in beam density, 

velocity, and current, and the amplitudes of these disturbances depend on functions of η , 

δ , 0v , and 0c .  These disturbances are governed by the equations [3]
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and
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where the perturbed quantities are indicated by subscripts of one, the unperturbed 

quantities are indicated by subscripts of zero, and h is a function varying between zero 

and one defining the shape of the modulation initially applied to the beam.  The first half 

of each equation corresponds to the (backward-traveling) slow wave, and the second half 

of each equation corresponds to the (forward-traveling) fast wave.  Note that in each case, 

the expressions for the amplitudes of the fast and slow waves differ slightly;  this allows 

for the production of a fast wave only, or a slow wave only.  Production of single space 

charge waves and other special cases of eqs. (24) - (26) are discussed in detail in Ref. [3].

In part II, we showed that when a conventional gridded electron gun is used to 

produce a modulated beam, the modulation is dominated by a density disturbance, rather 

than a velocity disturbance.  Under what conditions is the initial velocity disturbance 

negligible for the purpose of the later space charge wave evolution?

This will be the case if, in the expressions governing the amplitudes of the fast 

and slow space charge waves, the magnitude of all the terms carrying a factor of δ is
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much less than the magnitude of all the terms carrying a factor of η .  For example, for 

the initial velocity disturbance to be negligible for the evolution of the fast velocity wave,

0

0

0

0

v
c

v
c

ηδδ <<− . (27)

In the case of each of the fast space charge waves, this reduces to the requirement that

δ
η

<<−1
0

0

c
v

, (28)

while for each of the slow space charge waves, this reduces to the requirement

δ
η

<<+1
0

0

c
v . (29)

If these requirements hold, the initial modulation can be treated as a pure density 

modulation, with no associated velocity disturbance.  In this case, the expressions for the 

density, velocity, and current distributions simplify so that the fast and slow density 

waves have equal amplitudes and polarities, while the fast and slow velocity waves have 

equal amplitudes and opposite polarities.  In addition, eq. (23) shows that 00 vc << except 

in the case of unusually large values of g and perveance;  when this holds, the fast and 

slow current waves also have equal amplitude and polarity. These results are consistent 

with experimental observations [12,13].  

IV. DISCUSSION

In this paper, we considered the production of modulated electron beams from 

gridded guns.  It was assumed throughout that the beam was nonrelativistic, that the 

modulation was due to small changes in the cathode-grid voltage, that the beam dynamics 

were dominated by space charge forces rather than electron thermal velocities, that the 

beam produced in the gun then entered a transport system without subsequent 
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acceleration, and that the beam modulation wavelengths were long compared to the beam 

pipe radius.

Under these assumptions, we showed:

1) that beam current modulation was predominately due to density modulation, 

rather than to velocity modulation;

2) that, except for guns with unusually high perveances and transport systems 

with unusually tightly confined beams, the velocity of space charge waves is much less 

than the beam velocity;

3) that if the requirements of eqs. (28) and (29) are fulfilled and 00 vc << , the 

velocity modulation initially imposed on the beam by the electron gun is totally 

negligible for the purpose of the later density, current, and velocity wave evolution in the 

beam;

4) that if all these conditions hold, the fast and slow density and current waves 

will have equal magnitude and polarity, while the fast and slow velocity waves will have 

equal magnitude and opposite polarity; and

5) that if the beam current is reduced by use of an aperture plate, then a gridded 

electron gun may exhibit negative transconductance behavior, allowing generation of 

waves with a negative (or zero) value of δη .  



16

REFERENCES

[1] P. G. O'Shea, M. Reiser, R. A. Kishek, S. Bernal, H. Li, M. Preussner, V. Yun, Y. 

Cui, W. Zhang, Y. Zou, T. Godlove, D. Kehne, P. Haldemann, and I. Haber, "The 

University of Maryland Electron Ring (UMER)," Nucl. Instrum. Meth. A 464 646-

652 (2001).

[2] J. W. Kwan, "Experiments in Heavy Ion Fusion Beam Physics at LBNL, LLNL, and 

the University of Maryland," in Proceedings of the 1997 Particle Accelerator 

Conference.

[3] J. G. Wang, D. X. Wang, and M. Reiser, "Generation of space-charge waves due to 

localized perturbations in a space-charge dominated beam," Phys. Rev. Lett. 71, 1836-

1839 (1993). 

[4] J. R. Pierce, "Rectilinear Electron Flow in Beams," J. Appl. Phys. 11, 548 (1940).

[5] J. R. Harris, Doctoral Dissertation, University of Maryland (2005).  (Online: 

http://hdl.handle.net/1903/2906)

[6] K. R. Spangenberg, Vacuum Tubes. New York:  McGraw-Hill, 1948.

