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ABSTRACT 
 

The classical “turbulence problem” is narrowed down and redefined for scientific and engineering applications.  
From an application perspective, accurate computation of large-scale transport of the turbulent flows is needed. In 
this paper, a scaling analysis that allows for the large-scales of very high Reynolds number turbulent flows – to be 
handled by the available supercomputers is proposed. Current understanding of turbulence interactions of 
incompressible turbulence, which forms the foundation of our argument, is reviewed. Furthermore, the data 
redundancy in the inertial range is demonstrated. Two distinctive interactions, namely, the distance and near-grid 
interactions, are inspected for large-scale simulations,. The distant interactions in the subgrid scales in an inertial 
range can be effectively modelled by an eddy damping. The near-grid interactions must be carefully incorporated.  

 

INTRODUCTION AND SUMMARY 

In many problems in fundamental physics, we must 
simultaneously deal with uncertainty in the underlying 
equations of motion and with uncertainty in our ability to 
solve them. In turbulence, we have only the latter [1].  
The turbulence problem is still referred to as the last 
unresolved classical physics problem [2].  
 
The presence of strong nonlinear interactions make 
turbulence a truly multiple scale problem.  The challenge 
in direct numerical simulations (DNS) of a very high 
Reynolds number flow is to account for all the scales, 
starting from the largest where the energy injection 
occurs to scales that are roughly two times the 
Kolmogorov dissipation wavenumber. The Reynolds 
number is around 108 for airplane wing and fuselage [2-3] 
and even higher for turbulent flows  in space and 
astrophysical setting [4].  
 
In such a computationally intensive field, we have 
witnessed an unprecedented advancement of the 
capabilities of the supercomputers (see the website 
www.top500.org for update). For grid generated 
turbulence or turbulent flows in a periodic box, brute-
force DNS has already matched or surpassed experiments 
[5]. Pope [3] even suggested that we have entered an era 
of sufficient computer power.  
 
At this juncture, what is the status of the last unresolved 
classical physics problem, given all these computing 
resources?  
 
In this paper, “turbulence problem” is defined with a goal 
to compute the large-scales of complex turbulent flows at 

very high Reynolds numbers. A scheme is proposed so 
this goal can be achieved. 

“TURBULENCE PROBLEM” REDEFINED 

Most important properties of a high Reynolds number 
turbulent flow are determined by the transport dynamics 
of the large-scales1. Therefore, it makes sense to focus 
computing resources on capturing these scales accurately. 
From an application perspective, accurate and time-
dependent, three-dimensional computations of the large-
scales may be all that is needed. It is therefore necessary 
to chose the grid-size in a uniform fashion, using the 
boundary between the large-scales and inertial range.  
 
In support of this argument, it will be illustrated that the 
self-similarity properties lead to the data redundancy; an 
advantage that should be fully exploited.  The universality 
of the inertial range is indeed remarkable.  The footprint 
of the flow type and its initial conditions, on the other 
hand, will persist, as indicated by the non-universal 
normalized energy dissipation rate [7]2.  
 
Based on the above, this article claims (1) two distinct 
interactions have been identified; (2) a model that 
incorporates both interactions already exists; (3) a refined 
boundary for the inertial range can be located; (4) the 
self-similarity in the inertial range has been demonstrated.  
 

                                                           
1 We will not consider the problems of turbulence combustion where 
small scales are important [3] and other complex flows (such as the 
internal engine, see 2005 Annual Research Brief, Center of Turbulence 
Research, Stanford University [6]) 
2 For discussions on normalized energy dissipation rate, see also 
references [8-10].  
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Finally, a scaling argument to scale the extremely high 
Reynolds number flows to high, but manageable 
Reynolds   
 
number3 in order to fit into the existing supercomputers is 
proposed. 
 
FORMULATION OF A PHYSICAL PROBLEM 

 

Filter classification and their spectral support  

 
The objective of the filters is to separate the large-scales 
as faithfully as possible. Therefore, the filtering 
operation, which divides the flow into the subgrid and 
resolvable scales, should not adversely affect the large-
scale properties.  
 
