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Understanding How Femtosecond Laser Waveguide Fabrication in Glasses Works 

 

Abstract 

 

In order to understand the physical processes associated with fs-laser waveguide writing 

in glass, the effects of the laser repetition rate, the material composition and feature size 

were studied. The resulting material changes were observed by collecting Raman and 

fluorescence spectra with a confocal microscope. The guiding behavior of the 

waveguides was evaluated by measuring near field laser coupling profiles in combination 

with white light microscopy. 

 

Waveguides and Bragg gratings were fabricated in fused silica using pulse repetition 

rates from 1 kHz to 1 MHz and a wide range of scan speeds and pulse energies. Two 

types of fluorescence were detected in fused silica, depending on the fabrication 

conditions. Fluorescence from self trapped exciton ( ) defects, centered at 550 nm, 

were dominant for conditions with low total doses, such as using a 1 kHz laser with a 

scan speed of 20 µm /s and pulse energies less than 1 µJ. For higher doses a broad 

fluorescence band, centered at 650 nm, associated with non-bridging oxygen hole center 

(NBOHC) defects was observed. Far fewer NBOHC defects were formed with the 1 MHz 

laser than with the kHz lasers possibly due to annealing of the defects during writing. We 

' Eδ
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also observed an increase in the intensity of the 605 cm-1 Raman peak relative to the total 

Raman intensity, corresponding to an increase in the concentration of 3-membered rings 

for all writing conditions.  The magnitude of this increase in waveguides fabricated with 

a 1 MHz laser was nearly twice that of waveguides fabricated with a 1 kHz laser.  

 

Additional waveguides were fabricated in soda lime silicate glasses to assess the effects 

of changing the glass composition.  These waveguides formed around, not inside the 

exposed regions.  This is distinctly different from fused silica in which the waveguides 

are inside the exposed regions.   

 

A comprehensive analysis of all the experimental results indicates that good waveguides 

are formed below the actual damage threshold of the glass. The rapid quenching model, 

which correlates the refractive index of the modified material to its cooling rate, explains 

the effect of composition on waveguide behavior. 
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Chapter 1 

 

Introduction 

 

1.1 Laser induced refractive index changes in glass 

 

Touch something in the sun and it feels warm; leave something in the sun and its color 

fades.  These are basic observations of light affecting matter.  Science works by making 

such observations and then asking questions.  Why does something in the sun feel warm?  

Can the warmth of the sun be used for something?   

 

In the early 1970s it was discovered that lasers could cause noticeable, permanent 

refractive index changes in glass; or more simply put, the laser could make a spot [1.1].  

Hill et al. used this “photoinduced” change for optical device fabrication.  In 1978 his 

group demonstrated that a blue laser could be employed to fabricate Bragg grating 

reflectors inside glass fibers [1.2].  Further studies by Garside et al. [1.3-1.4], explained 

that this refractive index change was induced by a nonlinear absorption process, in which 

two blue photons are absorbed simultaneously.  Unfortunately, the two photon process 

was not practical for industrial scale device fabrication. 

 

It was theorized that the linear absorption of a UV laser source could be used to alter the 

glass more efficiently.  The linear absorption of a UV laser is possible because a single 

UV photon has the same energy as two blue photons.  The experimental confirmation of 
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this theory by Meltz et. al. in 1989 [1.5] opened the door to using photoinduced refractive 

index changes for practical device fabrication.  However, strong laser absorption was 

required for the process to work, limiting its initial applicability to certain doped glasses.  

As a result research efforts evolved to develop new UV lasers that could affect existing 

glasses; and to develop new photosensitive, doped glasses that would absorb existing 

lasers. 

 

1.2 Femtosecond laser induced refractive index changes 

 

The development of femtosecond lasers in the 1990s provided a method to induce 

refractive index changes in most glasses, including undoped glasses.  A femtosecond (fs) 

pulsed laser has pulses that are orders of magnitude shorter than conventional lasers, only 

lasting 10s or 100s of femtoseconds (10-15 s).  These pulses have very high peak 

intensities, with relatively low energies.  This combination allows for efficient highly 

nonlinear processing, in which several near-infrared photons are absorbed simultaneously 

to modify a glass.  Nonlinear, femtosecond laser processing has three important 

advantages compared with linear, UV laser processing:  It creates less collateral damage.  

It can be used to fabricate devices inside bulk materials.  And as mentioned earlier, it 

works in most glasses. 
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1.2.1 Device fabrication 

 

Waveguides were the first optical device fabricated using femtosecond laser induced 

refractive index changes [1.6].  A waveguide, sketched in figure 1.1, is a simple device, 

which causes light to follow a set path and prevents the light from spreading out as it 

travels.  The successful creation of waveguides demonstrated the viability of femtosecond 

laser writing as a technique for fabricating optical devices.  Many research groups 

subsequently used femtosecond writing to produce a wide variety of optical components 

that can be incorporated into integrated optical devices [1.7-1.14].  These include several 

types of splitters [1.8,1.9] and couplers [1.10] that can be used to separate and combine 

beams of light; Bragg gratings [1.11] that serve as mirrors for specific colors of light; 

(a) 

(b) 

Figure 1.1  A cartoon of a) a light in air, and b) the same light passing through a waveguide.  The 
waveguide is outlined in dark blue.
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amplifiers [1.13] that increase the intensity of light passing through them; and lasers [1.7, 

1.14] that generate coherent light for use in a variety of applications.  Most of these 

devices were manufactured using two-dimensional configurations identical to devices 

manufactured on material surfaces with conventional techniques.  However, Nolte et al. 

took advantage of the ability of femtosecond processing to fabricate devices inside bulk 

materials to create a three-dimensional, 3-way splitter [1.12].  This achievement 

exemplifies the potential of femtosecond waveguide writing to produce novel 

architectures that could be used to increase the efficiency of existing devices, or to create 

entirely new devices. 

 

1.3 Understanding the refractive index change  

 

Despite this success in fabricating various devices using a femtosecond laser, the 

underlying mechanisms of how the refractive index change is induced are still uncertain.  

And, more questions continue to arise as people study the effects of different materials 

and lasers upon the modification process.  This section provides a brief overview of the 

current theory and its problems.  Chapter 2 provides a more detailed technical discussion. 

 

The mechanisms of femtosecond laser induced refractive index changes are normally 

divided into two processes:  energy absorption and energy dissipation.  The energy 

absorption process has been fairly well characterized through a series of fs laser surface 

ablation studies [1.15-1.19].  A combination of multiphoton absorption and avalanche 

photoionization result in highly localized absorption of the femtosecond laser.  If enough 
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energy is absorbed, the energy density will reach a critical threshold after which a plasma 

forms within the exposed region. 

 

The energy dissipation process is less well understood.  This uncertainty arises because 

studying the tiny modified regions inside bulk glasses is akin to hunting for a needle in a 

haystack, difficult but not impossible if one has the correct tools.  A few techniques, 

including confocal spectroscopy which was vital for most of my research as described in 

chapter 3, are capable of detecting changes within the micron scale modified regions 

inside centimeter blocks of glass.  From this information a rough picture of the energy 

dissipation process has begun to emerge.  It is likely that energy dissipates through a 

combination of thermal diffusion and shock wave generation [1.20], but it is uncertain 

which process is dominant and how long the processes take.  In either case, the end result 

is a localized refractive index change. 

 

It was originally proposed that the results of femtosecond laser modification would be the 

same in any optical glass.  This assumption was based on early results which showed that 

femtosecond lasers could modify every glass tested [1.6]; and it was already known that 

the results for femtosecond laser ablation were similar for most glasses.  Earlier work in 

our group rebutted this belief.  Specifically, it was found that waveguides written in a 

phosphate glass (IOG-1), have different guiding characteristics than those written in 

fused silica [1.21].  Waveguides written in IOG-1 appear to have a lower refractive index 

core surrounded by a higher refractive index shell; in contrast the waveguides written in 

fused silica appear to have a higher refractive index core.  Our group proposed that these 
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different behaviors are determined by the relationship between the cooling rate used to 

produce the glass and the resulting density of the glass.  However, IOG-1 and fused silica 

belong to drastically different glass systems, between which too many material properties 

change to draw firm conclusions about the validity of our explanation.  Confirming this 

explanation would facilitate the fabrication of devices in diverse, application specific 

glasses.   

 

More questions have arisen from recent studies which have shown that the pulse 

repetition rate of the laser has a substantial effect on the femtosecond laser writing 

process [1.22-1.24].  Traditionally, amplified fs lasers with kilohertz repetition rates have 

been used for fs device fabrication because oscillators did not have sufficient peak 

intensities.  However, the development of high pulse energy oscillators and other high 

repetition rate fs sources that operate with megahertz repetition rates have overcome this 

barrier.  Several differences have been reported when using MHz instead of kHz 

repetition rate lasers to fabricate devices.  These include the formation of a spherical 

modified region that extends beyond the focal volume of the laser due to thermal 

diffusion and heat accumulation [1.22-1.23], and a potentially greater refractive index 

modification [1.24].  Additionally, it has been observed that megahertz systems provide 

better quality waveguides in some glasses, while kilohertz systems work better in others.     
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1.4  Project Summary 

 

The objective of my dissertation is to further explore how femtosecond laser modification 

of glasses works.  Specifically, it focuses on using spectroscopic tools to analyze the 

effects of pulse repetition rate and glass composition on the writing process.  This 

information will facilitate the creation of new devices using femtosecond laser writing.  

The dissertation is divided into eight chapters. 

 

Chapter 2 provides detailed background information on the mechanics and mechanisms 

of femtosecond waveguide fabrication; and on the spectroscopic characterization of 

femtosecond laser modified glass. 

 

Chapter 3 describes the equipment and procedures we used to fabricate and analyze 

waveguides and other devices.   

 

Chapter 4 contains high spatial resolution, spectral analyses of structural modifications 

caused by femtosecond laser waveguide fabrication.  Individual waveguides and more 

complex devices with micron scale features were studied. 

 

Chapter 5 describes a spectroscopic comparison between waveguides fabricated in fused 

silica using different laser repetition rates to determine the effects of pulse repetition rate 

on the modification process.   
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Chapter 6 compares waveguides fabricated in fused silica and soda-lime-silicate glasses. 

Studying these similar glasses allows us to assess which glass properties relate to the 

material dependent effects of femtosecond laser modification.   

 

Chapter 7 discusses a revised model of the femtosecond laser waveguide writing process 

based on the results described in chapters 4-6. 

 

Finally, Chapter 8 provides a summary of the work described in this thesis. 

 

Parts of this dissertation have been or will be published in several journal and conference 

articles listed below: 

• W. Reichman, J. W. Chan and D. M. Krol, “Confocal fluorescence and Raman 
microscopy of femtosecond laser-modified fused silica,” Journal of Physics: 
Condensed Matter, 15, pp. S2447–S2456, (2003). 

 
• W. J. Reichman, C. A. Click, D. M. Krol, “Fabrication of Waveguides in Sodium 

Silicate Glasses Using Ultrafast Laser Pulses,” Proceedings of the International 
Society for Optical Engineering (SPIE), Photonics West, San Jose, CA, 2005. 

 
• W. J. Reichman, D. M. Krol, C. W. Smelser, S. J. Mihailov, “Fluorescence 

Spectroscopy of Fiber Gratings Written with an Ultrafast Infrared Laser and a 
Phase Mask” Proceeding of the Conference on Lasers and Electro-Optics 
(CLEO), Baltimore, MD, 2005. 

 
• W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. 

Herman, “A Spectroscopic Comparison of Femtosecond Laser Modified Fused 
Silica using kHz and MHz Laser Systems,” Journal of Applied Physics, accepted, 
in press. 
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Chapter 2 

 

Background on Waveguide Fabrication and Characterization 

 

2.1 Overview 

 

This chapter begins with a description of different femtosecond (fs) laser fabrication 

methods, and discusses some of the advantages and disadvantages of each method.  It 

discusses the potential modification mechanisms, including how each mechanism 

functions and what requirements each mechanism imposes on the modification process.   

The chapter concludes with an overview of how spectroscopy has been used to 

experimentally investigate the modification mechanisms. 

 

2.2  Waveguide fabrication methods 

 

Most femtosecond waveguide fabrication systems follow similar principles.  A pulsed 

femtosecond laser is focused through a microscope objective, and a transparent sample is 

moved relative to the focal point to directly write devices.  A very high threshold 

intensity must be reached to initiate the modification process, as will be discussed in 

section 2.3.   Thus, the intensity of the laser can be adjusted such that it is only capable of 

modifying the glass in the focal volume of the microscope objective and passes through 

the rest of the transparent sample without causing any changes, as depicted in figure 2.1. 
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(a) 

 (b)

800 nm, 130 fs, 1 µJ 
laser pulses 

800 nm, 130 fs, 1 µJ 
laser pulses 

Figure 2.1  a) An unfocused femtosecond laser passes through a glass block; b) focusing the laser 
increases the intensity resulting in localized modification of the glass within the focal volume. 

Four major variables control the femtosecond modification process in all fabrication 

systems: the speed and direction with which the sample is moved; the laser repetition 

rate; the laser wavelength; and the laser fluence.  The different writing configurations 

discussed below vary in how they handle these variables. 

 

2.2.1  Longitudinal and transverse writing 

 

The direction with which the sample is moved relative to the direction of laser 

propagation is the defining difference between longitudinal and transverse writing.  In 

longitudinal writing the sample is moved parallel to the direction of laser propagation; in 
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(a) 

 (b)

800 nm, 130 fs, 1 µJ 
laser pulses 

800 nm, 130 fs, 1 µJ 
laser pulses 

Figure 2.2  a) Transverse and b) longitudinal waveguide writing.  The black arrows indicate 
the direction in which the sample is moved. 

transverse writing the sample is moved perpendicular to the direction of laser 

propagation.  This difference is illustrated in figure 2.2.   

 

Femtosecond waveguide writing was initially developed using the longitudinal writing 

orientation.  This orientation creates circular waveguides because a focused Gaussian 

beam is radially symmetric, as shown in figure 2.3a.  However for longitudinal writing, 

the waveguide length is physically limited to the working distance of the microscope 

objective and only minor deviations from the direction of laser propagation are possible 

using this technique.  Transverse writing was developed to overcome these limitations.  It 

allows for arbitrary waveguide length and arbitrarily sharp turns in the plane 

perpendicular to the laser beam, but transversely written waveguides frequently have an 
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(a) (b) (c)

z z x 

y y y 

Figure 2.3  Intensity profiles of a focused Gaussian beam propagating in the z direction; in 
b) the beam is focused with a low NA objective, and in c) it is focused with a higher NA 
objective. 

elliptical profile due to the elongation of a Gaussian focus, as shown in figure 2.3b.  The 

elongation can be reduced by using very high numerical aperture (NA) objectives, as 

shown in figure 2.3c.  The working distance of microscope objectives decreases as the 

NA increases, so this solution involves a tradeoff between the resulting waveguide 

symmetry and the depth at which devices can be fabricated.  Another way to eliminate 

the elongation in one direction is by using a cylindrical lens to create an elliptical beam 

[2.1].  Unfortunately, this results in the waveguide profile having a strong dependence on 

the scanning direction, so it is very difficult to fabricate anything besides straight 

waveguides with this technique. 

  

2.2.2 High and low repetition rate writing 

 

The laser repetition rate is the defining characteristic between “high” and “low” repetition 

rate femtosecond laser writing.  A functional definition of high repetition rate writing is 

“writing in which substantial thermal accumulation occurs between subsequent laser 

pulses, affecting the modification process.”  And, low repetition rate writing occurs 

whenever this statement is false.  In high repetition rate writing thermal accumulation 

melts the glass in a sphere around the focal volume [2.2-2.3].  This leads to a circular 
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waveguide profile that is not dependent upon the writing direction or the exact shape of 

the focal spot.  Several groups have also reported that high repetition rate writing causes 

an increase in the diameter of the modified line due to thermal diffusion and 

accumulation [2.2-2.5], and that it results in a greater refractive index change [2.6]. 

 

Despite the simple functional definition of high repetition rate writing, it is difficult to 

precisely define a repetition rate at which high repetition rate writing starts.  It is often 

unclear what constitutes “substantial” thermal accumulation, and the boundary between 

high and low repetition rate writing is material dependent; varying with the heat capacity, 

thermal conductivity, and band gap of the glass being modified.  The boundary is also 

affected by all of the laser writing parameters mentioned in section 2.2, further 

complicating efforts to form a precise definition.  A working definition of what 

constitutes a high repetition rate is a rate greater than 1 / τo, where τo is the time it takes 

for heat to diffuse out of the focal volume.  Writing with a 1 MHz system falls into the 

high repetition rate regime, and writing with a 1 kHz system falls within the low 

repetition rate regime.  The differences between these regimes are studied in further detail 

in chapter 5. 

