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Abstract 

A self-contained gas injection system for the Divertor Material Evaluation System 

(DiMES) on DIII-D has been employed for in-situ study of chemical erosion in the 

tokamak divertor environment.  The Porous Plug Injector (PPI) releases methane, a major 

component of molecular influx due to chemical sputtering of graphite, from the tile 

surface into the plasma at a controlled rate through a porous graphite surface.  

Perturbation to local plasma is minimized, while also simulating the immediate 

environment of methane molecules released from a solid graphite surface.  The release 

rate was chosen to be of the same order of magnitude as natural sputtering.   

Photon efficiencies of CH4 for measured local plasma conditions are reported.  

The contribution of chemical versus physical sputtering to the source of C+ at the target is 



assessed through measurement of CII and CD/CH band emissions during release of CH4 

from the PPI, and due to intrinsic emission.   
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Introduction 

Carbon plasma facing components (PFCs) in a tokamak are subject to chemical 

erosion due to sputtering from hydrogenic impact. Although many laboratory-based 

measurements of erosion yields have been carried out, their applicability to the tokamak 

environment is uncertain due to tokamak-specific mechanisms, such as prompt 

redeposition of dissociated hydrocarbon fragments.  A number of methane injection 

experiments have been carried out on various tokamaks with gas injection using nozzles 

or tile gaps. These macroscopic openings can be larger than the mean-free-path for 

deposition of the molecular fragments resulting from the break-up of the hydrocarbon 

molecules due to interaction with plasma electrons and ions. In order to better reproduce 

the immediate environment experienced by a hydrocarbon molecule released by chemical 



sputtering from an essentially continuous carbon surface, a Porous Plug Injector (PPI) has 

been used to inject the hydrocarbon gas in these experiments. Such a spatially distributed 

injection of the gas should also be less disturbing to local plasma conditions than occurs 

with nozzle injection. 

 

Experiment 

The PPI is a self contained gas injection system capable of puffing minute quantities of 

gas into the lower divertor of DIII-D (Fig. 1).  Motivation and design of the PPI are 

discussed in [1].  The PPI was operated in DIII-D for one dedicated run-day and several 

additional times in piggyback experiments.  The dedicated day included exposure to 20 5-

second duration Simple as Possible Plasma (SAPP) [2] L-mode repeat discharges, 15 

with gas puffing from the PPI.  The gas used in the PPI was a 80% / 20% mixture (by 

weight) of CH4 and He.  The latter was employed for in-situ gas flow rate calibration 

through observation of the 6680 Å HeI line whose S/XB-value is known for the expected 

local plasma conditions. 

Each plasma shot included a 3-step sweep of the OSP, each with a minimum 0.5 second 

dwell for diagnostic characterization.  Local plasma conditions at the OSP during PPI 

exposure were found to be well attached, with Te=22+/- 5 eV and ne=2.5+/-0.2 x1019 m-3 

and D
+Γ =5x1022 m-2s-1.  Expected carbon erosion yields at the OSP for these conditions 

are phys
D CY → ~0.015 [3], and chem

D CY → <0.05 [4].  The resulting total carbon atom influx is 

estimated to be ~1x1021 m-2s-1, for a total release rate of ~7x1017 C/s over the surface 

area of the PPI, 7x10-4 m2.  At the design gas flow rate, the PPI will inject methane at a 

rate which equals this total carbon atom flux, ~2 standard cubic centimeters of CH4 per 

minute (sccm), or 0.025 torrL/s. 

,c inΓ



The gas puff rate from the PPI was varied both from shot to shot and within each dwell 

period in order to determine the degree of perturbation that the puff has on local plasma 

conditions, and to identify trends in spectroscopic emission data.   

The main DIII-D diagnostics used for the PPI experiment include a high resolution 

spectrometer (MDS), and the DiMES TV camera, both viewing the PPI almost directly 

from above.  Langmuir probes, tangential cameras, filterscopes, divertor Thomson 

scattering, and an infrared camera were also used for plasma and plasma surface 

characterization. 

 
Observations 

The gas puff rate from the PPI was determined by a combination of ex-situ calibration of 

the driving voltage, in-situ calibration of gas canister pressure during controlled leak 

periods, and comparison of the derived flow rate to HeI emission during plasma 

operation.  While the intention was to operate the PPI primarily with the (low) flow rates 

described above, difficulties were encountered in controlling such low flow rates in a 

thermally variable environment. The flow rate was maintained as originally targeted for a 

single shot, then was increased to 5-15X the targeted rate for 13 additional shots, and 

finally, was increased to 50X the targeted rate for a single shot. The major sources of 

uncertainty, including electrical noise and electrical pickup during ramps of nearby 

magnetic coils, resulted in an estimated error of 25% in the gas puff rates.   