Zhou et al. [12] pointed out that the resolvable scale 
interactions are affected when the filters with same 
spectral support are utilized. The so called “Type A 
category” filters include familiar Gaussian [13] and 
exponential filters [14]. The subgrid scale field, as well as 
the subgrid stresses, can be directly evaluated from the 
resolvable scale field.  
 
However, in LES implementation, the maximum 
wavenumber is determined by the grid size. For 
wavenumber up the cutoff, kC, all functions, the original, 
resolvable, and subgrid, are known. Nothing is known for 
k > kC. Hence, the resulting subgrid stresses, though 
consistent, are only models of subgrid stress [12]. Similar 
propositions have been advanced [15-17].  
 
No available scheme has been developed to restore the 
contamination caused by the Type A filter. It is therefore 
not appropriate for our purpose. The sharp cutoff filter, 
the “Type B category” which has distinctive spectral 
support, is recommended for LES applications. 
 

Near-grid and distant interactions 

 

Using a sharp cutoff filter, the subgrid of a given problem 
can be subdivided into two distinctive areas. The 
resolvable scale wavenumber is denoted k which satisfies 
a triad k=p+q. The subgrid region for the near-grid 
interactions, where one of the wavenumber is greater and 
the other is less than the cutoff wavenumber, kC, is 

                                                           
3 It is appropriate to compare the proposed method with that for LES 
and unsteady RANS. In LES, the grid-size is typically selected to 
capture about 80% of the energy [3]. As a result,  LES is often restricted 
in dealing with turbulent flows at very high Reynolds numbers. The 
unsteady RANS models, on the other hand, typically rely on turbulence 
closure models to represent the un-resolvable scales (see for example, 
ref. [11]). 
 

denoted as ∆I.  The subgrid region where both 
wavenumbers are greater than kC (the distant interaction 
region), is denoted as ∆II. Detailed studies of subgrid 
models in the energy transfer and momentum equations 
reveal the relationship between the eddy damping, 
backscatter and the Reynolds and cross stresses [18]. 
 
The near-grid and distant interactions plays distinctive 
roles in the energy transfer process [19]. The eddy 
viscosity ν>>(k), resulting from the distant interactions, 
behaves in the same manner as the molecular viscosity. 
Therefore, an eddy viscosity model is acceptable. The 
eddy viscosity ν><(k), resulting from the near-grid 
interactions, is responsible for the cusp-like behaviour of 
the spectral eddy viscosity first identified by Kraichnan 
[20]. See Fig. 1. 
 
To confirm the importance of the near-grid interaction 
dynamics, the subgrid scale model should be accurately 
resolved [21]. A fictitious cutoff wavenumber is 
introduced in a DNS. Again, the results demonstrated that 
the near-grid interactions are critical for faithful 
computation of the large-scale evolutions. 

 
Fig. 1.  Spectral eddy viscosity and the individual contributions 
from both the near-grid and distant interactions (from ref. 19) 

 

Resolvable scale model equation  

 

The first order of business is to derive a resolvable scale 
equation using the method of recursive renormalization 
(r-RG) group theory. This methodology was first 
proposed by Rose [22] for a model problem of passive 
scalar advection and was extended to Navier-Stokes 
equation [23-24]. Starting from the Kolmogorov 
dissipation wavenumber, the inertial range is divided into 
multiple shells, with their length as thin as possible. The 
first resolvable scale equation can be written symbolically 
as (P denotes the projection operator) 
 
∂u< /∂t + ν0 k2   u<  = P [u< u< + 2 u< u>  + u> u> ] .     -- (1) 
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After removing the first subgrid shell, two types of 
subgrid interactions will make their distinctive 
contributions, and hence, they must be considered 
individually. First, the distant interactions will result in an 
enhanced eddy viscosity, ν1 (k). Second, the near-grid 
interaction should be either computed directly, or 
approximated by an expression in the resolvable scale 
field. This process is repeated to remove the remaining 
subgrid scales shells.  
 