 

2.2.3 Patterned writing 

 

Patterned writing is based on carefully controlling the laser fluence to create a specific 

spatial pattern.  In this technique the total laser intensity at every point within a sample is 

controlled such that modification only occurs where there are intensity peaks from 
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Phase mask 

800 nm, 130 fs, 1.3 * 1013 W / cm2

laser pulses 

Figure 2.4  Writing setup for patterned writing.  Note, that for patterned writing the average 
power per area is normally specified instead of the pulse energy. 

multiple beams constructively interfering, or where high intensity regions are generated 

by a phase mask, as shown in figure 2.4.  Unlike the translational writing techniques 

discusses so far; in patterned writing an entire pattern is formed at the same time without 

moving the sample [2.7-2.8].  This technique is much faster than the translational writing 

methods, and it is ideal for fabricating repetitive structures such as gratings or photonic 

crystals.  However, it is very difficult to fabricate non-repetitive structures, such as point 

defects, using patterned writing. 

 

2.2.4 The effects of changing the pulse fluence 

 

Of the four variables used to control the femtosecond modification process, the laser 

fluence is typically the most influential experimental variable for all of the writing 

configurations.  Adjusting the laser fluence by an order of magnitude can cause 

dramatically different results: from no modification, to the controlled modification used 
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(g) (h) (f) 

(d) (a) (b) (c) 

5 µm 
(e) 

Figure 2.5   Waveguides produced by transverse writing with a 50X microscope objective and 
a pulse energy of a) 0.00 µJ, b) 0.15 µJ, c) 0.25 µJ, d) 0.70 µJ, e) 1.3 µJ, f) 2.0 µJ, g) 2.7 µJ, and 
h) 5.9 µJ [2.9]. 

for producing optical devices, to uncontrolled damage as shown in figure 2.5 [2.9].  This 

sensitivity results from the modification process having a highly nonlinear dependence on 

the peak intensity (I), which is directly proportional to the fluence (F) for a fixed pulse 

width as described in equation 2.1, where τ is the temporal pulse width.   

  
τIF =          Eq 2.1 

  
Since most femtosecond laser systems have pulse widths of ~100 fs, the laser fluence     

(J / cm2) has become the standard parameter for describing experimental conditions.  The 

laser fluence is related to the laser pulse energy (E) and the focusing conditions by 

equation 2.2, where A is the exposed area, M2 is the beam quality factor, λ is the 

wavelength, and NA is the numerical aperture of the microscope objective.  For constant 

focusing conditions it is common for papers to list the pulse energy instead of the fluence.  
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2.3 Waveguide Fabrication Mechanisms 

 

Femtosecond laser waveguide writing has developed as an experimental discipline.  

Various groups have reported enormous success in fabricating many devices, in many 

materials, using many different writing configurations.  Despite this success, the 

underlying mechanisms of the modification process are still poorly understood.  My work 

has focused on understanding these mechanisms.   

 

As they are currently understood, the writing mechanisms can be divided into two parts:  

energy absorption and energy dissipation.  The energy absorption process is assumed to 

have the same mechanisms as femtosecond laser ablation.  Laser ablation has been well 

studied by many groups [2.10-2.16, 2.18].  In it, energy is absorbed through a 

combination of multiphoton absorption and avalanche photo-ionization leading to plasma 

formation.  The energy dissipation process is less well understood, though thermal 

diffusion and shock wave generation are the most popular proposed mechanisms.  Further 

questions remain about how processing variables – the laser pulse energy, the laser 

repetition rate, and the glass composition – affect the modification process.   

 

2.3.1 Multiphoton ionization 

 

Multiphoton absorption is a nonlinear process in which several photons are absorbed by a 

material simultaneously to excite an electron.  It is a very common process that can occur 

in any material, but it is frequently ignored because it typically contributes a negligible 
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Eg

Figure 2.6  Multiphoton absorption, glass that is transparent to blue light can absorb infrared 
light through multiphoton absorption (4 photon multiphoton absorption shown). 

fraction of the total absorption.  Two conditions are required for multiphoton ionization 

to become the primary absorption process:  The material must have a band gap that is 

greater than the energy of a single photon, and the light must have a very high intensity.  

Both of these requirements can be understood in terms of the absorption rate equation, 

equation 2.3, 

mIII
dt
dN γβα +++= ...2         Eq 2.3 

where dN/dt is the number of photon excited per unit time, I is the intensity of the 

incident light, and α, β and γ are frequency dependent absorption coefficients for the 1st, 

2nd, and mth order absorption modes.  Terms with m > 1 are individually referred to as m 

photon multiphoton absorption, or collectively as nonlinear absorption.  Higher order 

terms, with greater values of m, have orders of magnitude smaller absorption coefficients; 

reflecting the low probability of multiple photons interacting with an atom at once.  This 

leads to the requirement that the light must have a very high intensity for substantial 

nonlinear absorption to occur. 
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Increasing the intensity of the light causes an increase in both linear and nonlinear 

absorption.  For multiphoton absorption to be the dominant absorption mechanism it is 

necessary to almost eliminate linear absorption by reducing α to zero.  This requirement 

can be achieved by adjusting the excitation frequency, which controls the energy of 

individual photons.  A material that has a band gap greater than the energy of the incident 

photons – as shown in figure 2.6 – is transparent to those photons, and its linear 

absorption coefficient (α) is zero.  In a material with a band gap of energy Eg and photon 

energy hν, the m photon multiphoton absorption will be dominant, where m is the lowest 

integer value satisfying equation 2.4 [2.11-2.12].  For femtosecond laser waveguide 

writing, values of m are typically in the range of 3 to 6. 

gEmh ≥ν          Eq 2.4 

This discussion of multiphoton absorption focuses on the peak intensity of the laser, 

without indicating why it important to have short, femtosecond laser pulses.  Using 

femtosecond laser pulses has two advantages compared with using longer laser pulses.  

The first is that for a given peak intensity, shorter pulses have less total energy resulting 

in far less collateral damage to the surrounding glass [2.13].  The second is that the above 

discussion of multiphoton absorption assumes a perfectly pure, defect free transparent 

material at 0 K; or simply put, a material with no conduction electrons.  Clearly, none of 

these conditions hold true in real materials.  High purity glasses normally have 108 to 1010 

free conduction electrons primarily from intrinsic defects and metal impurities [2.14].  

These intrinsic electrons, and any electrons excited by multiphoton absorption serve as 

seed electrons for a second excitation process known as avalanche photo-ionization, 

which is highly dependent on the laser pulse duration [2.11-2.16, 2.18]. 
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2.3.2 Avalanche photo-ionization 

 

Avalanche photo-ionization causes a rapid increase in the concentration of conduction 

electrons through a cyclic combination of inverse Bremsstrahlung absorption and impact 

ionization [2.15-2.16].  Free conduction electrons oscillate in electromagnetic fields (such 

as light) without any net gain or loss in energy.  In inverse Bremsstrahlung absorption or 

Joule heating, electron / lattice interactions disrupt the oscillations of a free electron, 

allowing the electron to linearly absorb photons.  The rate at which the electron gains 

energy (P) is quantitatively given in cgs units by equation 2.5 [2.16], where τ is the mean 

time between electron / lattice collisions, e is the charge of the electron, I is the intensity 

of the laser, n is the refractive index of the glass, c is the speed of light, and m is the 

effective mass of the electron.  

ncm
IeP τπ 22

=          Eq 2.5 

Once an electron has twice the band gap energy of the glass it is possible for the electron 

to collide with a second bound electron, exciting the second electron to the conduction 

band, as depicted in figure 2.7.  Both electrons are then free to absorb more energy 

through inverse Bremsstrahlung absorption, restarting the avalanche photo-ionization 

cycle. 
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Figure 2.7  Avalanche photoionization (represented by the large arrows) causes an exponential 
increase in the free electron population once a free seed electron has been generated. 

 

As a linear absorption process, avalanche photo-ionization occurs everywhere the 

material is exposed to the laser.  It is limited by the concentration of free seed electrons 

and the time the cycle is allowed to repeat over (the pulse length).  In order to limit the 

modification to the focal volume of the microscope objective, the intensity and duration 

of the laser pulse must be controlled such that there is sufficient time for avalanche 

photo-ionization seeded by electrons from multiphoton absorption to reach the 

modification threshold, yet that there is insufficient time for avalanche photo-ionization 

seeded by intrinsic, free electrons to reach the modification threshold elsewhere in the 

material.  In general the shorter the pulse the easier it is to meet this criterion.  

 

Unlike conventional methods in which seed electrons come from randomly distributed 

defects and impurities, in femtosecond laser writing, multiphoton ionization generates 

seed electrons from the bulk material.  This difference results in the femtosecond laser 

fabrication process being insensitive to minor local glass variations, and creates a 

deterministic intensity threshold for material modification [2.13, 2.16].  The threshold is 

material and frequency dependent.  Because of this threshold behavior, it is possible to 

fabricate features that are smaller than the diffraction limit of the microscope objective 
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 Space 
Figure 2.8  Very small features can be fabricated by controlling the total intensity with respect to 
a modification threshold that is dependent on the laser frequency and the material. 
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[2.18].  These small features can be formed because the intensity distribution for a 

focused Gaussian beam is well known and the peak intensity can be adjusted with respect 

to the deterministic modification threshold to control the feature size, as illustrated in 

figure 2.8.  So far, research groups have used this technique to fabricate devices with 

features as small as 100 nm in diameter [2.19].  

 

2.3.3 Plasma formation 

 

The modification threshold for permanent material changes is normally associated with 

the critical electron density required to form plasma, after which the material becomes 

highly absorbent.  This occurs when the plasma frequency of the electrons generated by 

multiphoton absorption and avalanche photo-ionization equals the frequency of the 

femtosecond laser.  For a femtosecond laser with a wavelength of 800 nm, an electron 

density of approximately 1021 electrons cm-3 is required to trigger plasma formation.  In 

the literature, this threshold is frequently referred to as the threshold for laser induced 

breakdown [2.11, 2.14].  If the pulse intensity is significantly greater than the 

modification threshold, the extra energy absorbed is believed to lead to micro-crack type 

damage or filamentation [2.20]. 
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There are two schools of thought regarding whether it is necessary to create plasma in 

order to fabricate good waveguides.  The first is that plasma must form in order for any 

permanent material changes to occur.  The second is that micro-crack type damage results 

after forming plasma; and that femtosecond laser induced refractive index changes occur 

at slightly lower energies, before plasma forms [2.21]. 

 

2.3.4 Energy dissipation 

 

The energy dissipation process is less well understood, than the energy absorption 

process.  It is known that the dissipation process occurs on a timescale of hundreds of 

nanoseconds to a few microseconds; this is substantially longer than the hundreds of 

femtoseconds required for the energy absorption process.  And, it is believed that the 

primary dissipation mechanisms are a combination of thermal diffusion [2.22] and 

shockwave generation [2.23], though it is uncertain which process is dominant.  Both of 

these processes could lead to the rapid cooling, or quenching of the modified region as 

our group has proposed.   

 

2.3.4.1 Thermal diffusion and accumulation 

 

In thermal diffusion, heat flows from the “hot” excited region around the focal point to 

the “cool” bulk sample.  The rate of thermal diffusion (δT/δt) without any heat sources or 

sinks is given by equation 2.6, where D is the diffusion coefficient, and T is the 
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temperature as a function of position [2.24].  This equation works well for describing the 

sample temperature during low repetition rate writing in which a single pulse generates a 

hot spot that cools off without external interactions.  For high repetition rate writing in 

which thermal accumulation occurs, a comb source term is added to represent the 

periodic laser pulses. 

TD
t
T 2∇=

∂
∂          Eq 2.6 

Thermal diffusion is believed to be the dominant cooling mechanism in the case of high 

repetition rate laser writing.  If a single point is exposed to a high repetition rate laser, a 

spherical modified region that is substantially larger than the focal volume of the laser 

forms [2.25-2.26].  This constitutes clear evidence that thermal diffusion and 

accumulation occur, causing an increase in the temperature of the surrounding material. 

 

For low repetition rate writing in which the modified region can be smaller than the focal 

volume of the laser, it is less certain whether thermal diffusion plays a substantial role.  It 

is possible that thermal diffusion is still the dominant cooling mechanism, and that there 

is too much time between laser pulses for an increase in the temperature of the 

surrounding material to occur, though this is far from certain. 

 

2.3.4.2 Shockwave propagation 

 

A second possible modification mechanism for low repetition rate writing is that a 

shockwave is generated within the glass.  The formation of plasma leads to a large charge 

separation within the exposed region.  This charge separation may be sufficient to cause a 
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coulomb explosion, which would generate a shockwave [2.27].  The shockwave would 

then carry matter and energy away from the focal volume, compressing the surrounding 

material and leaving a rarified central region. 

 

The strongest evidence that shockwaves occur are observations of voids forming at very 

high pulse energies.  Scanning electron microscope (SEM) and atomic force microscope 

(AFM) images of polished surfaces and fracture planes have shown the presence of voids 

[2.23].  It is possible that polishing or fracturing the glass created these voids; so further 

evidence for the presence of shockwave-generated voids was collected from intact 

samples.  Voids were formed, translated, and merged within a solid glass sample by 

slowly moving the focal point of a high intensity femtosecond laser [2.28].  The white 

light transmission images used in this experiment were hazy, showing dark spots; 

however the ability to translate and merge these spots indicates that they were voids. 

 

Voids do not form at lower pulse energies [2.29].  Again, it is possible that shockwave 

generation is still the dominant modification mechanism.  A shockwave could compress 

the material, causing local densification and a positive refractive index change as it 

travels outwards [2.30].  Unfortunately, it is difficult to explain recent results showing 

that the modification process is dependent on the glass composition using shockwaves.   
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Figure 2.9  White light images of waveguides in fused silica (left), and IOG-1 (right) [2.31].

2.3.4.3 Effects of the Glass Composition  

 

Recent work in our group has shown that waveguides written in different materials 

behave differently.  Waveguides fabricated in a phosphate glass, Schott Integrated 

Optical Glass 1 (IOG-1), guide around the modified region with the exact structure being 

highly dependent on the laser alignment during fabrication [2.31]; in contrast waveguides 

written in fused silica guide light within the center of the modified region, as shown in 

figure 2.9.  This behavior indicates different refractive index profiles.  In IOG-1 the 

modification results in a lower refractive index inside the exposed region, and a higher 

refractive index surrounding peripheral regions [2.31].  In fused silica the modification 

results in a higher refractive index core, that may be surrounded by a lower refractive 

index peripheral region.   
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2.3.4.4 Fast quenching 

 

Both types of behavior can be explained by fast quenching.  The quenching rate refers to 

how fast a piece of glass is cooled.  A fast quench is the result of a high cooling rate, and 

a slow quench is the result of a low cooling rate.  Bulk, commercial glass is normally 

fabricated with a very low cooling rate of several degrees per minute.  In contrast, both of 

the mechanisms proposed for energy dissipation during femtosecond laser writing would 

involve very high cooling rates, on the order of thousands of degrees per minute.   

 

It is our belief that the material dependence of low repetition rate femtosecond laser 

waveguide writing can be elucidated by the relationship between the refractive index of 

the glass and the quenching rate.  If the refractive index of a glass increases with 

increasing cooling rate, we would expect the modified material to have a higher refractive 

index than the bulk material.  Likewise, if the refractive index of a glass decreases with 

increasing cooling rate, we would expect the modified material to have a lower refractive 

index than the bulk material.  

 

Conservation of matter must also be taken into account because the interior of a glass 

block is a closed system.  For a constant composition, the refractive index of a glass is 

almost always directly proportional its density.  Thus in the case that the refractive index 

of a glass increases with increasing cooling rate, its density would also increase with 

increasing cooling rate.  The law of conservation of matter stipulates that if part of the 
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modified material has a higher density; then another part (the surrounding material) must 

have a lower density, and hence a lower refractive index.   

 

This mechanism can explain the different guiding behaviors observed in both fused silica 

and IOG-1.  It is known that rapidly quenched bulk fused silica has a higher refractive 

index than slowly cooled fused silica [2.32-2.33], and it was measured that rapidly 

quenched bulk IOG –1 has a lower refractive index than slowly cooled IOG-1 [2.31].   

Further support for this belief comes from additional work discussed in chapter 6, and 

from high resolution refractive index profiles of waveguides written in different glasses 

[2.34].  