The MDS (spectral resolution λΔ =0.1A, 80 Å bandwidth, 125 ms integration time) [5] 

was set to monitor HeI (6680 Å), CI (9100 Å), CII/C2 (5150 Å), and CD/CH/CII/ Dγ  

(4300 Å) in successive plasma discharges.  Simultaneous wide field (50 x 50 cm) 

coverage was provided by the DiMES TV camera monitoring equivalent emission lines.  



Simultaneous observation by MDS was made of the PPI and of a radially equivalent 

location separated toroidally from DiMES by 25 cm, allowing for an accurate 

background subtraction from emission data at the PPI.  Observations and analysis of CI 

emission are discussed in [6].  A sample spectra from MDS viewing DiMES is shown in 

Fig. 2, demonstrating evolution from a CD-dominated Gëro band (CD bandhead at 4308 

Å), to CH (bandhead at 4313 Å) at the onset of the PPI puff. 

While CD and CI emission were observed not to extend much beyond the circle of the  

PPI head on the divertor floor, CII emission from the puff was found to extend well 

beyond the spatial extent of the PPI, preferentially downstream.  This spatial distribution, 

resulting from frictional drag with the background plasma, was accounted for by 

integration of emission over the background throughout the DiMES TV view, and 

applying a multiplication factor of 2.3 (+/-0.3) to the integrated emissivity within the 

spatial bounds of the PPI alone. 

After removing the PPI, its surface was found to be coated with an amorphous 

hydrocarbon layer of near uniform opacity, indicating that the OSP region had been 

altered from a zone of net erosion [7], to one of net deposition as a consequence of the 

gas puff.  Spatial distribution of the deposit was clearly biased downstream, and slightly 

more intense on the radially outward side.  Based on emission patterns seen by DiMES 

TV, it is estimated that ~90% of the injected carbon was locally deposited on the porous 

cap in a layer ~350 nm thick [8]. 

Substantial C2 dimer emission due to the PPI puff was observed, despite the lack of CxHy, 

x>1 in the injected gas.  This indicates the presence of significant surface interaction 

between injected CH4 molecules [9]. 



Initial examination of the CD/CH spectra produced by the PPI puff found no significant 

increase in CD production as a consequence of CH4 injection and breakup, indicating that 

isotopic exchange between background D (D+, recycled D0, and D deposited in the 

surface) is rare [10]. 

Discussion 

Simultaneous integration of the Gëro CD/CH A X→ band (4270-4315 Å) and CII (4267 

Å) line for both emission from the PPI gas injection and for intrinsic background sources 

provides a direct method for determination of relative contribution to the C+-source by 

chemical and physical sputtering, see Fig. 3.  The measured relationship between 

integrated CII and CD/CH intensity is found to be quite linear for all PPI puff rates, 

evidently an indication that the puff is not perturbative to the local plasma (Fig 3a).  

Because the PPI injects CH4 molecules only, a primary constituent of chemical 

sputtering, spectroscopic emission from the puff may be considered indicative of  pure 

chemical erosion only.  In Fig. 3b, the intrinsic CII and CD emission are shown 

indicating that half of the CII, i.e. C+-source, can be ascribed to chemical sputtering.  As 

already noted, in the first application of the PPI, most of the puffing data in Fig 3a were 

obtained for higher injection rates than planned, and there is paucity of data in the low 

flow region needed to reach more definitive conclusions.  This will be rectified in future 

experiments.  In detached conditions it is clear, however, that the contribution of 

chemical sputtering is very small.   

 

Further potential sources of error in this measurement include an accurate background 

subtraction over the broad CD/CH spectra, full accounting of CII emission due to the puff 



which extends well beyond the PPI head, and a low photon detection threshold on MDS. 

The combined influence of these errors indicates that chemical sputtering contributes 

~30-90% of the C+-source in attached conditions and ~5-15% for detached ones.  In the 

next application of the PPI it is anticipated that it will be possible to significantly reduce 

these uncertainties. 

Contribution to the CD/CH spectrum by D2 as identified by Brezinsek [11] is thought to 

be due to intrinsic sources only [12] and was found to be a minor constituent compared to 

experimental error in measurement of the integrated CD/CH emission.  

 It may be noted that the relative contributions of physical and chemical sputtering to the 

C-atom source entering the plasma has to be assessed separately.  This will require 

carefully matched measurements of the CD and CI emission, which was not attempted in 

the present study, but will be one of the aims of future experiments. 