The resulting recursion relation for these subgrid distant 
interactions lead to a fixed point-- the eddy viscosity. In 
the suggested model for the resolvable scale equation, the 
near-grid interactions is considered explicitly4   
 
∂u< /∂t + ν(k) k2   u<  = P [u< u< + 2 u< u>  ].            --- (2)  
 
The wavenumber domain for the left hand side of (2) and 
the first term on the right hand side is [0, kC], while that 
for the second term is [0, 2kC]. 
 
PATH FOR RESOLVING A NARROWLY 
DEFINED TURBULENCE PROBLEM 
 
Determination of the grid-size for LES 

 

Now with a model for the resolvable scale Navier-Stokes 
equation in place, it is important to determine the grid 
size, kC, uniformly for any given turbulent flow.  
 
The traditional definition of the inertial range is the 
existence of a scale which is free from the large-scale 
forcing and small-scale viscous dissipation. A more 
precise definition can be introduced, where the upper and 
lower boundaries of the inertial range depend on the 
outer-scale (δ) and Reynolds number [26-28]: 
 
Lower bound:                L ν   ≈ 50 Re -3/4 δ,         --- (3) 
Upper bound:                L L-T ≈   5 Re -1/2 δ.         --- (4) 
 
The well known estimation that Re > 104  (Hinze, [29]), 
(or 100 when the Taylor microscale is used) is needed for 
an inertial range. 
 
The upper bound of the inertial range in this model for 
resolvable scale equation is our grid size, which can be 
chosen as the grid-size in physical space or cutoff 
wavenumber in spectral space. 
 

Selected benchmark flows 

 
                                                           
4 In the analytical treatment [22-24], an approximated solution for the 
subgrid scale velocity field is substituted into the near-grid term in order 
to achieve the closure. Alternatively, many methods are available for  
estimating the velocity field in [kC, 2kC] (for review, see [17] [25]). 

Given the choice of the cutoff wavenumber5, we are now 
in the position to estimate the computational requirement 
in a systematic fashion. The large-scales of two flows can 
be compared based on the same definition.  
The resolution requirement for several benchmark flows 
are given in Table 1. As expected, even in our narrowly 
defined “turbulence problem”, the demand for 
computationally reproducing the large-scales of these 
flows  is beyond the current computational facilities (such 
as the Earth Simulator). 
 
 

Flows  

Re (Rλ) 

kc/kδ

 

2kc/kδ

 

kν/kδ

 

Airplane wing/fuselage [2-3]    
Re~108     (Rλ~25800) 

2,000 4,000 20,000 

Moscow wind tunnel [30]      
(Rλ~3180) 

247 493 865 

Tidal Channel     [31]        
(Rλ~2000) 

155 310 432 

NASA/AMES  
Wind tunnel [32] (Rλ~1450) 

113 226 266 

Earth Simulator [10] 
Re~2.1×105  (Rλ~1201) 

93 186 201 

 

Table 1. Resolution requirements for benchmark flows. (kδ is the 
outer-scale wavenumber.) 
 

 
Fig. 2  The energy transfer function of different grid sides for 
idealized Kolmogorov inertial range wavenumber. Rescaled to 
illustrate the “pipe without leak” analogy (from ref. 35) 

 

Data redundant in the inertial range 

 
How can we compute the large-scale of these benchmark 
flows, or other higher Reynolds numbers found in 
astrophysical or geophysical flows? The answer lies in 
the universality of the inertial range, which we should 
exploit and utilize.  

                                                           
5 The discussion can proceed in both physical and spectral spaces. 
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In the inertial range, the fractional energy flux for a given 
wavenumber scales against the scale disparity parameter 

with a -4/3 scaling law [33-35]6. 
In fact, the universality in the inertial range can be 
demonstrated by computing the triadic energy transfer 
functions (for definition, see, for example, Domaradzki 
and Rogallo [37]). In Zhou [33-34], these triadic 
interactions are selected such that they satisfy the self-
similarity scaling laws of Kraichnan [38].  The 
reconstructed energy transfer function, T(k), based on 
calculations for several grid sizes, has been shown to 
differ only in its range (or extent) in the spectral domain.    
 