 

2.4 Spectroscopic Analysis of the fs Laser Modified Material 

 

Laser spectroscopy is a method that can be used to further characterize the structural 

changes that are associated with waveguide behavior.  In addition to the refractive index 

change, the femtosecond laser modification process causes structural changes within the 

material which can be detected using Raman and fluorescence spectroscopy.  Thus, 

spectroscopy allows for direct imaging of the modified regions; these images can then be 

compared with the position of waveguides, as shown in figure 2.10 [2.31].  Comparing 

the two images, it can be concluded that the fluorescence is only coming from the dark 

central region in the white light image, and that the femtosecond laser did not directly 

modify the guiding regions. 
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Using spectroscopy, it is also possible to determine the molecular level changes that 

occur during the writing process.  Femtosecond lasers have been used to modify large 

volumes of fused silica.  Spectra of these large volumes indicate that there is a substantial 

increase in fluorescence that scales with increasing irradiance in the modified region due 

to the formation of non-bridging oxygen hole centers (NBOHC) [2.35].  These defects 

are a clear indication that the femtosecond laser writing process disrupts the structure of 

the material.  However, the refractive index change remains after the NBOHC defects 

have been destroyed by annealing or photobleaching the glass.  This indicates that the 

defects are not responsible for the refractive index change, and that other changes must 

also occur. 

 

Raman spectra of the same large modified volumes indicate that the concentration of 

three- and four-membered ring structures are as much as 5× higher in the modified glass 

than in the unmodified material.  The concentration of three-membered rings scales with 

the laser fluence, as shown in figure 2.11 [2.9].    This increase in the population of ring 

structures is consistent with densification inside the modified region [2.30, 2.36-2.38], 

5 µm 

(a) (b) 

10 µm 

Figure 2.10  a) fluorescence and b) white light images of a waveguide fabricated in IOG-1.  Note, 
the different scale bars. 
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Figure 2.11  Concentration of 3-membered rings in fused silica after exposure to a femtosecond 
laser.  The data is normalized to the concentration in unmodified glass. 

and there is a high probability that this structural change is the underlying cause of the 

refractive index change. 

 

2.4.1 A Brief Description of Raman Spectroscopy 

 

Raman spectroscopy measures light that is inelastically scattered by its interactions with 

electrons in matter.  Electrons are charged particles that oscillate in electro-magnetic 

fields, such as light.  These oscillations temporarily polarize the bonds in molecules, 

allowing for energy to be transferred from a photon of light to the vibrational state of a 

molecule. The resulting shift in the wavelength of the light is then measured, indicating 

how much energy was transferred to the molecule. The magnitude of this change is 

known as the Raman shift.  It is typically recorded in units of inverse centimeters (cm-1), 

and can be used to determine the molecular structures of many materials. 
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It is important to remember that the Raman shift is the result of a scattering process.  This 

means that the excitation light is never actually absorbed by the material, and that the 

excitation frequency is not resonant with any transitions in the material.  In a Jablonski 

diagram (figure 2.12) the temporary polarization that allows for Raman scattering is 

represented by a dashed line and is referred to as a “virtual state.” 

 

For energy to be transferred from a photon to the vibrational state of a material, the 

material must have vibrational modes whose total polarizability changes as a function of 

the bond distance or orientation.  For example the symmetric stretching mode of carbon 

dioxide, figure 2.13 (left), is Raman active because the total polarizability changes.  The 

Figure 2.12  Jablonski Diagram of Stokes shifted Raman scattering. 

Figure 2.13   Symmetric (left) and asymmetric (right) stretching vibrational modes of CO2.
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Figure 2.14  An atomistic representations of a) four- and b) three-membered rings that 
correspond to the D1 and D2 breathing modes at 490 and 605 cm-1 in fused silica.  The silicon 
atoms are shown in blue, and the oxygen atoms are shown in purple. 

(a) (b)

ω3

ω2

ω1

D2

D1

Figure 2.15  Sample Raman spectrum of fused silica.  The ω1, ω2, and ω3 peaks are 
vibrational modes of the silica network. 

asymmetric stretching mode, figure 2.13 (right), is not Raman active because as one bond 

lengthens the other contracts with the total polarizablity remaining constant [2.39].  

 

The three- and four-membered rings mentioned earlier have Raman lines at 605 cm-1 and 

490 cm-1 respectively as a result of breathing vibrational modes [2.36-2.38].  In these 

breathing modes, shown in figure 2.14, the entire ring expands and contracts with all of 

the bonds lengthening or shortening together, causing a large change in the polarizability.  
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The relative concentration of three and four-membered rings is determined by measuring 

the area under the 605 cm-1 and 490 cm-1 (D2 and D1) peaks, and dividing by the Raman 

signal from the fused silica, which is taken to be either the total Raman signal strength 

(which is dominated by the silica network) or the area of the ω2, Si-O vibrational peak at 

800 cm-1.  All of these peaks are labeled on the sample spectrum shown in figure 2.15. 

 

2.4.2  A Brief Description of Fluorescence Spectroscopy 

 

Fluorescence occurs when light of one frequency is absorbed by an atom or molecule, 

causing an electronic excitation.  The excited state then undergoes non-radiative energy 

loss, and light of a second frequency is emitted, as shown in figure 2.16.  Fluorescence 

spectroscopy involves measuring this emitted light as a function of frequency.  Like 

Raman scattering, fluorescence emissions provide information about the microstructure 

of a material. 

Figure 2.16  Jablonski Diagram of Fluorescence Emission. 
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NBOHC defect 
in fused silica 

Figure 2.17  Sample spectra and atomistic depiction of NBOHC defects in fused silica [ref].   
The silicon atoms are shown in green, and the oxygen atoms are shown in purple. 

35

30

25

20

15

10

5

0

In
te

ns
ity

 (t
ot

al
 c

ou
nt

s)
 x

 1
0

3

650600550500
wavelength (nm)

NBOHC defect 
in IOG - 1 

Figure 2.18  Sample spectrum and atomistic depiction of NBOHC defects in IOG – 1 [2.31].   
The phosphorous atoms are shown in blue, and the oxygen atoms are shown in purple. 
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Most of the glasses studied have minimal intrinsic fluorescence, though highly 

fluorescent defect states arise during the modification process.  The fluorescence signals  

for fused silica and IOG-1 both show non-bridging oxygen hole center (NBOHC) type 

defects [2.31, 2.35].  Depictions of these NBOHC defects and sample spectra for fused 

silica and IOG-1 are shown in figures 2.17 and 2.18 respectively.  The strength of the 

fluorescence signal is directly proportional to the defect concentration.  Thus, the 

fluorescence intensity can be used to determine what areas have been modified, and to a 

more limited extent how much modification has occurred.   
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Chapter 3 

 

Experimental Equipment and Procedures 

 

3.1 Chapter Overview 

 

This chapter discusses the combined femtosecond fabrication / confocal spectroscopy 

microscope, and the general operating procedures used for conducting experiments.  A 

detailed description of the components used in constructing the microscope system is 

followed by a description of the laser systems.  The chapter concludes with a discussion 

of the confocal microscope and the spectroscopic analysis procedures.   

 

Specific operating parameters for different experiments are described in later chapters 

with the results of each experiment.  

 

3.2 Overview of the Combined Microscope System 

 

A combined femtosecond laser writing setup / confocal microscope was built to both 

fabricate and analyze devices without removing the sample.  The bulk of the microscope 

was assembled atop a flat optical table.  However, a post system was used to construct a 

more complex sample mount to allow for viewing and scanning the glass from multiple 

orthogonal directions.  A schematic diagram of the microscope (not to scale) is shown in 

figure 3.1.   



 41

Fi
gu

re
 3

.1
  S

ch
em

at
ic

 d
ia

gr
am

 o
f t

he
 c

om
bi

ne
d 

fe
m

to
se

co
nd

 la
se

r 
w

ri
tin

g 
se

tu
p 

/ c
on

fo
ca

l m
ic

ro
sc

op
e.

  T
he

 b
ul

k 
of

 th
e 

op
tic

al
 c

om
po

ne
nt

s a
re

 o
n 

a 
fla

t o
pt

ic
al

 ta
bl

e,
 h

ow
ev

er
 th

e 
sa

m
pl

e 
m

ou
nt

 d
et

ai
le

d 
in

 th
e 

in
se

t, 
is

 m
ou

nt
ed

 v
er

tic
al

ly
.  

N
ot

e,
 th

e 
da

sh
ed

 li
ne

s i
nd

ic
at

e 
fli

p 
m

ou
nt

s t
ha

t a
llo

w
 fo

r 
ea

sy
 

r e
m

ov
al

 o
f t

he
 o

pt
ic

al
 e

le
m

en
t. 

 T
hi

s d
ra

w
in

g 
is

 n
ot

 to
 sc

al
e.

 

C
C

D
 

C
C

D
 

PM
T

 

A
rg

on
 Io

n 
L

as
er

 

T
i:S

ap
ph

ir
e 

L
as

er
 S

ys
te

m
 

Se
e 

In
se

t F
or

 D
et

ai
ls

 

P.
 M

. 

Sp
ec

tr
om

et
er

 

20
a 

19
 

4 
18

 
17

 
16

 
15

 
14

 
13

 
12

 

27
 

27
 

13
a 

20
b 

6b
 

13
b 

13
c 

In
se

t o
f t

he
 S

am
pl

e 
M

ou
nt

 

12
 

14
 

4 

26
 

25
 

4 

4 
24

 
4 

21
 

22
 

23
 

4 
21 1

10
 

8 9 

7 
6 

4 
1 

2 
3 

y 

z x 

x 

5 

11
 



 42

Descriptions of the numbered components in figure 3.1 are listed below.  When these 

components are mentioned later in this chapter they are followed by the label (item #), 

where # is the number listed in figure 3.1.  The components that are represented by a 

dashed line in figure 3.1 are mounted on flip mounts such that they can be removed and 

reinserted without disturbing the alignment of the microscope.  Color coding is used to 

distinguish different laser beams: red, light from the Ti:Sapphire laser; blue, light from 

the argon ion laser; purple, overlapped beams from both laser systems; and green, signals 

from the sample after spectral filters remove the light from the argon ion laser laser.  

 

1. A Uniphase, 2211-20SL, 488 nm, continuous wave argon ion laser.  The laser was 

modified to increase its maximum output power from 20 to 50 mW.  This change 

also resulted in weak emissions from other Argon lines. 

 

2. An Omega Optical 488 nm notch filter, 488NB3, was used to eliminate the other 

emission lines from the argon ion laser.   

 

3. A 488 nm, ¼ wave plate used to convert the laser from linear to circular 

polarization.  This prevents possible polarization effects from interfering with the 

spectroscopy.  Manufacture unknown. 

 

4. Thor Labs, KM100-E02, 1” UV / Vis dielectric mirrors. 
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5. A Spectra Physics Ti:Sapphire pulsed laser system that operates at 1 kHz with 

130 fs, 500 µJ pulses.  The system consists of four lasers:  a Millennia V, a 

Tsunami 3941-Mis, a Merlin, and a Spitfire LCX.  This laser system is described 

in more detail in section 3.4. 

 

6. Removable grey glass, neutral density filters that may be used to reduce the 

intensity of the laser.  Manufacture unknown. 

 

7. An 800 nm, ½ wave plate that is used to rotate the polarization of the 

femtosecond laser pulses.  The pulses exiting the Spitfire start with 100:1 linear, 

horizontal polarization.  Manufacture unknown. 

 

8. A polarizing, cube beam splitter transmits horizontally polarized light and reflects 

vertically polarized light.  It is used in conjunction with the ½ wave plate (item 7) 

to control the pulse energy.  Manufacture unknown.  

 

9. A beam block consisting of a stack of razor blades, that absorbs stray light from 

the spitfire.  Constructed in house. 

 

10. Thor Labs, KM100-E03, 1” near IR dielectric mirrors. 

 

11. A far field barrier / target constructed of white poster board, located ~2 m beyond 

the sample mounts is used during the laser alignment procedures. 
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12. The sample / sample mount.  The sample mount consists of a flat rod bolted to a 

Newport 562 series, five axis fiber positioning stage, atop two high precision, 

slow speed Newport 850G stepper motor stages.  These stages travel in the “x” 

and “y” directions indicated in figure 3.1.  The flat rod can be replaced to 

accommodate unusual sample shapes. 

 

13. There are three objective mounts for looking at the sample from different 

directions.  Mounts (a) and (b) are used for transverse and longitudinal waveguide 

writing respectively.  Mounts (b) and (c) are used together to couple the Ar+ laser 

(item 1) into the resulting waveguides.  Various achromatic, air, infinity 

corrected, ELWD and XLWD series Nikon objectives ranging from 5 to 100X 

were used for different experiments. 

 

14. A Newport ID – 1.0 iris was used for aligning both the Ti:Sapphire and the Argon 

Ion lasers.  It was left open during experiments to prevent clipping.   

 

15. A black box and several baffles were erected to prevent stray light from reaching 

any of the detectors.  It was constructed in house using black eighth inch thick 

foam backing board, black duct tape, and black cloth. 

 

16. A 1” Uniblitz shutter with a VMM-D1 driver was used to control the exposure of 

the sample to the lasers. 
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17. A 50/50 broadband dielectric beam splitter was used to direct the femtosecond 

laser into the sample, while simultaneously performing for transmission imaging 

in the back direction (from the sample to the microscope).  Manufacture 

unknown. 

 

18. A 488 Raman BS, beam splitter from Croma that reflects the 488 nm laser, and 

transmits the longer wavelength back scattered Raman and back emitted 

fluorescence signals.  

 

19. An Ophir Nova II power meter with a PE 9 head was used to measure the pulse 

energy of the spitfire laser.  The power meter was placed as shown in figure 3.1 

during laser fabrication.  A calibration procedure was performed to correlate the 

pulse energy at the sample with the pulse energy measured at the location of the 

power meter; the pulse energies at the sample are reported in this dissertation. 

 

20. A Sony XC-75 charge couple device (CCD) camera was used for collecting both 

back-transmitted white light images in position (a), and near field waveguide 

coupling profiles in position (b). 

 

21. Two Thor Labs LAC788-A, 150 mm, achromatic lenses were focused on each 

other such that there was no magnification or deviation of the laser from its 

original path after passing through both lenses. 
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22. A 75 µm pinhole was placed at the mutual foci of the two lenses (item 20) to 

construct the spatial filter in the confocal microscope, which is described in more 

detail in section 3.4. 

 

23. Spectral filters were used to eliminate unwanted wavelengths of light before the 

signal reached the detectors.  A 1” round Croma 488 Raman exit filter, 488hhqlp 

(488 nm, high quality long pass) was normally used for performing spectroscopy 

with the argon ion laser.  Other filters were used for select experiments as 

specified in the experimental descriptions.  

 

24. A UV enhanced Perkin Elmer photon counting module, MP 942 was used for 

rapid fluorescence imaging of several samples. 

 

25. A 30 mm, Thor Labs LAC896-A, achromatic lens was used to couple light from 

the sample into the spectrometer (item 26). 

 

26. An Oriel, MS257 spectrometer with 300 and 1200 groove / mm, 500 nm blaze 

gratings; and a Roper Spec-10:100B, liquid nitrogen cooled CCD camera were 

used to collect spectra of the sample. 

 

27. Metal mirrors with greater than 90% reflectance at both 488 nm and 800 nm.  

Manufacture unknown. 
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I 
PC Power Meter (item 19) 

Uniblitz Shutter (item 16)

ESP 300 Controller Stepper Motors (item 12)

MS 257 (item 26) 

Spec 10 (item 26) 

CCD Camera (item 20) 

II 
TV 

NI-PCI-6713 

Ar+ Laser (item 1) 

Ti:Sapphire Laser  (item 5)

PMT  (item 24) 

III 
Safety 

Interlock 

Figure 3.2  A sketch of the electrical components and connections used to operate the combined 
microscope described in section 3.2. 

Safety 
Interlock 

V 

IV 

NI Card

Roper Card

Capture Card

RS 232 Port

 

3.3 Electronic Control Systems 

 

Most of the data acquisition and analysis were performed using a PC.  Several Labview 

scripts were written to interface with commercial software packages that came with 

different instruments.  The PC, and several other pieces of electrical equipment that were 

used to control the microscope are described below.  A sketch of the electrical 

connections between this equipment and the optical components described in section 3.2 

is presented in figure 3.2.   

 

I. A 2.4 GHz PC with 524 MB RAM in a tower case was used to control most of the 

microscope.  Four PCI cards enabled the computer to interface with a wide variety 

of devices:  A National Instruments NI-PCI-8430/8 card added eight RS-232 serial 



 48

ports to the computer.  A National Instruments NI-PCI-6713 card provided analog 

output, digital I/O, and counter-timer connections.  A customized control card came 

with the Spec-10 camera.  And, a capture card with AD signal conversion was 

added to record images from the Sony CCD camera. 

 

Individual user accounts were created on the computer using MS Windows 2k 

Professional.  Several hardware control programs were designated as being 

common to all users.  These included: Winspec, a proprietary control program for 

the Spec-10 camera.  NI measurement and automation, a proprietary program that 

enabled the computer to recognize devices connected to the NI cards.  StarCom32, a 

proprietary program used to control the power meter.  And Labview 6.0i scripts for 

operating the MS-257 spectrometer, the Spec-10 camera, the Uniblitz shutter, the 

PMT, and the stepper motors.  These scripts were either written in-house or 

customized open-source operating scripts from the hardware suppliers.   