[7] C. D. Child, "Discharge from Hot CaO," Phys. Rev. 4, 492-511 (1911). 

[8] J.G. Neumann, J.R. Harris, B. Quinn, and P.G. O'Shea, "Production of 

photoemission-modulated beams in a thermionic electron gun," Rev. Sci. Instrum. 76, 

033303 (2005).

[9] J. R. Harris, J. G. Neumann, and P. G. O'Shea, "Governing factors for production of 

photoemission-modulated electron beams," J. App. Phys. 99, 093306 (2006)

[10] J. R. Harris, J. G. Neumann, K. Tian, and P. G. O'Shea, to be published.



17

[11] M. Reiser, Theory and Design of Charged Particle Beams, Wiley:  New York 

(1994).

[12] J.R. Harris, J.G. Neumann, and P.G. O'Shea, "Modulation of Intense Beams in the 

University of Maryland Electron Ring," in Proc. 2005 Free-Electron Laser Conf., 

Stanford, CA, August 21-26, 2005.

[13] K. Tian, Y. Zou, Y. Cui, I. Haber, R. A. Kishek, M. Reiser, and P. G. O'Shea, 

"Experimental observations of longitudinal space-charge waves in intense electron 

beams," Phys. Rev. ST Accel. Beams 9, 014201 (2006).



18

John R. Harris was born in Greenville, North Carolina.  He received the B.S. degree in 

physics from Duke University in 2000, and the M.S. and Ph.D. degrees in electrical 

engineering from the University of Maryland in 2002 and 2005.  He is currently a 

member of the Defense Sciences Engineering Division at Lawrence Livermore National 

Laboratory.  

Patrick G. O'Shea (F’04) was born in Cork, Ireland. He received the B. Sc. degree in 

1979 from University College Cork and the M.S. and Ph.D. degrees in 1982 and 1985, 

respectively, from the University of Maryland, College Park.

His early research was at the University of California, Los Alamos National 

Laboratory, on the Beam Experiment Aboard Rocket Project (BEAR), and the APEX 

Free-Electron Laser Project, and later at the Duke University Free-Electron Laser 

Laboratory.  He rejoined the University of Maryland in 1999, and from 2001 to 2005 he 

was Director of the Institute for Research in Electronics and Applied Physics (IREAP).  

He is currently Chair of the Department of Electrical and Computer Engineering.

Prof. O'Shea is also a Fellow of the American Physical Society.



19

FIGURE CAPTIONS

Fig. 1.  Schematic of a high-perveance gridded electron gun [5].  Emission of electrons 

from the cathode (K) is controlled by the potential on the grid (G).  Potential between the 

cathode and grid is maintained by a DC bias voltage (VB) and a pulsed voltage source 

(VP(t)), which is assumed to consist of oscillations superimposed on a rectangular pulse 

of height VP0.  The grid and cathode are both held at negative potential with respect to the 

laboratory ground by the high voltage supply (Vga).  Electrons escaping through the grid 

are accelerated toward the anode (A).  Transverse expansion of the beam is prevented by 

Pierce electrodes (P).  Here, the anode is shown with a mesh to counteract aperture 

defocusing of the beam. An aperture plate (AP) is also shown, which can be included to 

adjust beam current external to the gun for beam transport experiments.

Fig. 2.  Ratio of current modulation strength η to velocity modulation strength δ , from 

eq. (14).  Independent variable is the grid-cathode (control) voltage as a fraction of the 

grid-anode (accelerating) voltage.  

Fig. 3.  Beam current as a function of bias voltage in the University of Maryland Electron 

Ring gridded gun [5].  Squares denote measured values, while the lower curve gives the 

expected current based on the ideal planar triode assumption and the amplification factor 

measured at cutoff.  
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Fig. 4.  Example of modulated beam in the University of Maryland Electron Ring [5, 12].  

Modulation consists of sinusoidal fast and slow space charge waves, which interfere with 

each other as they move along the beam.  Traces indicate current as a function of time, 

measured with beam position monitors at the indicated distances from the cathode.

Fig. 5.  Discrete space charge wave propagation in the University of Maryland Electron 

Ring [12].  Beam energy was 10 keV and flat top current was 38 mA.  Initial perturbation 

(P) generates fast (F) and slow (S) space charge waves of the same magnitude and 

polarity, which separate as the beam travels through the transport system.  Measured 

wave separation indicates a wave velocity of (1.6 ± 0.14) Mm/s.  The perturbation shown 

here was generated by photomodulation [8];  however, like grid modulation from a 

conventional triode gun, this technique generates a density-dominated perturbation with 

negligible velocity modulation.  

Reprinted from J.R. Harris, J.G. Neumann, and P.G. O'Shea, "Modulation of Intense 

Beams in the University of Maryland Electron Ring," in Proceedings of the 2005 Free-

Electron Laser Conference.
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