With a given energy input, this ideal Kolmogorov inertial 
range is essentially a pipe without leak. The different 
length of the pipe only reflects the different resolutions 
(or in other words, different Reynolds number) of the 
flows.   
 
Based on this understanding, one can rescale these energy 
transfer function (Fig. 2) without affecting the large-scale. 
This is the most clear evidence of data redundancy in the 
inertial range.    
 

Arbitrary Reynolds number flows 

 

What would be the minimum resolution requirement 
(minimum model) for a faithful model calculation of the 
large-scale of a flow? The answer is that the near-grid 
interactions must be in the inertial range. The condition 
for this requirement can be found by demanding that the 
upper wavenumber of the near-grid scale, 2kc, be equal to 
the lower boundary of the inertial range, kν (inner viscous 
scale). The Reynolds number is about 1.6 ×105  when this 
condition is met. The highest wavenumber for the 
calculation is 2kc/kδ ≡ kν/kδ = 160 (and kc/kδ = 80). This 
resolution requirement is achievable (see, for example, 
the Earth Simulator data in Table 1). 
 

 
Fig. 3: Illustration of how an arbitrary high Reynolds number 
flows (in red) can be scaled down to a more manageable one 
(shown in blue), but still capture the physical aspects of the 
large-scale. 

                                                           
6  This -4/3 scaling has been confirmed by Gotoh and Watanabe [36] 

 
For flows with arbitrary high Reynolds number, the 
resolvable scale momentum can be scaled to the minimum 
model. This claim is based on two arguments. First, the 
eddy viscosity, when it only includes the distant 
interactions, can be expressed analytically to account for 
any length scale in the inertial range of a given flow. 
Furthermore, the subgrid velocity fields for computing 
the near-grid interactions are in the inertial range for the 
“minimum model” and the extremely high Reynolds 
number flows. The near-grid interactions in both cases 
consist of the same physical aspects used in the large-
scale computation. See Fig. 3.  
 

 
 

Fig. 4. Another illustration of how an arbitrarily high Reynolds 
number flows  can be scaled down to a manageable one (shown 
in green), but still captures the physics of the large-scale. Based 
on a figure in Dimotakis with added marks in colour. 
 

Fig. 4 provides another way to illustrate this argument 
using the physical length scales variation with the 
Reynolds number. The Reynolds numbers where an 
inertial range first occurs and the “minimum” are marked 
blue and green, respectively. The shaded area represents 
the redundant data of the inertial range.  
 
Since the grid-scale is determined by the outer-scale and 
the Reynolds number of the problem, any high Reynolds 
number flow can be easily scaled down to a very high, 
but computationally achievable Reynolds number flow.  
 
While not necessary, the computed large-scales from the 
“minimum model” could be scaled up,7 if so desired 
during the post-processing operation. 
 

 
 
                                                           
7 Following Ryutov et al. [39] 

4 



 

ACKNOWLEDGMENTS 
 
The author is very grateful to Prof. S. Thangam for his 
critical reading and suggestions. He also thanks Prof. J.A. 
Domaradzki, Dr. W. Cabot, and Dr. R. Rubinstein for 
useful conversations. Work was performed under the 
auspices of the U.S. Department of Energy by the 
University of California, Lawrence Livermore National 
Laboratory under Contract No. W-7405-Eng-48. 
 