 

II. A 15” Sony Trinitron TV was used to view the images from the Sony CCD camera, 

without taking up desktop space on the computer. 

 

III. A safety interlock shutter blocked each laser.  The shutters were set to close if 

someone opened the lab door without first entering a bypass pin-code. 

 

IV. A Newport ESP-300 motion controller served as an interface between the computer 

and the stepper motor stages. 
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V. A NI-PCI-6713, analogue output board in a NI-CA-1000 enclosure with BNC 

connectors was used to coordinate the Spec-10 camera with scanning programs and 

to measure the signal from the photon counting PMT. 

 

3.4 Femtosecond Laser Systems 

 

Four different femtosecond laser systems were used for waveguide fabrication in 

different experiments: the amplified Ti:Sapphire laser listed above (item 5), a similar 

Spitfire, amplified Ti:Sapphire laser at the Communications Research Centre Canada, an 

in-house built amplified Ti:Sapphire laser at Harvard, and a Nd doped FPCA µJewel 

fiber laser at IMRA America, Inc..  These lasers have different pulse energies, pulse 

widths, pulse repetition rates, and wavelengths.  The specific operating parameters for 

each laser are described with the experiments they were used for in later chapters. 

 

3.4.1 Oscillators 

 

All four of the lasers used for fabricating waveguides consist of an oscillator that 

generates femtosecond pulses, followed by an amplifier that increases the energy per 

pulse.  In general terms, a femtosecond oscillator consists of a standard laser cavity with 

some mechanism of favoring mode-locked, pulsed operation over continuous wave (CW) 

operation.  This mechanism could be intrinsic to the gain material, an intra-cavity 

saturable absorber, an acousto-optic modulator, the Kerr lens effect, or something else.  



 50

Regardless of how a laser is converted from CW to pulsed operation, the pulse repetition 

rate of the oscillator is determined by the cavity length, according to equation 3.1; where 

r is the repetition rate, L is the cavity length, and c is the speed of light. 

 

L
cr =            Eq. 3.1 

 

All femtosecond, pulsed laser oscillators also have intra-cavity dispersion compensation.  

The uncertainty principle requires that ultra-short pulses have wide spectral bandwidths.  

As the pulses pass through air, the lasing medium, and various other optical elements 

different colors spectrally disperse, such that each color passes a set point in space at a 

different time.  These spread out pulses are referred to as “chirped” pulses.  Air and most 

optical elements induce positive dispersion or a positive chirp in the visible spectrum, 

meaning that the redder wavelengths precede the bluer.  In dispersion compensation, a 

pair of prisms or gratings is used to induce negative dispersion, recompressing the pulses 

in time.  

 

All of our in house waveguide fabrication was performed using a commercial titanium 

doped sapphire (Spectra Physics Tsunami Oscillator / Spitfire Amplifier) laser system.  

The Tsunami oscillator is actively mode locked at a rep rate of 82 MHz using an acousto-

optic modulator (AOM).  The AOM has a time dependent loss that is controlled by a 

radio frequency (rf) signal, which is set to match the intrinsic repetition rate of the laser 

based on its cavity length.  Active mode locking allows for electronic synchronization 
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with other devices and helps stabilize the system against random disturbances.  The 

Tsunami can also operate passively, without the AOM, because of the Kerr Lens effect.   

 

The Tsunami can operate over a wide range of wavelengths, that are determined by the 

Ti:Sapphire laser rod and the mirrors in the cavity.  Ti:Sapphire crystals have broad 

emission from 600 to 1080 nm.  The lasing region is further restricted by a weak Ti4+ 

absorption band, and by losses elsewhere in the system.  Our system is limited to 720 to 

850 nm by its mirror set.  The operating wavelength and bandwidth are controlled by an 

adjustable slit between two prism pairs.  At least 13 nanometers of bandwidth are 

required for near transform limited <80 fs pulses, centered around 790 nm.  Using a 5 W, 

532 nm doubled Nd:YVO4 Spectra Physics, Millennia pump laser, the Tsunami has an 

output energy per pulse of ~6 nJ [3.1].  This pulse energy is not high enough to modify 

most glasses directly so an additional amplifier is required. 

 

3.4.2 Regenerative amplifiers 

 

A 1 kHz repetition rate, Spitfire regenerative amplifier increases the energy per pulse 

from ~6 nJ to >500 µJ.  This system uses “Chirped Pulse Amplification” to produce 

greater pulse amplification, without damaging the Ti:Sapphire crystal in the amplifier, as 

depicted in figure 3.3 [3.2].  There are three stages to the spitfire amplifier:  a pulse 

stretcher, the regenerative amplifier, and a pulse compressor.   
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The pulse stretcher is designed to linearly chirp the pulse, while maintaining a small 

spatial profile.  A linearly chirped pulse is temporally spread out such that there is a 

linear relationship between different colors and the time at which each color passes a set 

point in space.  A schematic diagram of the pulse stretcher is given in figure 3.4.  A 

femtosecond pulse from the oscillator is diffracted off of a grating, expanding it spatially.  

The pulse then reflects off of a second identical grating such that all of the colors are 

collinear.  At this point some frequencies have traveled farther than others introducing 

temporal dispersion or a chirp.  A second set of identical gratings reconstructs the pulse 

spatially, while doubling the temporal chirp.  To minimize its cost and size, the actual 

amplifier only has one grating, using mirrors to reflect the pulse off of it four times.  

Figure 3.3   In chirped pulse amplification the seed pulse from the oscillator is stretched, 
amplified, and then recompressed.  This prevents high intensity laser damage in the amplifier.

Seed 
Pulse

Longer Path

 Stretched
Pulse

Shorter Path

Compressor AmplifierStretcher 

Figure 3.4  Four gratings are used to temporally stretch or chirp the seed pulses. 
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¼ Wave 
Plate 

Seed Pulse Amplified Pulse
Pockels Cell 2 

Pump Pulse

Pockels Cell 1 Ti:Sapphire Crystal

Figure 3.5  Diagram of a regenerative amplifier [3.2]. 

 

The regenerative amplifier uses polarization to isolate and amplify 1 seed pulse out of 

every ~80,000 pulses from the oscillator.  The amplifier consists of a resonator that 

contains a quarter wave plate, 2 Pockels Cells, a polarizing beam splitter, and a 

Ti:Sapphire rod, as depicted in figure 3.5.  The laser rod and the polarizing beam splitter 

are coated to reflect vertically polarized light while transmitting horizontally polarized 

light, such that only horizontally polarized pulses remain in the regenerative cavity.  The 

timing of the 1st Pockels Cell is adjusted to choose a seed pulse from the oscillator that 

nicely overlaps with the pump pulse.  Two passes through the quarter wave plate rotate 

the vertically polarized seed pulse from the oscillator to horizontal polarization.  Turning 

on the Pockels Cell right after the desired pulse passes it, adds another quarter wave 

rotation per pass, trapping the chosen pulse in the cavity and rejecting all later pulses.  

After the chosen pulse completes ~20 cycles through the regenerative cavity, the second 

Pockels Cell is activated just before the pulse enters it coming from the laser rod.  This 

rotates the pulse back to vertical polarization, and it is reflected out of the amplifier 

cavity by the polarizing beam splitter [3.2].   

 

Finally, the compressor is a mirror of the stretcher.  The stretcher induces a positive 

chirp; the compressor introduces an identical negative chirp; and a high energy pulse 

leaves the system. 
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Using a 10 mJ, 527 nm pulsed Nd:YLF Spectra Physics, Merlin pump laser for the 

regenerative cavity, the Spitfire emits 125 femtosecond pulses centered about 800 nm, 

with energies greater than 500 µJ per pulse.  With proper focusing, this pulse energy is 

high enough to modify any glass. 

 

3.4.3 Fiber Lasers 

 

Fiber lasers have the same basic sections as conventional laser systems.  The defining 

difference between conventional and fiber lasers is the nature of the active gain region.  

Conventional systems have small active crystals, a few centimeters long, with very high 

gain.  In contrast, fiber lasers have large active regions, several meters long, with 

moderate gain.  These differences lead to different pulse amplification and dispersion 

compensation schemes.  

 

Unlike conventional systems that use regenerative amplifiers in which the pulse passes 

through the active region many times to increase its pulse energy, fiber lasers typically 

use linear amplifiers.  The longer active region in fiber systems allows for linear pulse 

amplification in which a low energy pulse enters and a high energy pulse exits after a 

single pass.  Linear amplifiers can operate at much higher pulse repetition rates than 

regenerative amplifiers, though linear amplifiers are also more susceptible to laser 

damage. 
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This risk of laser damage can be minimized by carefully controlling the pulse intensity 

within the laser, through adjustments to the temporal pulse width.  Unlike conventional 

systems that use gratings to introduce a set chirp; fiber lasers use dispersive fibers to 

continually adjust the pulse width.  Sections of positively and negatively dispersive fiber 

are coupled together to ensure that a relatively long pulse is maintained throughout the 

fiber laser.  The pulse is only allowed to compress just before exiting the system, 

minimizing the risk of damage elsewhere. 

 

3.5 The Confocal Microscope 

 

Femtosecond laser writing is intrinsically limited to the focal volume of the microscope 

objective, as discussed in chapter 2.  Unfortunately spectroscopy experiments that use an 

Ar+ laser have a linear response.  This means that while there will still be a greater 

response at the focus due to the higher intensity, all of the material the light passes 

through both before and after the focus will also give a response.  There is an enormous 

amount of material relative to the size of the focal volume, as shown in figure 3.6.  And, 

trying to detect changes within the focal volume is equivalent to looking for a needle in a 

haystack. 

Focal 
Volume

Glass 
Sample 

1 cm 1 mm 0.1 mm 10 µm
Figure 3.6  Image of a laser focused in a large block of material (left), relative to the actual size 
of the focal volume (progressing to the right). 
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(d) 

(c) 

(b) 

(a) 

Figure 3.7  The spatial filtering effects of a confocal microscope.  The red dot denotes the focal 
point of the microscope objective, and the blue dot denotes the point of origin for the light ray 
traces.  a) shows light from the focal point passing through the spatial filter, while b, c & d) show 
light from surrounding points being eliminated.  Note: the light between the microscope objective 
and the lens is only collimated for case (a). 

 

A confocal microscope eliminates the vast majority of the light that does not originate 

from the focal volume of the microscope objective, allowing us to find the metaphoric 

needle.  A spatial filter consisting of a pair of lenses focused on each other with a pinhole 

at their mutual focal point is the key element of a confocal microscope system.  The 

focal, point of the lenses is where the real space image of an object at infinity, or the focal 

point of an infinity corrected microscope objective would condense to a point, as shown 

in figure 3.7a.  The pinhole eliminates everything in the focal plane except the focus 
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enhancing the x, y resolution, as shown in figure 3.7b, and it substantially reduces light 

coming from points before or after the focal plane enhancing the z axis resolution, as 

shown in figures 3.7c & 3.7d. 

 

3.6 Operating Procedures 

 

The information presented in this dissertation was produced using three types of 

procedures:  laser alignment, femtosecond laser waveguide fabrication, and confocal 

spectroscopy.  This section discusses the experimental procedures in general; specific 

details are provided with the results for each experiment. 

  

3.6.1 Alignment Procedures 

 

To obtain good results that are comparable between experiments, it is necessary to align 

the microscope system before conducting each experiment.  The beam paths from the 

Ti:Sapphire and argon ion lasers to the sample are aligned first.  Afterwards, the laser 

back reflection is used to align the rest of the confocal microscope.  The item numbers 

that follow many of the optical components in the following procedure refer to the 

schematic diagram, shown in figure 3.1. 

 

Starting with the Ti:Sapphire beam line:  A half wave plate (item 6) and a polarizing cube 

beam splitter (item 7) are centered in the path of the laser as it exits the Ti:Sapphire 
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system (item 5).  After the beam splitter, two near IR mirrors (item 10, only 1 mirror is 

shown) are used to guide the beam to the dielectric beam splitter (item 17). 

 

With the microscope objectives (item 13) removed, the dielectric beam splitter (item 17), 

and the mirror before it (item 10) are adjusted such that the laser beam passes through the 

center of the removable iris (item 14) and such that the beam illuminates a small target 

spot marked on a barrier several feet past the objective mounts (item 11).  A low 

magnification (5X or 10X) microscope objective (item 13a or 13b) is inserted while 

blocking the beam.  Unblocking the laser, the objective is moved perpendicular to the 

beam to until a circular far field image is centered at the same spot on the barrier as the 

unfocused beam.  If the far field image is not circular, then the microscope objective is 

tilted with respect to the beam path. 

 

After the microscope has been aligned with the femtosecond laser, the Ar+ laser (item 1) 

is aligned such that it passes through the center of the iris (item 14) and the writing 

objective (item 13a or 13b), overlapping the femtosecond laser.  A quarter wave plate 

(item 3) and a 488 nm notch filter (item 2) are centered in the path of the laser as it exits 

the laser head.  A mirror (item 4) and a dielectric beam splitter (item 18) are then adjusted 

to couple the laser beam into the microscope.  Note: it is also possible to align the argon 

ion laser first, and to then overlap the femtosecond laser with it. 

 

Once both lasers have been aligned, the detection beam path is aligned using the back 

reflection of the argon ion laser off of a perpendicular mirror that is placed in the focal 
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plane of the microscope objective.  The first confocal lens (item 21) is inserted, ensuring 

that the beam passes through the center of the lens and that the resulting spot is centered 

on the same point as the unfocused beam.  The second confocal lens is inserted, making 

certain that the resulting spot precisely overlays the spot produced by the beam without 

the lenses.  The pinhole (item 22) is inserted into the foci between the lenses using fine x, 

y, and z adjustments to maximize the power transmitted through the pinhole.  Two 

mirrors are adjusted to guide the beam into the PMT (item 24).  A final lens (item 25) and 

the last two mirrors before it are adjusted to couple the signal into the spectrometer (item 

26).  They are adjusted such that the beam fills the grating and the spectrometer entrance 

slit is ~12 µm wide.  Note, minimizing the spectral line width of a narrow calibration 

source can be used to fine tune the distance between the lens and the entrance slit. 

 

3.6.2 Waveguide Writing Procedure 

 

The sample (item 12), a glass block, is attached to the sample mount using double sided 

tape, and either transmission imaging or the back reflection of the laser are used to ensure 

that the sample is orientated perpendicular to the objective (item 13a or 13b).  The CCD 

camera (item 20a) is used to monitor both procedures.  When using transmission 

imaging: the microscope is focused on the front surface of the sample (the surface closest 

to the microscope objective being used), the sample is back illuminated with a white 

light, and the sample is translated perpendicular to the laser beam path.  If the sample is 

properly orientated its front surface will remain in focus while the sample is translated.  

When using the back reflection of the laser, the microscope is focused on the front 
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surface of the sample, and the sample is translated back and forth parallel to the beam 

path, bringing the front surface into and out of focus.  If the sample is properly orientated, 

the reflected image of the laser will remain circular in shape as it expands and contracts 

about a fixed central point. 

 

Once the microscope and the sample have been properly aligned, waveguides or other 

structures are fabricated by scanning the sample with respect to the focus of the 

microscope objective.  Typically a 10, 20, or 50X objective is used with longitudinal 

scanning, though the system is capable of transverse scanning.  The pulse intensity is 

adjusted by rotating the ½ wave plate (item 7), which controls the polarization of the 

femtosecond laser beam as it enters the polarizing beam splitter (item 8).  The maximum 

and minimum powers transmitted relate to the initial intensity, and the approximately 100 

to 1 horizontal polarization of the spitfire laser beam.  Additional neutral density (ND) 

filters (item 6) can be added before the half wave plate if lower pulse energies are 

desired.   

 

Transmission microscopy with the CCD camera (item 20a) is normally used to monitor 

the writing process.  It can be used to quickly determine how the laser system is 

modifying the material, showing the effects of adjusting the pulse energy in real time. 
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3.6.3 Spectroscopy Procedure 

 

The hardest part of performing high resolution spectroscopy is to locate the modified 

material.  Three methods are used to ensure that the Ar+ laser is precisely focused on the 

modified region.  The first is to ensure that the focal spot of the Ar+ laser exactly overlaps 

the focal spot of the femtosecond laser before writing any lines; and to then reposition the 

stages to regions that should have been modified, without observing the sample.  This 

technique only works if the sample has not been manually repositioned since the lines 

were written, it is also necessary to accommodate for the effects of hysteresis in the 

stepper motors.  The second method is to locate the modified area using the Ar+ laser set 

to low power as a coherent light source for imaging the sample against a far field screen 

(item 11).  The third method is to mark the point on the TV monitor at which the back 

reflection of the Ar+ laser hits the CCD camera used for transmission imaging (item 20a).  

White light transmission images of the modified features can then be overlapped with 

that point to center the Ar+ laser on those features, while the Ar+ laser turned off.  