Knowledge of photon flux specific to the local plasma conditions, , for each 

fragmented species monitored by MDS allows determination of molecular photon 

efficiencies, D/XB, for fragment species due to injection of CH4 at the DIII-D attached 

OSP.  For attached plasma conditions investigated here, these are listed with estimated 

error based on the uncertainties mentioned above: 

( ,e en Tφ )

[ ] 4

,427.0 431.5
/ CH CH

A X nm nm
D XB →

→ −
= 71 +/- 20 

[ ] 4

906 911
/ CH CI

nm
D XB →

−
= 63 +/- 20 

[ ] 4

514.3
/ CH CII

nm
D XB → = 27 +/- 10 

In detachment, D/XB for CH is found to be increased by 2.5 +/- 1.5 times: 

[ ] 4

,427.0 431.5
/ CH CH

A X nm nm
D XB →

→ −
 = 177 +/- 44 

The value of effective D/XB for CH4 has been previously reported in attached divertor 

conditions similar to the present analysis by Poschenreider as ~110 (no distinction 

between CH4 and CD4 is reported) [13], and by Stamp as ~140 +/- 25 (into a hydrogen 



plasma) [14].  The value of effective D/XB for CD4 has been previously reported by 

Stamp as ~80 +/- 25 [14], by Monk as ~50 [15] and by Huber as ~80 +/- 20 [16].  Data 

for CD4 is well summarized by Philipps [17].  Production efficiency for each monitored 

species above may also be derived from knowledge of the rate of molecular injection for 

each shot.  In attached divertor conditions these are: 

4
/CH CHΓ Γ  = 0.23 +/- 0.10 

0 4
/ CHC

Γ Γ  = 0.41 +/- 0.15 

4
/ CHC+Γ Γ  = 0.20 +/- 0.08 

And in detached divertor conditions, production efficiency for CH is found to be much 

reduced: 

4
/CH CHΓ Γ  = 0.011 +/- 0.003 

Modelling of the PPI injection experiment to compare results using available 

hydrocarbon breakup reaction databases is planned with the OEDGE Monte Carlo code 

including DIVIMP-HC which follows transport and breakup of molecular methane [18].   

As discussed above, the existence of significant uncertainty in the data presented here 

prevents at this time definitive conclusions regarding the contribution of chemical 

sputtering as a source of C+-ions entering the plasma.  However, an improved version of 

the PPI is planned and will include a flow restrictor allowing precise flow rate 

determination and a built-in Langmuir probe to monitor possible local plasma 

perturbation caused by the gas puff.  Planned experiments include operation in both 

attached and detached plasma conditions, with CH4, CD4 and heavier hydrocarbon 

injection. 

 

Conclusions 

The DiMES Porous Plug injector has been demonstrated to be a useful diagnostic 

instrument for study of plasma surface interaction phenomena in the DIII-D divertor.  

Data from this first use of the PPI indicate that this diagnostic has the potential of 



providing definitive information on the role of chemical sputtering, as a contributor to C-

atom and C+-ion sources entering the divertor plasma.  From the present data it can only 

be concluded that chemical sputtering contributes ~30-90% of the C+-source in attached 

divertor conditions in DIII-D.  For detached conditions the contribution is much smaller.  

It is expected that reduction of the uncertainty bounds will be achieved with a number of 

improvements to the PPI, now in progress. This work was performed under the auspices of 

the U.S. Department of Energy by UC, LLNL under Contract W-7405-Eng-48.  
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Figure captions 

Fig. 1 a) Cutaway diagram showing the design of the DiMES Porous Plug Injector.   The 

upper portion is the DiMES sample which is topped by the porous cap.  The lower 

section contains the gas canister, flow valve, and electrical control connections.  

The porous cap is shown in b) before and, c), after plasma exposure in DIII-D. 

Fig. 2 Temporal evolution of CD/CH band structure from purely CD before onset of the 

PPI puff, at the puffs initiation, and later in the puff as the gas flow is increased. 

Fig. 3 a) CII vs. CD/CH integrated emission counts for all PPI gas puff data.  Data from 

5 shots with an attached OSP and one with a detached OSP are shown.  Best and 

bounding linear fits are shown for both cases. 

b) CII vs. CD integrated intrinsic carbon source emission counts are shown.  Data 

for each shot are averaged over the full OSP dwell.  Linear fits from a) are plotted 

to show what fraction of CII emission can be accounted for by chemical sources.  

A grey box is shown to indicate bounds for calculation of the source ratio for 

attached divertor conditions with known errors. 
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