BIBLIOGRAPHY 

 
[1] Nelkin, M., “Universality and scaling in fully 
developed turbulence,” Adv. in Phys., Vol. 43, pp. 143-
181, 1994. 
[2] Moin, P., and Kim, J., “Tracking turbulence with 
supercomputers,” Scientific American, Vol. 276, pp. 62-
68, 1997. 
[3] Pope, S.B., “Ten questions concerning the large-eddy 
simulation of turbulent flows,” New J. Phys., Vol. 6, 35, 
pp. 1-24, 2004. 
[4] Zhou, Y., Matthaeus, W.H., and Dmitruk, P., 
“Magnetohydrodynamic turbulence and time scales in 
astrophysical and space plasma,” Rev. Mod. Phys., Vol. 
76, pp. 1015-1035, 2004. 
[5] Jiménez, J., “Computing high-Reynolds-number 
turbulence: will simulation ever replace experiments?” J. 
of Turbulence, Vol. 4, 022, pp.1-14, 2003. 
[6] Annual Research Brief – 2005, Center for Turbulence 
Research, Stanford University and NASA Ames Research 
Center, Stanford, CA  
[7] Burattini, P., Lavole, P., and Antonia, R.A., “On the 
normalized energy dissipation rate,” Phys. Fluids, Vol. 
17, 098103, pp.1-4, 2005. 
[8] Sreenivasan, K.R., “On the scaling of the turbulence 
energy dissipation rate,” Phys. Fluids, Vol. 27, pp.  
1048-1051, 1984; Sreenivasan, K.R., “An update on the 
energy dissipation rate in isotropic turbulence,” Phys. 
Fluids, Vol. 10, pp. 528-529, 1998. 
[9] Pearson, B.R., Krogstad, P.-A., and van de Water, W., 
“Measurements of the turbulent energy dissipation rate,” 
Phys. Fluids, Vol. 14, pp. 1288-1290,  2002. 
[10] Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., 
and Uno, A., “Energy dissipation rate and energy 
spectrum in high resolution direct numerical simulations 
of turbulence in a periodic box,” Phys. Fluids, Vol. 15, 
L21-24, 2003.  
[11] Johansen, S.T., Wu, J., and Shyy, W., “Filter-based 
unsteady RANS computation,” Int. J. Heat and Fluid 
Flow, Vol. 25, pp. 10-21, 2004. 
[12] Zhou, Y., Hossain, M., and Vahala, G., “A critical 
look at the use of filters in large eddy simulation,” Phys. 
Lett. A, Vol. 139, pp. 330-332, 1989. 
[13] Leonard, A., “Energy cascade in large-eddy 
simulations of turbulent fluid flows,” Adv. Geophy. S., 
18A, pp. 237–248, 1974. 