Comparing the 2nd and 3rd methods, the second method operates on the same principals as 

DIC microscopy and is the most sensitive method for locating small changes in the 

material.  Unfortunately, any exposure to the Ar+ laser can eliminate some of the 

fluorescent defects we would like to observe, in which case the third method is 

preferable. 

 

After the modified material has been located spectra are collected using the spectrometer.  

The 300 grove per mm grating is used for fluorescence spectroscopy and the 1200 grove 



 62

per mm grating is normally used for Raman spectroscopy.  Fluorescence spectra are 

typically collected before Raman spectra, because the fluorescent defects are more likely 

to photobleach (disappear) as a result of exposure to the Ar+ laser.  Once specific spectral 

features have been identified it is possible to use additional spectral filters with either the 

spectrometer or the PMT to create images of the spatial extent of that feature, by 

collecting data while raster scanning the sample; the sample is normally stopped to 

collect data for each point to avoid smearing in the final image.  Both detectors have 

advantages:  using the spectrometer provides detailed spectral information; using the 

PMT is roughly a hundred times faster. 

 

References 
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Chapter 4 

 

High Spatial Resolution Spectroscopy of Femtosecond Laser Modified Fused Silica 

 

4.1 Motivation 

 

In previous studies described in section 2.4, femtosecond lasers were used to modify 

large volumes of fused silica.  Spectra of these regions revealed that the laser 

modification creates a large concentration of NBOHC defects, and causes an increase in 

the relative concentration of three-membered rings, indicating local densification.  This 

raises an obvious issue: if one region has been densified, there has to be another region 

that has been rarified.  Therefore, it is desirable to obtain information about the structural 

changes within individual waveguides in fused silica with high spatial resolution.   

 

This would also help distinguish between the thermal diffusion and shockwave 

generation energy dissipation mechanisms.  If a micro-explosion took place, it is 

predicted that the modified region would consist of a high-density shell surrounding a 

low-density core or even a void.  On the other hand, rapidly quenching fused silica would 

result in a high-density central region, with low-density peripheral regions.   

 

The results in this chapter are divided into three subsections.  The first discusses Raman 

and fluorescence spectra collected from longitudinally written waveguides in bulk fused 

silica.  The confocal microscope used to collect these spectra has ~1.5 µm spatial 
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resolution.  In order to better measure spatial variations across regions modified with fs 

laser pulses data, it is desirable to have lines that are substantially larger than this 

resolution.  In the second subsection spectra were collected from large diameter lines that 

were up to 40 µm across.  In the third subsection spectra were collected from Bragg 

gratings produced with patterned writing in silica fibers.  In these gratings periodic 

structural modifications occur on an even smaller length scale than in the small-diameter 

waveguides, allowing us to experimentally assess the resolution of the confocal 

microscope. 

  

4.2 Experiment 

 

Waveguides were directly written in fused silica (Corning 7940) using the in-house, 

amplified, 1 kilohertz, Ti:Sapphire femtosecond laser, described in chapter 3.  The laser 

operated at 800 nm with ~125 fs pulses, a repetition rate of 1 kHz, and 0 to 5 µJ pulse 

energies.  It was focused into silica cubes using a 50X 0.55 NA objective, and the sample 

was moved longitudinally at 20 µm/s.  To create larger-diameter modified lines the 

microscope objective was replaced with a 6 centimeter focal length singlet lens resulting 

in a spot size of ~10 µm.  The energy of the femtosecond laser pulses was increased up to 

35 µJ to maintain an intensity at the focal point similar to the intensity used for 

fabricating regular, small-diameter waveguides.  All other processing variables remained 

the same as when using the microscope objective. 
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A second 1 kHz, 800 nm, 125 fs Ti:sapphire laser was used by our collaborators in 

Canada (Dr. S. Mihailov and C. Smelser) to fabricate Bragg gratings in all-silica-core 

optical fibers using an interference pattern.  Two-beam interference was used with a 

4.284 µm-pitch phase mask to create 2.142 µm-pitch gratings.  A stationary fiber was 

exposed to approximately 10,000 pulses with an average intensity of 1.3 * 1013 W / cm2 

to fabricate each grating [4.1]. 

 

A scanning confocal microscope was used to simultaneously collect Raman and 

fluorescence spectra of the samples.  All of the waveguides and the interference patterns 

were analyzed by focusing a 50 mW, 488 nm Argon ion (Ar+) laser into the sample using 

a 100X 0.73 NA microscope objective.  The backscattered Raman and back-emitted 

fluorescence spectra were collected using the same objective; and a 0.25 m spectrometer 

with a 300 groove mm-1 grating and a liquid nitrogen cooled CCD array detector, with a 5 

minute acquisition time for the Raman spectra and a 1 second acquisition time for the 

fluorescence spectra.  At least three spectra were collected from different points along the 

center of each waveguide.  The spatial profiles of select waveguides and of the fiber 

Bragg gratings were measured by scanning the sample with respect to the objective focus 

with a 1 µm step size traveling perpendicular to (across) the waveguides, and a 3 µm step 

size traveling along the waveguides.  Images of the fiber Bragg gratings were generated 

using the PMT with a collection time of 0.1 s per point and scanning the sample with 

161, 1-µm steps across the fiber and 41, 0.5-µm steps along the fiber. 
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Spectra of the large-diameter modified lines were collected using a 50X 0.55 NA 

microscope objective to focus the Ar+ laser.  A 1200 grooves mm-1 grating with a 30 min 

acquisition time was used for Raman spectroscopy, and a 300 grooves mm-1 grating with 

a 2 min acquisition time was used for fluorescence spectroscopy. 

  

4.3 Results and discussion 

 

The results are divided into three subsections based on the nature of the features being 

observed:  1)  Waveguides longitudinally written in bulk fused silica, 2)  Large-diameter 

lines longitudinally written in bulk fused silica, and 3)  Bragg gratings produced using a 

phase mask in silica fibers. 

 

4.3.1  Waveguides in bulk fused silica 

 

Both Raman and fluorescence spectra were collected for individual waveguides 

fabricated in fused silica using our in-house femtosecond laser.  These waveguides were 

fabricated with a 50X microscope objective and pulse energies varying from 0.5 to 5 µJ; 

they had diameters ranging from 4 to 8 µm.  Qualitatively these spectra, samples of 

which are shown in figure 4.1, closely match those previously obtained for large 

modified volumes of fused silica.   

 

Quantitative calculations of the Raman and fluorescence peak areas were performed on 

the waveguides, for a more exact comparison with the earlier results.  The areas of the 
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(b)(a) 

Figure 4.1  a) Raman and b) fluorescence spectra of modified and unmodified fused silica. 

605 cm-1 and 800 cm-1 peaks were calculated using a straight-line baseline from 570 to 

645 cm-1 for the 605 cm-1 peak, and from 750 to 870 cm-1 for the 800 cm-1 peak.  The 

ratio of the 605 cm-1 Raman peak divided by the 800 cm-1 Raman peak was calculated to 

provide a measure of the relative concentration of 3-membered rings.  The total 

fluorescence was calculated as the area under the spectrum from 555 to 800 nm, with a 

zero intensity baseline.  The peak areas for each waveguide were normalized to the peak 

areas in unmodified glass.  These results are listed in Table 4.1.  Comparing them to the 

earlier results for large modified volumes listed in section 2.4, the fluorescence intensities 

are similar, but the relative concentration of 3-membered rings was less.  This decrease 

indicates that the spectral signal for single lines comes from a mixture of modified and 

unmodified material.  The data from single waveguides thus represents a minimum value, 

rather than an exact value.  As such, relative comparisons of waveguides in the same 

sample should be valid, but care must be taken when comparing Raman spectra collected  
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  Table 4.1  Normalized 605 / 800 cm-1 Raman peak ratios and fluorescence intensities 
for individual waveguides written using a 50X 0.55NA objective. 

Pulse Energy 
(µJ) 

Raman 
Signal (a.u.) 

Fluorescence 
signal (a.u.) 

0 1.0 1 
0.5 1.1 170 
2.5 1.4 500 
5 1.8 1050 
10 2.0 1300 

Figure 4.2 A white light microscope image of the end-face of a waveguide written using a 50X 
objective and a pulse energy of 0.5 mJ.  The black box indicates the region from which spectra 
were collected to produce the spatial cross-sections shown in figure 4.3. 

from different samples.  There is almost no intrinsic fluorescence in pure fused silica; 

therefore the fluorescence signal only comes from the modified material. 

 

Additional spectra were collected scanning across the end-faces of several modified lines, 

as indicated in figure 4.2.  There is a slight rise in the relative concentration of 3-

membered rings, in the line written with a pulse energy of 1.7 µJ, indicating that local 

densification occurred in the center of the modified line, shown in figure 4.3c.  This 

increase was largely the result of a decrease in the total signal from the silica network 

represented by the intensity of the 800 cm-1 Raman peak, shown in figure 4.3b.  An 
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(a) 

(b) (c)

Figure 4.3  The intensity of several spectral features as a function of spatial position collected while 
scanning across the waveguide shown in figure 4.2:  a) the area of the fluorescence peak, b) the area 
of the 800 cm-1 Raman peak, and c) the ratio of the 605 / 800 cm-1 Raman peaks. 

increase in the fluorescence from non-bridging oxygen hole center (NBOHC) defects was 

observed across the same region, as shown in figure 4.3a.  It appears that the width of the 

fluorescent signal is slightly larger than the width of the Raman signal indicating that 

defects may form beyond the densified region, though this assertion is uncertain because 

of the limited scan resolution of the confocal microscope. 
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4.3.2  Large-diameter lines in bulk fused silica 

 

Large diameter modified lines were created and analyzed in order to obtain more 

meaningful information about the spatial profile of the modified regions [4.2].  The 

diameter of these lines varied from 6–7 µm using 9 µJ laser pulse energy, which is 

slightly smaller than the 10 µm diameter of the laser focus, to roughly 40 µm using 25 µJ 

laser pulse energy.  Spectra were collected from the cross-sectional regions outlined in 

yellow on figure 4.4.  The fluorescence and total Raman cross-sections have similar 

intensity profiles to those observed for the narrow waveguides, as shown in figure 4.5.   

 

The fluorescence results from the large lines indicate that there is a large concentration of 

NBOHC defects in the center of the modified regions.  For the Raman spectra, the results 

are more complicated.  Unlike the narrow waveguides, the large lines do not have an 

increase in the concentration of 3-membered rings, as noted in figure 4.6.  This disparity 

raises some concerns about directly comparing the normal and large waveguides.  If we 

use the 605 cm-1 / 800 cm-1 peak intensity ratio as a measure of the local density; then the  

Figure 4.4  White light microscope images of the cross-sections of modified lines written in fused 
silica with a 6 cm focal length lens and (a) 9 µJ and (b) 25 µJ fs laser pulse energy. 
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(b) 

(a) 

Figure 4.5 Fluorescence (●) and Raman (x) intensity as a function of distance from the line centre 
for lines written in fused silica with a 6 cm focal length lens and (a) 9 µJ and (b) 25 µJ fs laser 
pulse energy. 
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Figure 4.6 The intensity ratio of the 605 and 800 cm−1 Raman peaks as a function of distance 
from the line centre for lines written in fused silica with a 6 cm focal length lens and 9 µJ (●) and 
25 µJ (x) fs laser pulse energy. For comparison the 605 cm−1/800 cm−1 ratio in the centre of (▼) 
and outside (▲) a narrow line written with a 50×, 0.55NAobjective and 4 µJ fs laser pulse energy 
is also shown. 

density in the center of the large diameter lines is only slightly higher than that of the 

unmodified glass, and there is no variation in the local density across the modified 

regions.  That still leaves the decrease in overall Raman intensity seen in figure 4.5 to be 

explained.  One could argue that the central region contains a rarefied amorphous 

material.  The overall Raman intensity can be thought of as resulting from the product of 

the number of ‘bonds’ and the ‘bond polarizability’.  A rarefied material with a high 

concentration of broken bonds could account for a decrease in Raman intensity together 

with an increase in fluorescence intensity.  However, the change in Raman signal could 

also be the result of the fact that a substantial fraction of the signal is lost due to elastic 

scattering/absorption, as it travels through the sample from the plane of observation 
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(focal plane) to the detector.  This loss will be higher in the modified region since it is 

optically less homogeneous especially for higher fs laser fluences.  The total loss will 

scale with the laser fluence, and will increase as the focal plane of observation moves 

deeper into the sample.  Further experiments in which the focal plane (plane of 

observation) was moved deeper into the sample indicate that this decrease is at least 

partially due to scattering/absorption.  These effects were enhanced by the use of greater 

pulse energies. Of course in this scenario, the fluorescence signal would experience a 

similar loss, and taking this into account means that the concentration of NBOHC defects 

generated in the modified region is even higher than what was detected. 

 

All together these results do not show an unambiguous indication of density variations 

across the larger-diameter modified lines.  A recent study by Taylor et al. [4.3], in which 

an ultrahigh-resolution (20 nm) spatial profiling technique—based on a combination of 

selective chemical etching and atomic force microscopy—was used to probe 

index/structural variations across a fs laser-modified line of 2 µm diameter, also did not 

find any low-density region. It is possible that the focusing conditions used in our writing 

experiments may have led to self-focusing [4.4] which could have resulted in a less 

effective deposition of the laser energy in the focal volume, but for the writing conditions 

used in [4.3] self-focusing does not play a role. 
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4.3.3 Bragg gratings in silica fibers 

 

The fiber Bragg grating, shown in figure 4.7, was fabricated with similar peak intensities 

to the lowest intensities used in waveguide fabrication, such that we can compare the 

results.  The white outline in figure 4.7a indicates the area scanned using the 

spectrometer, and the black outline indicates the area scanned using the PMT.  Both 

fluorescence and Raman data were collected.  The Raman results for the fiber gratings 

were inconclusive.  They didn’t show a substantial change in either the total Raman 

intensity or in the concentration of 3-membered rings as measured by the ratio of the   

605 cm-1 / 800 cm-1 Raman peak.  It is difficult to say whether this null result actually 

indicates that no change occurred or if there was a change that was too small to measure.  

(a) (b) 

Figure 4.7 White light microscope images of a fiber grating collected with a) a 20X objective, and 
b) a 100X objective.  Spectra were collected from the outlined regions. 
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Figure 4.8 A sample fluorescence spectra from the fiber grating.  Note that there are two peaks at 
540 and 650nm. 

There was a clear correlation between the modification pattern and the fluorescence 

signal from the fiber gratings.  Two distinct sources of fluorescence were observed in the 

spectra of the fiber gratings, shown in figure 4.8.  The peak centered around 650 nm is a 

result of the NBOHC defects discussed earlier [4.5].  The peak centered around 540 nm 

matches the characteristics of self trapped exciton ( ) defects from very small silicon 

nano-clusters that several groups have reported seeing in γ-irradiated fused silica [4.6-

4.8].  The fluorescence photobleaching rate can be used to further distinguish the two 

types of defects, because the  defects bleach about 25% faster than the NBOHC 

defects as shown in figure 4.9.  Looking back at earlier data the fluorescent peak from the 

 defects are predominant in many of the waveguides produced using low pulse 

energies, which are barely sufficient to modify the material.   

' Eδ

' Eδ

' Eδ
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(b) (a) 

Figure 4.9  Fluorescence photobleaching of fiber gratings written with a fs laser:  (a) shows the full 
spectra before / after bleaching, and (b) shows the normalized peak intensities as a function of time. 

Figure 4.10  Intensity of the fluorescence peaks as a function of spatial position, overlaid by a white 
light image of the grating. 

Looking at the fluorescence as a function of spatial position, the structure of the grating is 

easily visible.  Figure 10 shows that both the concentrations of NBOHC and  defects 

mirror the 2.14 micrometer line spacing, visible in the white light image.  It is also 

possible to quickly map the grating structure across the entire fiber using the total 

fluorescence intensity, as in figure 4.11a, or using the fluorescence from one type of 

' Eδ
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4 µm 

(b) 

(a) 

Figure 4.11  Fluorescence images of the fiber bragg grating:  (a) the total fluorescence, and (b) the 
fluorescence from NBOHC defects. 

defect, as in figure 4.11b.  This rapid mapping of the modified pattern could potentially 

be used as a quality control method. 

 

The grating profiles can be used to experimentally estimate the resolution of the confocal 

microscope.  Here the resolution is defined as the minimum distance between two 

identical points, at which the individual points can be distinguished.  The resolution of 

our microscope is clearly better than 2.14 µm because the grating lines shown in figure 

4.10 are easily distinguishable; however it is hard to precisely say how much better 

because we do not have any finer patterns.  It is possible to roughly estimate the 

resolution of the microscope using the pattern in figure 4.10 because it is only partially 

resolved; meaning that while the grating lines are clearly distinguishable, the signal does 

not return to its background level between the lines.  A convolution of a 2.14 µm spaced 

comb pattern and a Gaussian peak was used to simulate the grating pattern, 

approximating the grating lines as having a Gaussian profile.  The width of the grating 

lines in the white light images (figure 4.7b) was measured to be ~0.73 µm; this width was 

used as the full width at half maximum (FWHM) of the Gaussian peak.  The fluorescence 
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Figure 4.12  Intensity of the fluorescence peaks in the grating as a function of spatial position, 
overlaid by the best fitting pattern produced assuming that the grating lines are delta functions. 

pattern was simulated by a second convolution of the simulated grating pattern and a 

Gaussian microscope focus.  A least square fit was used to match the simulated 

fluorescence pattern with the measured patterns in figure 4.10.  Both of the spectral 

patterns in figure 4.10 were normalized to their intensity at x = 0 to more easily fit both 

patterns.  In the fitting process the amplitude and the full width at half maximum of the 

Gaussian microscope focus were allowed to vary as free parameters.  The best fit yielded 

a resolution of ~1.2 µm for the confocal microscope.  It is possible that the apparent 

grating line width in the optical image is also broadened by the microscope system used 

to collect the white light image.  In that case the actual grating pattern has lines that are 

narrower than 0.73 µm; this would result in the fit giving a poorer (lower) resolution for 

the confocal microscope.  A second calculation was performed to find the minimum 

resolution of the confocal microscope, by using a delta function to represent the 

individual grating lines.  This calculation yielded a resolution of ~1.4 µm, with the fit 

shown in figure 4.12. 
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4.4 Summary 

 

Spectra were collected from the center of individual waveguides fabricated using a 1 kHz 

pulse repetition rate femtosecond laser.  The fluorescence and Raman signals match those 

observed for larger modified regions, showing an increase in the concentrations of non-

bridging oxygen hole center (NBOHC) defects and 3-membered rings.  It is worth noting 

that the observed increase in the concentration of 3-membered rings is less for individual 

waveguides than for larger modified regions.  This is probably a result of the Raman 

signal coming from a mixture of modified and unmodified material. 

 

Additional spectra were collected from waveguides, larger modified lines, and Bragg 

gratings to observe the spatial extent of the femtosecond laser modification.  The Raman 

results showed an increase in the concentration of 3-membered rings as measured by the 

ratio of the 605 / 800 cm-1 Raman peaks in the waveguides, but not in the larger modified 

lines or the Bragg gratings.  It was further noted that the increase in this ratio was 

primarily the result of a decrease in the 800 cm-1 peak across the modified regions.  The 

fluorescence results showed an increase in the defect concentration, measured by the total 

fluorescence signal, in all of the samples.  The shape of the spatial fluorescence profiles 

closely matches the shape of the Gaussian focus used for writing the features.  It was also 

determined that two types of fluorescent defects were present in the Bragg gratings:  

NBOHC defects with a peak around 650 nm, and  defects with a peak around 540 nm.  

A review of earlier data revealed that  defects were predominant in many waveguides 

' Eδ

' Eδ
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fabricated using low laser pulse energies, and NBOHC defects were predominant in 

waveguides fabricated using high laser pulse energies. 
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Chapter 5 

 

Understanding the Effects of the Pulse Repetition Rate. 

 

5.1  Motivation 

 

As discussed in Chapters 1 and 2.2.2, several groups recently have reported a large 

dependence of the localized modification on the laser pulse repetition rate (described in 

section 2.2.2).  Traditionally, kilohertz repetition (rep) rate, amplified fs lasers have been 

used for fs device fabrication, but the recent development of high power oscillators and 

other high rep rate, fs sources has opened up the possibility of writing waveguides with 

repetition rates greater than 1 MHz.  The principle differences reported when using high 

rep rate lasers are an increase in the perceived line diameter, and a potentially greater 

refractive index modification [5.1].  These differences are related to the fact that with 

high rep rate lasers there is insufficient time between pulses for the heat to diffuse out of 

the focal region and as a result heat accumulation occurs [5.2-5.3].  Additionally, it has 

been observed that megahertz systems provide better quality waveguides in some 

transparent glasses, while kilohertz systems are favored by other materials.  Currently, it 

is unknown why some materials respond better with one laser or the other. 

 

In order to better understand the differences in how kilohertz and megahertz repetition 

rate laser systems modify transparent materials, we used Raman and fluorescence 
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spectroscopy to compare fused silica modified with the 1 kHz, 10-250 kHz, and 1 MHz 

repetition rate femtosecond lasers discussed in chapter 3.   

 

5.2 Experiment 

 

Waveguides were fabricated in fused silica (Corning 7940) using the in house amplified, 

1 kilohertz, Ti:Sapphire femtosecond laser, the amplified 10-250 kilohertz, Ti:Sapphire 

femtosecond laser at Harvard, and the 1 megahertz, frequency-doubled Yb-fiber laser at 

IMRA America, Inc..  Both of the kilohertz lasers operated at 800 nm with ~130 fs 

pulses, and 0 to 5 µJ pulse energies. The 1 kilohertz laser was focused into silica cubes 

using a 50X 0.55 NA objective, and the sample was moved longitudinally at 20 µm/s.  

The 10-250 kilohertz laser was focused into silica plates using a 20X 0.4 NA objective, 

and the sample was moved transversely at 4 to 400 µm/s.  The megahertz laser was 

operated at 522 nm with ≤500fs pulses, using 90 and 115 nJ pulse energies.  It was 

focused into silica plates using a 100X 0.85NA objective, and the sample was moved 

transversely at 0.05 to 5 mm/s.  These conditions are summarized in Table 5.1. 

  Table 5.1  Repetition Rate Study Writing Conditions 
Rep Rate Wavelength Pulse Energies Scan Speed 

1 kHz 800 nm 0.5 – 5 µJ 20 µm/s 
10 kHz 800 nm 1 – 3.5 µJ 4 – 400 µm/s 
50 kHz 800 nm 1 – 3.0 µJ 4 – 400 µm/s 
250 kHz 800 nm 1 – 2.3 µJ 4 – 400 µm/s 
1 MHz 522 nm 90 – 115 nJ 0.05 – 5 mm/s 

 

The in-house scanning confocal microscope was used to simultaneously collect Raman 

and fluorescence spectra from all of the samples.  A 50 mW, 488 nm Argon ion laser was 

focused into the sample using a 100X 0.73 NA microscope objective.  The backscattered 
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Raman and back-emitted fluorescence were then collected using the same objective; and 

a 0.25 m spectrometer with a 300 groove mm-1 grating and a liquid nitrogen cooled CCD 

array detector, with a 5 minute acquisition time.  Three spectra were collected from 

different points along the center of each waveguide.  The spatial profiles of select 

waveguides were measured by scanning the sample with respect to the objective focus 

with a 1 µm step size traveling perpendicular to (across) the waveguides, and a 3 µm step 

size traveling along the waveguides.  Fluorescence photobleaching was studied by 

continuously exposing stationary spots to the Ar+ laser for 14 hours while collecting 

spectra every half hour.  

 

Finally, the emissions generated while writing lines with the 1 kHz laser were collected 

using the spectrometer and the 300 groove mm-1 grating.  In this case a 750 nm short pass 

exit filter was used to eliminate extra light from the 800 nm femtosecond laser. 

 

5.3  Results and discussion 

 

White light microscope images were collected for the waveguides written with the MHz 

laser. Two examples (side view) are shown in Figure 5.1. For scan speeds below 2 mm/s 

smooth lines were observed, whereas scan speeds above 2 mm/s yielded macroscopically 

rougher lines, with micron scale variations. These micron scale variations are 

substantially larger than the pulse to pulse separation, and are similar to features observed 

by others with MHz writing [5.3]. 
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Figure 5.1  White light images of lines written with the MHz system using a pulse energy of 115 
nJ, and scanning the sample transversely at a) 0.05 mm/s and b) 5 mm/s.  The circular fringes are 
artifacts from the microscope. 

All of the lines written with the MHz laser that were used in this study match those 

written with the highest cumulative dose in ref. 5.3, and exhibited good, low-loss, single-

mode optically guiding with symmetric beam a profile.  For lines written with the 1 kHz 

laser, such good waveguides were only obtained for laser pulse energies below 1 µJ.  

Lines written with the 1 kHz laser at pulse energies greater than 1 µJ showed substantial 

damage, and tended to scatter light [5.4-5.5].  The guiding behavior was not tested for the 

lines written with the 10-250 kHz laser. 

 

Raman and fluorescence spectra were collected for each line written with the MHz laser, 

for each line written with the 10-250 kHz laser and from one high pulse energy (5 µJ) and 

one low pulse energy (0.5 µJ) line written using the 1 kHz laser.  Figure 5.2 shows part of 

the Raman spectra of which the peaks at 605 cm-1 and 800 cm-1 are of particular interest.  

The areas of these Raman peaks were calculated using a straight line baseline from 570 to 

645 cm-1 for the 605 cm-1 peak, and from 750 to 870 cm-1 for the 800 cm-1 peak.  The 

ratio of the 605 cm-1 / 800 cm-1 peaks was then calculated as a measure of the relative 

intensity of the 605 cm-1 peak for the lines written with the 1 kHz and 1 MHz lasers.  
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605 cm-1 

800 cm-1 

Figure 5.2  Raman spectrum of a waveguide written with the 1 MHz system using a pulse energy 
of 115nJ, and scanning the sample transversely at 0.5 mm/s. 

Figure 5.3  Normalized 605 cm-1 / 800 cm-1 Raman peak ratios for lines written using a 1 kHz 
rep rate laser system at a scan speed of 20 µm/s and a 1 MHz rep rate laser system at different 
scan speeds and pulse energies.  The data is normalized with respect to the unmodified glass.   

There was some contamination in the spectra for the lines written with the 10-250 kHz 

laser, such that area of the 605 cm-1 peak could not be calculated. 

 

Figure 5.3 depicts the ratio of each line normalized to that of the unmodified glass.  The 

increase in the 605 cm-1  / 800 cm-1 Raman peak ratio indicates an increase in the relative 

concentration of 3-membered rings [5.6-5.7].  The behavior is similar for lines written 
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using both the 1 MHz and the 1 kHz laser.  However, the absolute magnitude of the 

change is twice as great for the MHz lines, as for the low pulse energy 1 kHz line. The 

concentration of 3-membered rings observed in the high pulse energy 1 kHz line is 

similar to the concentration observed in the MHz waveguides, but the 1 kHz waveguide 

shows significantly more light scattering and does not exhibit good waveguiding.  Since a 

greater concentration of 3-membered rings is associated with an increased local refractive 

index [5.4-5.7] our results support the contention that in fused silica high rep rate 

modification yields good quality waveguides with a greater refractive index increase than 

low rep rate modification.  It is also worth noting that for the MHz lines the concentration 

of 3-membered rings is not dependence on scan speed or pulse energy.  In contrast for 

lines written with the kHz laser, the concentration of 3-membered rings has a strong 

dependence on pulse energy. 

 

Both of the fluorescence peaks identified in chapter 4 were observed in different samples.  

The low pulse energy 1 kHz line has a fluorescence peak near 540 nm, which is attributed 

to the presence of self trapped exciton ( ) defects from very small silicon nano-clusters 

that several groups have reported seeing in γ-irradiated fused silica [5.8-5.9].  In contrast, 

all of the 1 MHz waveguides exhibit a broad, low intensity fluorescence band centered 

around 650 nm from non-bridging oxygen hole center (NBOHC) defect [5.4-5.5].  

Sample spectra for each type of fluorescence are shown in figure 5.4, however several 

lines also showed both types of fluorescence.  The area under the, fluorescence curve 

from 555 to 800 nm was calculated using a zero intensity baseline as a measure of the 

total fluorescence intensity for each of the modified lines and for the unmodified glass. 

' Eδ
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Figure 5.4  Fluorescence spectra of waveguides written with the 1 kHz laser system using a laser 
pulse energy of  0.5 µJ, and scanning the sample longitudinally at 20 µm/s, and the 1 MHz 
system using a pulse energy of 115nJ, and scanning the sample transversely at 0.5 mm/s. 

 

Figure 5.5 depicts the fluorescence peak area of each line, divided by the peak area of the 

unmodified glass.  All of the lines written with the 1 MHz laser have substantially more 

fluorescence (~5x) than the unmodified material.  However, the fluorescence intensities 

for lines written the 1 kHz laser system are 2 to 3 orders of magnitude higher than those 

for the MHz laser system. Lines written with the 10-250 kHz laser system have 

intermediate intensities, as indicated by the different intensity scales used in figure 5.5.   

 

To understand the different material responses associated with different writing 

conditions it is important to determine which writing parameters (e.g. pulse fluence, peak 

intensity, total exposure) control defect formation and structural changes.  For a constant 

pulse energy and pulse repetition rate, increasing the scan speed leads to less 

fluorescence, though this trend decreases with increasing pulse repetition rate and  



 88

Fi
gu

re
 5

.5
  F

lu
or

es
ce

nc
e 

in
te

ns
iti

es
 fo

r 
lin

es
 w

ri
tt

en
 a

t d
iff

er
en

t r
ep

 r
at

es
 (g

ra
ph

s)
, s

ca
n 

sp
ee

ds
 (x

 a
xe

s)
, a

nd
 p

ul
se

 e
ne

rg
ie

s (
se

e 
le

ge
nd

s)
. 

1 
M

H
z 

10
 k

H
z 

10
0 

kH
z 

50
 k

H
z 

1 
kH

z 



 89

(a) (b) 

Figure 5.6  Fluorescence intensities for lines written with scan speeds of (a) 4 mm/s and  
(b) 400 mm/s.  Note, the points plotted as being written with 2.5 µJ and 250 kHz were actually 
written using 2.3 µJ and 250 kHz. 

decreasing pulse energy.  It is difficult to determine whether the massive decrease in 

fluorescence with increasing repetition rate shown in figure 5.5 is a result of increasing 

the repetition rate or a result of decreasing the pulse energy, because the lasers with the 

highest repetition rates also have the lowest pulse energies.  Figure 5.6 shows that 

increasing the repetition rate causes a decrease in the fluorescence for lines written with 

slow scan speeds and high pulse energies, and that it causes an increase in the 

fluorescence intensity for lines written with higher scan speeds.  In an attempt to resolve 

this inconsistency, the fluorescence and Raman results for several extreme writing 

conditions are analyzed in terms of a larger variety of laser parameters, in Table 5.2. The 

data in the Table shows that neither the fluorescence nor the Raman signal scales linearly 

with pulse fluence, peak intensity, or total dose.  As expected, increasing the peak 

intensity causes a greater material change leading to more defects and greater 

fluorescence.   
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Table 5.2. Comparison of laser modification with MHz and KHz lasers. 
Writing conditions  Spectroscopy 

Pulse 
energy 

E  
(µJ) 

Spot 
size1) 

A 
(µm2) 

Rep 
rate 

r 
(s-1) 

Scan 
speed 

v 
(mm/s) 

Pulse 
fluence

F 
(J/cm2)

Peak 
intensity2)

I 
(TW/cm2)

Total 
dose3), 

D 
(MJ/cm3) 

Fluor. 
signal 
(a.u) 

Raman 
signal 
(a.u) 

0.115 0.27 106 0.05 43 85 8500  5.4 2.7 
0.115 0.27 106 5 43 85 85 6.5 2.5 
0.5 1.51 103 0.02 33 250 16 170 1.1 
5.0 1.51 103 0.02 330 2500 160 1000 1.9 

 
1) The spot size A was calculated as A= πw0

2; wo (the spot radius) = M2λ/(πNA), where M2 = 1.5  is 
the beam quality factor, λ is the laser wavelength, and NA is the numerical aperture of the 
focusing objective. 
2) The pulse intensity was calculated as I = F/τ; for the kHz laser the pulse duration, τ, is 130 fs.  
For the MHz laser the pulse duration is less accurately known, an upper limit of 500 fs was used 
in our calculations. 
3) For the case of longitudinal writing (with the kHz laser) the total dose, D = Fr/v; for the case of 
transverse writing (with the MHz laser) D = Fr(NA)/v.  

A second interesting trend in figures 5.3 and 5.5 is that the total fluorescence and Raman 

intensities become less dose dependent with increasing rep rates.  Surprisingly, in the 

cases of the 1 MHz and the 1 µJ, 250 kHz lines increasing the total exposure (slower scan 

speeds) actually leads to slightly less fluorescence, indicating fewer defects.  We believe 

that the decrease in the fluorescence with increasing exposure in the high rep rate cases is 

the result of thermal accumulation partially annealing the modified region while writing.  

The low thermal conduction in glasses prevents the absorbed laser energy from diffusing 

out of the focal region during the interval between pulses while writing with high rep rate 

lasers.  Other groups have reported large diameter modified regions forming in other 

glasses as another result of thermal accumulation [5.2-5.3].   