[14] Germano, M., “Differential filters for the large eddy 
simulation of turbulent flows, Phys. Fluids, Vol. 29, pp. 
1755-1757, 1986. 
[15] Langford, J.A., and Moser, R.D., “Optimal LES 
formulations for isotropic turbulence,” J. Fluid Mech., 
Vol. 398, pp. 321-346, 1999. 
[16] Domaradzki, J.A., and Loh, K.-C., “The subgrid-
scale estimation model in the physical space 
representation,” Phys. Fluids, Vol. 11, pp. 2330-2342, 
1999. 
[17] Domaradzki, J.A., and Adams, N.A., “Direct 
modelling of subgrid scales of turbulence in large eddy 
simulations,” J. of Turbulence, Vol.  3, 024, pp. 1-19, 
2002.  
[18] Zhou, Y., “Eddy damping, backscatter, and subgrid 
stresses in subgrid modeling of turbulence, “ Phys. Rev. 
A, Vol. 43, pp 7049-7052, 1991. 
[19] Zhou, Y., and Vahala, G., “Reformulation of 
recursive-renormalization-group based subgrid modeling 
of turbulence,” Phys. Rev. E, Vol. 47, pp. 2503-2519, 
1993. 
[20] Kraichnan, R.H., “Eddy viscosity in two and three 
dimensions,” J. Atmos. Sci., Vol. 33, pp. 1521-1536, 
1976. 
[21] Dubois, T., Jauberteau, F., and  Zhou, Y.,  
“Influences of subgrid scale dynamics on resolvable scale 
statistics in large-eddy simulations,” Physica D, Vol. 
100, pp. 390-406, 1997. 
[22] Rose, H.A., “Eddy diffusivity, eddy noise, and 
subgrid-scale modelling,” J. Fluid Mech., Vol. 81, pp. 
719-734, 1977. 
[23] Zhou, Y., Vahala, G., and Hossain, M., 
“Renormalization-group theory for the eddy viscosity in 
subgrid modeling,” Phys. Rev. A, Vol. 37, pp. 2590-
2598, 1988. 
[24] Zhou, Y., Vahala, G., and Hossain, M., 
“Renormalization eddy viscosity and Kolmogorov’s 
constant in forced Navier-Stokes turbulence,” Phys. Rev. 
A., Vol. 40, pp. 5865-5874, 1989. 
[25] Sagaut, P., Large Eddy Simulation for 
Incompressible Flow (Springer, Berlin, 2004). 
[26] Dimotakis, P.E., “The mixing transition in turbulent 
flows”,  J. Fluid Mech., Vol. 409, pp. 69-98, 2000. 
[27] Zhou, Y., Robey, H.F., and Buckingham, A.C., 
“Onset of turbulence in accelerated high-Reynolds-
number flow,” Phys. Rev. E, Vol. 67, 056305, pp. 1-11,  
2003a. 
[28] Zhou, Y., Remington, B.A., Robey,  H.F., et al., 
“Progress in understanding turbulent mixing induced by 
Rayleigh-Taylor and Richtmyer-Meshkov instability,” 
Phys. Plasma, Vol. 10, pp. 1883-1896, 2003b.  
[29] Hinze, J.O., Turbulence, 2nd Edn, (McGraw-Hill, 
New York, 1975). 
[30] Praskovsky, A.A., Gledzer, E. B., Karyakin, M. Yu., 
and  Zhou, Y., “The sweeping decorrelation hypothesis 
and energy-inertial scale interaction in high Reynolds 
number flows,” J. Fluid Mech., Vol. 248, pp. 493-511, 
1993 

5 



 

[31] Grant, H.L., Stewart, R.W., and  Moilliet, A., 
 “Turbulence spectra from a tidal channel,” J. Fluid 
Mech., Vol. 12, pp. 241-268  (1962) 
[32] Saddoughi S.G., and Veeravalli S.V., “Local 
isotropy in turbulent boundary layers at high Reynolds 
number,” J. Fluid Mech. Vol. 268, pp. 333–372, 1994. 
[33] Zhou, Y., “Degree of locality of energy transfer in 
the inertial range,” Phys. Fluids A, Vol. 5, pp. 1092-
1094, 1993a.  
[34] Zhou, Y., “Interacting scales and energy transfer in 
isotropic turbulence,” Phys. Fluids A, Vol. 5, pp. 2511-
2524, 1993b. 
[35] Zhou, Y., and Speziale, C.G., “Advances in the 
fundamental aspects of turbulence, Energy transfer, 
interacting scales, and self-preservation in isotropic 
decay,” ASME Appl. Mech. Rev, Vol. 51, pp. 267-301, 
1998. 
[36] Gotoh, T., and Watanabe, T., “Statistics of transfer 
fluxes of the kinetic energy and scalar variance,” J. of 
Turbulence, Vol. 6, 33, pp. 1-18, 2005. 
[37] Domaradzki, J.A., and Rogallo, R.S., “Local energy 
transfer and non-local interactions in homogeneous, 
isotropic turbulence,” Phys. Fluids A, Vol.  2, pp.413-
426, 1990. 
[38] Kraichnan, R.H., “Inertial range transfer in two- and 
three-dimensional turbulence,” J. Fluid Mech., Vol. 47, 
pp. 525-535, 1971. 
[39] Ryutov, D., Drake, R.P., Kane, J., Liang, E., 
Remington, B.A.,  and Wood-Vasey, W.M., “Similarity 
criteria for the laboratory simulation of supernova 
hydrodynamics,” The Astrophys. J., Vol. 518, pp. 821-
832, 1999. 

6 