 

Additional fluorescence and Raman scans were performed across several of the 

waveguides written with the MHz laser to provide information on the spatial extent of the 

structural changes.  These measurements were designed to test if the diameter of the 
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(a) (b) 

Figure 5.7  a) Fluorescence, and b)  605 cm-1 /  800 cm-1 Raman peak ratio intensity cross-sections 
for waveguides written with a 1 MHz laser and 115nJ pulse energy.  Both plots are normalized to 
the data for unmodified glass. 

waveguides increased as a result of greater thermal accumulation with increasing dose 

(slower scan speeds).  The graphs presented in figure 5.7 are the result of averaging 6 

scans for each line.  The data in figure 5.7 is normalized to the signal from the 

unmodified glass.   Both fluorescence and Raman spatial profiles have a FWHM of about 

2.0 ± 0.5 microns. This is in good agreement with the line-width obtained from the white 

light micrographs in figure 5.1.  However, an increase in diameter was not observed with 

increasing total dose in our sample, for the range of processing conditions studied [5.10].  

This indicates that there is not sufficient thermal accumulation to modify the material 

beyond the focal volume. 

  

Finally, it is worth taking a closer look at the two different types of fluorescent defects 

that were shown in figure 5.4.  All of the lines created using 1 MHz and 250 kHz exhibit 

NBOHC defects.  For a 50 kHz laser repetition rate, lines created using pulse energies 

less than 1.5 µJ and a scan speed of 400 µm / s have  defects, while the lines created ' Eδ
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250 kHz50 kHz 10 kHz 

Figure 5.8  Two types of fluorescent defects were observed for different writing conditions.  
Several of the graphs from figure 5.5 have been rearranged to emphasize the effects of 
changing the pulse energy on the resulting defect types.  Points at which the fluorescence is 
dominated by NBOHC defects are in blue, points where it is dominated by E’δ defects are in 
red. The different shapes indicate the scan speed:  4 µm / s for triangles, 40 µm / s for circles, 
and 400 µm / s for squares. 

with greater doses have NBOHC defects, as shown in figure 5.8.  For a 10 kHz repetition 

rate the threshold is increased to 2 µJ, at 400 µm/s.  And for a 1 kHz repetition rate it 

increases to 1 µJ at 20 µm/s. 

   

Fluorescence photobleaching studies were performed for waveguides formed by various 

laser writing conditions by using a low power (30 mW) Ar+ laser to probe the 

fluorescence from fs-laser induced defects.  During exposure to the low power Ar+ beam 

the fluorescence intensity continuously decreased, as previously observed for lines 

written with the 1 kHz laser system [5.5]. The photobleaching results are shown in figure 

5.9. Each graph shows the spectrum of the unmodified glass, the spectrum of the 

waveguide region and the spectrum of the same waveguide region after prolonged 

exposure to the low power Ar+ laser.  Figure 5.9a shows that that the fluorescence 
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Figure 5.9  Fluorescence of fs-laser modified lines after 14 hours of exposure to 30 mW of Ar+ 
laser  light..  The intial fs laser modification  conditions were a) 1 MHz repetition rate, 115nJ 
pulse energy, 0.5 mm/s scan speed b) 1 kHz, 5 µJ,  20 µm/s  c) 1 kHz, 0.5 µJ, 20 µm/s. All spectra 
were recorded with a 5 minute acquisition time. 

(c)(a) (b)

decreases by about two-thirds after 14 hours for the 115 nJ, 0.5 mm/s MHz waveguide.  

This is typical for all of the lines written with the MHz rep rate, and for all of the kHz rep 

rate lines, which had NBOHC defects (figure 5.9b).  This indicates that the local 

environment around the defects is independent of the rep rate, however, the kHz lines had 

a far greater initial intensity indicating more defects were formed.  The low pulse energy 

 containing 1 kHz line (figure 5.9c) bleached completely within 14 hours of Ar+ laser 

exposure, even though the initial fluorescence intensity was similar to that from 

waveguides formed by the MHz laser.   

' Eδ

 

The absence of  defects in both higher dose kHz damage lines and MHz waveguides 

can again be accounted for by photobleaching while writing.  Alternatively, for the high 

pulse energy kHz lines there is so much fluorescence from the NBOHC defects that it 

may overshadow the fluorescence from  centers.  Since these defects form at lower 

' Eδ

' Eδ
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pulse energies than the NBOHC defects, the  centers have a lower energy barrier for 

formation as well as for bleaching.  

' Eδ

 

The waveguides written with all of the laser systems appear to retain good guiding 

behavior after Ar+ laser photobleaching of the NBOHC or  defects.  This indicates that 

the fluorescent defects are not responsible for the refractive index changes that result in 

guiding behavior.  This contention is further supported by the earlier observation that the 

waveguides written with the 1 MHz system appear to have a greater refractive index 

change based on the 3-membered ring concentration, despite having less fluorescence 

than the waveguides written with the kHz systems. 

' Eδ

 

In order to gain further insight into the physical processes associated with the 

modification process, we measured the light emitted from the sample while fabricating 

waveguides.  The emissions were collected while writing lines with the 1 kHz repetition 

rate laser.  For low pulse energies there is a narrow “blue” emission centered around 475 

nm that is shown in figure 5.10a.  At higher pulse energies there is a stronger “white” 

emission with a maximum around 540 nm, shown in figure 5.10b.  Comparing the 

emission spectra in figure 5.10c, it is clear that the spectrum shown in figure 5.10b is a 

superposition of the “blue” emission band shown in fig 5.10a and a second band centered 

at 540 nm.  The relative intensity of the 540 nm band increases with increasing 

femtosecond pulse energy, as shown in fig. 5.10c. The pulse fluence above which the 

“white” 540 nm emission is observed is approximately 42 J cm-2.  This is around the 

same fluence at which the transition between the two fluorescent defect types occurs, as 
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(c) 

(a) (b) 

Figure 5.10  Emission spectra collected while writing lines with the 1 kHz laser, a 20X 
microscope objective, and a) 0.3 µJ to b) 3.0 µJ.  All of the lines in c) are normalized to their 
intensity at 475 nm to accentuate changes in the shape of the emission spectra. 

well as the transition between controlled modification (which produces good waveguides) 

and uncontrolled damage when writing with the 1 kHz repetition rate laser.   

 

These observations suggest that there are two modification regimes that correspond to 

different pulse fluences, at least when writing with the 1 kHz laser.  The first is a low 

pulse fluence regime, which is characterized by “blue” emissions while writing, the 
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presence of  defects after writing, and the formation of good waveguides.  The second 

is a high pulse fluence regime, which is characterized by “white” emissions while 

writing, the presence of NBOHC defects after writing, and the formation of damaged 

lines.  The origin of the emission bands at 475 and 540 nm is uncertain.  Another group, 

Carr et al., has measured the emission generated during femtosecond laser exposure 

under slightly different conditions.  They suggested three potential emission mechanisms 

to explain their results:  nonlinear second-harmonic generation, super-continuum 

generation, and plasma emissions [5.11].  The emission bands that they observed had 

different peak positions than those seen in our results, which indicate that our emissions 

may result from a slightly different processes.  We tentatively assign the 475 nm band to 

nonlinear frequency-mixing, based on the fact that it is observed for all pulse fluences.  

The band at 540 nm is only observed at higher pulse energies where other experiments 

have shown plasma forms [5.12], thus we believe that it relates to plasma emission. 

' Eδ

 

We have not been able to collect emission spectra while writing with higher repetition 

rates.  Visual observations of the sample during high repetition rate writing show a “blue” 

emission at low pulse energy writing conditions that are barely capable of modifying the 

material, and a “white” emission when using higher pulse energies.  

 

5.4  Summary 

 

Our results show that fluorescent defects are formed during the femtosecond laser 

modification process when using lasers with repetition rates ranging from 1 kHz to          
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1 MHz.  Higher repetition rates favor the formation of NBOHC defects over  defects, 

with only NBOHC defects being present for all lines fabricated with the 250 kHz and 1 

MHz laser systems.  Far fewer defects were formed with the 1 MHz laser than with the 

higher pulse energy kHz lasers.  This is probably a result of the higher rep rate system 

having lower pulse energies, though it is also possible that the defects are bleached 

during high rep rate fabrication.  We also observed an increase in the relative intensity of 

the 605 cm-1 Raman peak, corresponding to an increase in the concentration of 3-

membered rings.  The lines fabricated with the MHz laser system had a substantially 

larger increase than the line low pulse energy 1 kHz lines, indicating that the MHz laser 

system may cause a greater increase in the refractive index.  Finally, both the 

fluorescence and Raman signals become less dose dependent at higher rep rates. 

' Eδ
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Chapter 6 

 

Understanding the Effects of the Material Composition. 

 

6.1  Motivation 

 

Waveguide fabrication using femtosecond laser pulses has been most thoroughly studied 

in fused silica.  Many devices including waveguides and various other optical devices 

have been fabricated in this material.  However fused silica is a poor material choice for 

producing active devices including lasers and amplifiers.  The reason for this is that 

active devices typically require the use of glasses doped with rare-earth ions and in fused 

silica such doping is limited to very low concentrations.  To expand the versatility of 

femtosecond waveguide fabrication to other glass compositions it is necessary to know 

how the composition affects the modification process.  Preliminary studies of producing 

waveguides in different glasses, discussed in section 2.3.4.3, show that two types of 

guiding behavior can result from the modification process [6.1].  Our group proposed that 

the different guiding behaviors could be explained by differences in how the different 

materials behave when they are rapidly cooled or quenched, as discussed in section 

2.3.4.4.  However, the glasses used in the preliminary studies, fused silica and Schott 

IOG-1 (a phosphate glass), have different chemical, optical, and physical properties.  To 

test the validity of the model proposed by our group, referred to as the rapid quenching 

model, it is desirable to study the femtosecond-laser writing behavior in a glass system 

where the composition can be systematically varied. 
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To this end, we have examined the waveguiding behavior of soda lime silicate glasses in 

the xNa2O xCaO (1-2x)SiO2 series.  It is known that rapid quenching of glasses with high 

alkali content will result in a lower refractive index [6.2], similar to IOG.  By observing 

the type of waveguides produced and comparing this to the relationship between cooling 

rate and refractive index at various values of x, it should be possible to determine if the 

rapid quenching model is valid.  In addition, we will use spectroscopy to examine the 

local microstructure changes that occur within the glasses. 

 

6.2  Experiment 

 

The three glasses studied were Corning 7940 type III silica glass (fused silica), Schott 

Company Glass 6 (15Na2O 15CaO 70SiO2), and Schott Company Glass 4-2 (20Na2O 

20CaO 60SiO2).  The in-house amplified Ti-sapphire laser operating at 800 nm with a 

130 fs pulse width, and a 1kHz repetition rate was focused through a Nikon 20X 0.4 NA 

ELWD objective using pulse energies from 0.15 to 20 µJ after the objective.  The sample 

was moved at 20 µm s-1, parallel to the laser beam (longitudinally) to create the modified 

lines.  Care was taken to ensure that the focal spot never reached the sample surface. 

 

After fabricating the waveguides the 488 nm Argon ion laser, set to low power (5 mW), 

was coupled into the resulting waveguides by adjusting either the 5-axis stage the sample 

was mounted on (item 12 in chapter 3), or the 3-axis stage supporting the 1st microscope 

objective (item 13b in chapter 3).  The far field image was observed on a screen 70” from 
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the sample, and the near field image was collected using a 2nd microscope objective and a 

CCD camera.  Spectroscopy was performed by increasing the power of the Ar+ laser to 

50 mW, and collecting the back scattered / emitted light using the integrated confocal 

microscope; a 488 nm long-pass filter was used to eliminate the excitation laser.  Either a 

PMT or a 0.25m spectrometer with a 300 groove per mm, 500 nm blaze grating were 

used to collect the light.  The PMT was used to rapidly measure the total scattering and 

emission from the sample as a function of spatial position with an acquisition time of 0.1 

s per point.  The spectrometer was used to measure changes in the fluorescence spectra as 

a function of spatial position with an acquisition time of 5 min per point.   

 

6.3  Results and discussion 

 

Figure 6.1 shows the white light images of waveguides in both of the soda lime silicate 

glasses. The waveguide behavior is similar to the behavior of IOG-1.  There is a non-

guiding central region that appears black, bounded by guiding peripheral regions that 

appear white in the white light images.  This pattern is observed for all lines that exhibit 

guiding behavior.  It was found that a wide range of laser pulse energies produced such 

waveguides in both soda lime silicate samples.  Lines created with 5 to 10 µJ pulse 

energies had regions with good guiding behavior.  Lines created with more power exhibit 

a larger black damaged central region, without the white guiding peripheral regions.  

Lines created with less power had a smaller, grey (not black) damaged central region that 

faded to invisibility with pulse energies less than 0.25 µJ, without the white guiding 

peripheral regions.  Guiding was not observed within the central, exposed region for lines 
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written with any pulse energy.  This is different from fused silica in which the lowest 

power lines that are visible exhibit guiding within the exposed region. 

(b) (a) 

Figure 6.1  a) White light images of the endfaces of a 9.3 µJ line in 15Na2O 15Ca2O 70SiO2, and 
b) 20Na2O 20CaO 60SiO2  

(a) (b) 

Figure 6.2  a) White light image and b) fluorescence image of the endface of a 9.3 µJ line in 
15Na2O 15Ca2O 70SiO2.  The black circles in the white light image, and the “G”s in the 
fluorescence image denote where waveguide coupling was achieved. 

 

Figures 6.2a and 6.2b show a white light image and cross-section image of the total 

emission intensity of the same waveguide shown in figure 6.1a under identical 

magnification.  Each pixel in the fluorescence image is 0.5 µm.  By comparing this image 

with the coordinates where waveguide coupling is possible we can determine that guiding 
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takes place in regions (marked with “G”) on either side of the exposed central region, 

from which the fluorescence is observed.  Spectroscopy was used to determine the nature 

of the modified region’s emission.  Spectra of the center of the exposed region and of 

unmodified glass are shown in figure 6.3.  An increase in the broad fluorescence centered 

around 610 nm is observed for the modified region.  This fluorescence band is due to 

NBOHC defects that are formed in the region exposed to the fs laser.  The contrast 

between modified and unmodified regions is less pronounced in the fluorescence spectra 

(figure 6.3) than in the fluorescence image (figure 6.2b) because of photobleaching that 

occurs during the longer acquisition time used to collect the spectra.  Similar 

photobleaching of NBOHC defects has been observed in fused silica [6.3].  

Figure 6.3   Fluorescence spectra of a 9.3 µJ line, and unmodified glass in 15Na2O 15Ca2O 70SiO2.

 

Near field images were collected for each guiding region to evaluate the waveguide 

quality.  Figure 6.4 shows that for the 15Na2O 15CaO 70SiO2 sample, there is very nice, 
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almost circular, guiding behavior in the upper waveguide.  The lower waveguide is far 

more diffuse and elongated to one side.  The 20Na2O 20CaO 60SiO2 sample (figure 6.5) 

shows the opposite behavior with better confinement in the lower waveguide than in the 

upper, with both profiles being slightly elongated.  This difference is a result of minor 

positioning adjustments of the writing beam passing through the objective.  Note, for 

comparing figures 6.2 and 6.4 it is necessary to invert the images because of the second 

microscope objective used to collect the near field profiles. 

(b)(a) 

Figure 6.4   Near field profiles of 9.3 µJ waveguides a) above the modified region, and b) below 
the modified region in 15Na2O 15CaO 70SiO2 glass and the intensity distribution. 

(a) (b)

Figure 6.5   Near field profiles of 9.3 µJ waveguides a) above the modified region, and b) below 
the modified region in 20Na2O 20CaO 60SiO2 glass and the intensity distribution. 
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Figure 6.6   Composite image of the near field profiles of “top” waveguides in 15Na2O 
15CaO 70SiO2 glass. 

9.3 µJ  7.1      µJ  6.0                   µJ 4.8                   µJ 

The near field profiles are arranged as a function of writing energy in figure 6.6.  Pulse 

energies greater than 10 µJ gave rise to excessive scattering resulting in no well-defined 

waveguides.  Some guiding was evident at lower powers between 1.5 and 5 µJ, however, 

the spot size rapidly increased indicating poor beam confinement.  It is our belief that 

while some modification clearly occurred, the refractive index change induced is not 

sufficient to produce good quality waveguides. 

 

The far-field profiles were used to calculate approximate values for the refractive index 

by calculating the NA of the spreading cone, and comparing this value to the theoretical 

NA for total internal reflection of a step index change, using equations 6.1 and 6.2 

respectively,    

 

( )
z

dNA
2

tan~ =θ Eq 6.1 

 

Eq 6.2 nnNA o∆= 2
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where d is the far-field waveguide diameter, z is the distance over which the far-field 

profiles were measured (70”), no is the refractive index of the unmodified glass, and ∆n is 

the change in the refractive index.  Equation 1 assumes d << 2z, and equation 2 assumes 

∆n << no. 

 

All of the waveguides had ∆n values within a factor of 4 of 10-4.  No significant trends 

were observed between the refractive index change and the writing power, though this 

may be due to large errors in the far-field measurements. 

 

Taken together these results clearly show that waveguides written in soda lime silicate 

glasses (15Na2O 15CaO 70SiO2 and 20Na2O 20CaO 60SiO2) guide around the modified 

region.  This is similar to the behavior observed in IOG-1, and supports the rapid 

quenching model of waveguide formation because both the soda lime silicate glasses and 

IOG-1 have a lower bulk refractive index with increased quenching rate.  High-resolution 

refractive index profiles of femtosecond laser fabricated lines in various glasses provide 

additional support for the rapid quenching model [6.4].  

 

6.4  Summary 

 

Waveguides were fabricated in soda lime silicate glasses with compositions of xNa2O 

xCaO (1-2x)SiO2 where x = 15, and 20.  The resulting waveguides exhibit the same 

behavior our group first observed in IOG-1 glass; the waveguides are around but not 
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within a central modified line.  This result has been confirmed using white light imaging, 

fluorescence imaging, and by measuring the near field profiles of the waveguides.  Both 

the soda lime silicate glasses, and IOG-1 have a lower bulk refractive index with 

increased quenching rate, supporting the fast quenching model for femtosecond laser 

waveguide fabrication.   
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Chapter 7 

 

Revised Modification Mechanisms 

 

7.1 Overview 

 

This chapter discusses how the results from the experiments described in chapters 4-6 

help elucidate the mechanisms by which femtosecond lasers can be used to cause 

permanent refractive index changes in glass.  The chapter starts by reviewing the current 

view of how the modification process works; it then discusses several results and how 

they relate to the underlying mechanisms; finally it concludes by putting forth a revised 

modification process.  

 

7.2 Current view of femtosecond laser modification mechanisms in glass 

 

The modification mechanisms by which a femtosecond laser can induces a permanent 

refractive index change in glass were discussed in chapter 2.  In brief, it is generally 

agreed upon that the laser energy is rapidly absorbed through a combination of 

multiphoton absorption and avalanche photo-ionization.  There are two viewpoints 

regarding how much energy must be absorbed to cause permanent changes within the 

glass.  The more popular view is that enough energy must be absorbed to form plasma 

within the glass [7.1-7.5].  The second view is that rough damage features that scatter 

light result within the glass after plasma forms, and that slightly less energy is required to 
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Thermal Diffusion Shockwave Generation 

Energy Dissipation 

Energy Absorption 

Avalanch Photo-ionization

Plasma Formation 

? ?

Refractive Index 
Changes 

Pressure Induced 
Refractive Index Changes

Stress Induced 
Refractive Index Changes

Cooling Rate Induced 
Refractive Index Changes 

Multiphoton Absorption

Table 7.1  Current theory of femtosecond laser modification mechanisms.  Question marks 
indicate areas of uncertainty.  

cause a controlled change in the material [7.6].  The energy dissipates through either 

thermal diffusion or shockwave generation, though there is substantial uncertainty 

regarding which mechanism is dominant.  This leads to uncertainty regarding what 

causes the observed refractive index changes.  Thermal diffusion would result in a 

combination of cooling rate-induced structural changes and stress-induced refractive 

index changes.  A shockwave would result in a combination of pressure-induced 

structural changes, and stress-induced refractive index changes.  Note, any structural 

changes would also be associated with refractive index changes.  These mechanisms are 

summarized in figure 7.1. 
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7.3 Important results 

 

Several results were particularly helpful in revising the modification mechanisms; these 

results are briefly restated here.   

 

Chapter 6 showed that waveguides fabricated in fused silica and soda-lime silicate 

glasses with a 1 kHz femtosecond laser have different guiding behaviors.  They differ in 

both the location of the waveguides relative to the exposed area and the laser intensity 

required to create good waveguides relative to the minimum intensity required to cause a 

noticeable change in the glass.  In fused silica good waveguides are formed within the 

exposed material when using the lowest intensities that can cause a noticeable change in 

the glass; and higher intensities lead to damage that scatters light, as illustrated in figure 

7.2a.  In both soda lime silicate glasses low intensities cause a noticeable change but do 

not result in the formation of waveguides; moderate intensities produce a damaged 

central region with good waveguides around it; and higher intensities lead to damage that 

scatters light, as illustrated in figure 7.2b.  It is also worth noting that good waveguides 

form over a larger range of laser intensities in the soda lime silicate glasses than in fused 

silica.  And, that the spatial Raman profiles of individual waveguides in fused silica, 

which were presented in chapters 4 and 5, showed an increase in the density of the glass 

within the center of the waveguides.   

 

In chapters 4 and 5, it was observed that two distinct types of fluorescent defects form in 

fused silica during the laser modification process depending upon the intensity (or pulse 
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a) 
Damage Noticable Changes and GuidingUnmodified 

b) 
Damage Guiding Noticable ChangesUnmodified 

Pulse Energy 

Figure 7.2  A cartoon of the results of laser modification with a 1 kHz pulse repetition rate 
femtosecond laser in a) fused silica and b) soda-lime silicate glasses as a function of pulse energy.  
The darker grey regions have a lower refractive index than the bulk glass; the white regions have 
a higher refractive index than the bulk glass, allowing them to function as waveguides. 

fluence) of the writing laser.  At low intensities E’δ defects are predominant; at high 

intensities NBOHC defects are predominant.  In chapter 5, it was also observed that two 

distinct emissions were produced while writing depending upon the intensity of the 

writing laser.  At low intensities a “blue” emission is observed; at high intensities a 

second “white” emission is also observed.  When using a 1 kHz laser, the intensity at 

which the predominant fluorescent defect type changes and the intensity at which the 

second emission appears both roughly correlate to the intensity at which damage begins 

to arise.   
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These results indicate that there are two regimes in which different modification 

processes occur, depending on the intensity of the femtosecond laser.  At low intensities 

there is a regime that is characterized by “blue” emissions while writing, the presence of 

E’δ defects after writing, and the formation of smooth modified lines that function as 

good waveguides in fused silica.  At high intensities there is a regime that is characterized 

by “white” emissions while writing, the presence of NBOHC defects after writing, and 

the formation of damaged lines that eventually become voids.  

 

7.4 Revised modification mechanisms 

 

The observations that there are different guiding behaviors in fused silica and soda-lime 

silicate glasses, and that there is a denser region in the center of waveguides in fused 

silica favor the rapid quenching model of waveguide formation.  In this model, thermal 

diffusion is the dominant energy dissipation mechanism, and the relationship between the 

cooling rate and the resulting density of the glass is responsible for the observed 

refractive index changes.  Two factors would contribute to this refractive index change, 

the changes in the local microstructure and secondary stress effects.  For fused silica, the 

rapid quenching model predicts a greater local density and refractive index in the center 

of the exposed region, because the density of silica increases with increased cooling rate.  

For the soda-lime silicate glasses which have a lower density with increasing cooling 

rate, the rapid quenching model predicts a lower local density and refractive index in the 

center of the exposed region, with stress-induced increases in the refractive index of the 

surrounding material.  These predictions agree well with the Raman profile and 
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waveguide coupling results for low pulse energies in our experiments, and with 

waveguide coupling and refractometry results collected by us and other groups [7.7-7.8]; 

however these predictions do not explain why damage occurs at higher pulse energies.  

Thus, it can be concluded that the rapid quenching model controls the formation of 

waveguides in the low intensity regime, and that a second mechanism is dominant at high 

intensities. 

 

The results discussed in this dissertation focused on lower intensity writing conditions 

that produce good waveguides; as such they are of limited utility for explaining the 

modification process at high intensities.  Other groups have conducted extensive 

investigations of the femtosecond laser modification process at high intensities.  Two 

important features of their results are that they clearly show the formation of plasma 

within the glass during the modification process [7.9-7.10], and they show the formation 

of voids at very high intensities [7.11-7.12].  The shockwave generation model, discussed 

in chapter 2, can explain these results.   

 

Together, the rapid quenching and shockwave generation models fit well with all of the 

experimental results for low repetition rate (1 kHz) writing.  They are incorporated into 

the following revised modification mechanisms for femtosecond laser writing with low 

pulse repetition rates, illustrated in figure 7.3.  The energy is initially absorbed through a 

combination of multiphoton absorption and avalanche photo-ionization.  For low laser 

intensities, the glass is heated by each pulse and rapidly cools through thermal conduction 

between pulses.  The resulting refractive index change is determined by the relationship 
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Thermal Diffusion Shockwave Generation 

Energy Dissipation 

Energy Absorption 

Avalanch Photo-ionization

Plasma Formation 
Low Peak 
Intensities

High Peak 
Intensities 

Refractive Index 
Changes 

Pressure Induced 
Refractive Index Changes

Stress Induced 
Refractive Index Changes

Cooling Rate Induced 
Refractive Index Changes 

Multiphoton Absorption

Table 7.3  Revised model of femtosecond laser modification mechanisms.  

between the density of the glass and the cooling rate, and by residual stresses caused by 

this density gradient.  For high laser intensities, plasma forms within the glass creating a 

large charge separation that leads to a coulomb explosion.  This results in a shockwave 

that produces pressure induced refractive index changes with an inhomogeneous 

redistribution of the material within the modified region, and stress induced refractive 

index changes in the surrounding material.   

 

For the case of high repetition rate writing in which thermal accumulation occurs, similar 

divisions likely exist but more information will be required to accurately describe them.  

Preliminary evidence indicates that the amount of thermal accumulation is at least as 

important as the pulse intensity.  With moderate thermal accumulation a heated region 
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forms beyond the focal volume of the laser.  This region then rapidly cools from the 

outside in, resulting in good waveguides within glasses similar to the soda-lime silicates.  

With greater thermal accumulation molten glass persists between laser pulses.  The 

refractive index change associated with the molten glass substantially distorts the focused 

femtosecond laser resulting in uneven globular structures.  There is also some evidence 

that thermal accumulation retards the generation of damage that scatters light, though 

more research is necessary to confirm this effect. 
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Chapter 8 

 

Summary 

 

8.1  Overview 

 

The work discussed in this dissertation explores how femtosecond laser modification of 

glasses works.  Specifically, it focuses on using high spatial resolution confocal fluorescence 

and Raman spectra spectroscopy to analyze the effects of pulse repetition rate and glass 

composition on the writing process.  These results are then used to explain the femtosecond 

laser modification process. 

 

8.2  High spatial resolution spectroscopy 

 

In previous studies of large volumes modified by femtosecond lasers, spectra have revealed 

that the laser modification creates a large concentration of non-bridging oxygen hole center 

(NBOHC) defects, and causes an increase in the relative concentration of three-membered 

rings, indicating local densification.  We used a confocal microscope with high spatial 

resolution to collect spectra as a function of spatial position while scanning across individual 

waveguides (6-10 µm in diameter) and fiber Bragg gratings.  The shape of the spatial Raman 

and fluorescence profiles closely matches the shape of the Gaussian focus used for writing 

the waveguides; indicating that the greatest densification and defect concentrations are in the 
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center of the modified region.  This result supports the rapid quenching model, which 

predicts a greater density within the center of waveguides fabricated in fused silica.   

 

There was some concern that the Gaussian Raman and fluorescence profiles were a result of 

the Gaussian focus of the confocal microscope used to collect the spectra, rather than the 

focus used to write the waveguides.  Spectra collected while scanning across a 2.14 µm pitch 

fiber Bragg gratings were used to experimentally determine that our confocal microscope has 

a minimum feature size of less that 1.4 µm.  This resolution is fine enough that the 

waveguide profiles should be an accurate representation of the focus used to create them. 

 

It was also observed that two types of fluorescent defects were present in the fiber Bragg 

gratings:  NBOHC defects with a peak around 650 nm, and self trapped exciton (E’δ) defects 

with a peak around 540 nm.  A review of earlier data revealed that E’δ defects were 

predominant in many waveguides fabricated using low laser pulse energies, and that NBOHC 

defects were predominant in waveguides fabricated using high laser pulse energies. 

 

8.3 Effects of changing the pulse repetition rate 

 

It has been reported that using high repetition rate femtosecond lasers results in waveguides 

that have larger diameters and potentially greater refractive index changes than waveguides 

fabricated with low repetition rate lasers.  It is believed that these effects are the result of 

thermal accumulation while writing.  To test these assertions, we produced waveguides in 

fused silica using several pulse repetition rates ranging from 1 kHz to 1 MHz and a wide 
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range of scan speeds; Raman and fluorescence spectra were then collected from the center of 

each waveguide, and as a function of spatial position scanning across select waveguides.   

 

The spectra collected from the center of each line showed different concentrations of 

NBOHC defects, E’δ defects, and 3-membered rings depending on the writing conditions.   

The broad fluorescence band, centered at 650 nm that is associated with NBOHC defects, 

was the only fluorescence observed in waveguides fabricated at repetition rates higher than 

250 kHz.  For lower repetition rates NBOHC defects were only observed for waveguides 

written with higher total doses, where the total dose is determined by the laser repetition rate, 

the speed at which the sample was moved while writing, and the energy per pulse.  An 

example of this dependence is that for a 1 kHz laser and a scan speed of 20 µm / s, NBOHC 

defects formed at pulse energies above 1 µJ.  Far fewer NBOHC defects were formed with 

the 1 MHz laser than with the kHz lasers.  This could be a result of thermal annealing driven 

by heat accumulation effects at higher repetition rates, or it could be an effect of the higher 

repetition rate lasers having less energy per pulse.  Self trapped excition ( ) defects were 

dominant for conditions with low total doses, such as using a 1 kHz laser with a scan speed 

of 20 µm /s and pulse energies less than 1 µJ.  We also observed an increase in the intensity 

of the 605 cm

' Eδ

-1 Raman peak relative to the total Raman intensity, corresponding to an 

increase in the concentration of 3-membered rings, and therefore an increase in density, 

within the lines fabricated with both laser systems.  The magnitude of this increase in 

waveguides fabricated with a 1 MHz laser was nearly twice the increase observed in 

waveguides fabricated with a 1 kHz laser.  This supports the contention that writing with 

higher repetition rates may result in a greater refractive index change. 
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The shape of spatial profiles produced from the spectra collected as a function of spatial 

position while scanning across select waveguides matches the Gaussian focus used to 

fabricate the waveguides for all conditions.  It is of particular interest that there was no 

variation in the waveguide width for waveguide fabricated with the 1 MHz repetition rate 

laser and scan speeds ranging from 50 µm / s to 5 mm / s.  This indicates that greater thermal 

accumulation did not lead to an increased waveguide diameter, contrary to observations 

reported by other groups in other glass systems. 

 

8.4 Effects of changing the glass composition 

 

Work by my predecessor indicated that distinctly different guiding behavior occurs in 

different materials as a result of femtosecond laser modification.  Waveguides written in 

IOG-1 appear to have a lower refractive index core surrounded by a higher refractive index 

shell; in contrast the waveguides written in fused silica appear to have a higher refractive 

index core.  Our group proposed that these different behaviors are determined by the 

relationship between the cooling rate used to produce the glass and the resulting density of 

the glass.  However, IOG-1 and fused silica belong to drastically different glass systems, 

between which too many material properties change to draw firm conclusions about the 

validity of our explanation.   

 

To examine the cooling rate dependence, waveguides were fabricated in soda lime silicate 

glasses with similar compositions of xNa2O xCaO (1-2x)SiO2 where x = 0, 15, and 20.  The 
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location of the resulting, guiding regions was observed relative to the regions exposed to the 

1 kHz femtosecond laser.  As expected, waveguides formed in fused silica guided light 

within the exposed material.  In contrast, the waveguides produced in both soda lime silicate 

glasses exhibit the same behavior our group first observed in IOG-1, in which the 

waveguides form around but not within a central exposed line.  Fused silica has a higher bulk 

refractive index with increased quenching rate, while both of the soda lime silicate glasses 

and IOG-1 have lower bulk refractive indices with increased quenching rate.  This supports 

our group’s contention that the relationship between the cooling rate and the resulting density 

of the glass can be used to determine the type of waveguides that will be produced within the 

glass. 

 

8.5 Revised modification mechanisms 

 

Taken together the results of the experiments discussed in this dissertation indicate that for 

low laser repetition rates, there are two regimes in which different mechanisms control the 

femtosecond laser modification process.  In both regimes, the laser is absorbed through a 

combination of multiphoton absorption and avalanche photo-ionization.  The resulting 

modification process depends on how much energy is absorbed.  For high energy levels, 

plasma forms within the glass leading to a coulomb explosion.  The resulting shockwave 

produces stress induced refractive index changes and damage.  For low energy levels, the 

glass cools off rapidly through thermal diffusion.  The ensuing refractive index changes are 

determined by the relationship between the cooling rate used to produce the glass and the 

density of the glass. 


