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Abstract. Measurements in DIII-D show that the carbon chemical sputtering sources along 

the inner divertor and center post are toroidally periodic and highest at the upstream tile edge. 

Imaging with a tangentially viewing camera and visible spectroscopy were used to monitor 

the emission from molecular hydrocarbons (CH/CD) at 430.8 nm and deuterium neutrals in 

attached and partially detached divertors of low-confinement mode plasmas. In contrast to the 

toroidally periodic CD distribution, emission from deuterium neutrals was observed to be 

toroidally symmetric along the inner strike zone. The toroidal distribution of the measured 

tile surface temperature in the inner divertor correlates with that of the CD emission, 

suggesting larger parallel particle and heat fluxes to the upstream tile edge, either due to 

toroidal tile gaps or height steps between adjacent tiles. 

JNM keywords: Carbon – C0100, Experimental techniques – E0500, Plasma-material 

interaction – P0500 
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I. Introduction 

Chemical sputtering of carbon by deuterium neutrals and ions is a critical issue in future 

long-pulse fusion devices with carbon plasma-facing components (PFCs), because of plasma 

contamination with carbon and tritium retention in the PFCs. Previously, a systematic study 

of the evolution of hydrocarbons released from the divertor in DIII-D [1], using carbon-

deuteride (CD) emission spectroscopy [2] at the tile center, suggested a four-fold reduction of 

the chemical sputtering yield, Ychem , over 105 seconds of plasma operations, and >30 

boronizations. Recently, imaging of visible CD and thermal infrared (IR) emission in DIII-D 

showed that these emissions vary toroidally across the tiles in the lower divertor, with 

maxima at tile edges. These results initially suggested that the spatial temperature distribution 

is the primary cause of the spatially varying chemical sputtering sources, since Ychem  is a 

function of substrate surface temperature, typically increasing by a factor of 2 over the range 

from 20°C to 100°C [3]. Measurements in attached and partially detached divertor plasmas of 

well-diagnosed, low-confinement (L-mode) discharges in DIII-D indicated, however, that 

larger particle fluxes to tile edges give rise to enhanced recycling, and thus stronger chemical 

erosion of those surfaces. In this paper these experimental results are described and 

interpreted with the aid of other optical and plasma diagnostics. 

II. Imaging and Visible CD Spectroscopy in DIII-D Low-Density L-mode 

Plasmas 

A.  Description of the experiments and diagnostics 

The spatial intensity distributions of deuterium and carbon line emission, and molecular 

hydrocarbon emission in the lower DIII-D divertor were characterized in low-density 

( n nGW ~ 0.25), lower single-null L-mode discharges. They were carried out at a plasma 
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current ( Ip) of 1.1 MA with the toroidal field (BT ) of 2 T in forward and reversed directions, 

corresponding to the ion B B  drift into and out of the divertor, respectively. Neutral beam 

blips of 10 ms duration were injected every 100 ms to facilitate charge-exchange 

spectroscopy measurements of the fully stripped carbon density at the outer midplane, while 

simultaneously keeping the plasma in L-mode. In both BT  configurations Thomson 

scattering measurements yielded the electron density ( ne) and temperature (Te ) at the 

upstream separatrix of ~8 1018  m-3 and 40 eV, respectively. These upstream conditions 

produced a low-recycling plasma in the outer divertor leg, with Te  of 20 eV at the separatrix 

of the outer target plate, independent of BT  as measured with Langmuir probes. At the inner 

divertor reversing BT  did change the plasma conditions from partially detached in forward 

BT  to attached in reversed BT , with Te,sep  rising from <5 eV in forward BT  to 15 eV in 

reversed BT  configuration. A similar change in the inner divertor conditions was reported 

from a number of experiments [4-6], including DIII-D [7], and is generally attributed to the 

change of the E B drift direction in the private flux region. The change in the inner divertor 

conditions was also measured by toroidally viewing cameras, which showed for the forward 

BT  case an increase in the D  recycling flux by a factor of 2, and a shift of the carbon 

emission (CII 514.7 nm) away from the target plate. 

The spatial distributions of the CD and D  emissions in the lower divertor were measured 

with an intensified charge-injection device (CID) camera in a tangential viewing geometry 

[8]. This camera provides a toroidal field-of-view of ~70 deg along the inner and outer 

divertor [Fig. 1(a)]; it uses narrow band-pass filters of 1.0 nm and 3.0 nm to isolate the CD 

A2 X 2  electronic resonance band at 430.8 nm and D , respectively. The spatial 

resolution of the imaging system is a function of the toroidal angle. At the plane-of-tangency 

with the center post it is approximately 0.5 cm. The camera measurements were 
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complemented by two visible spectrometers with a vertical viewing geometry of the lower 

divertor region. The multi-chord divertor spectrometer MDS is a high-resolution instrument 

(resolution 0.01 nm) and has a sensitivity of 1011 ph/s/sr/cm2/nm. The Reticon system is a 

medium-resolution (0.1 nm) spectrometer; it uses an intensified detector, and has a single 

line-of-sight of the outer divertor region. Consistency checks between the camera and 

spectrometer intensity calibrations were performed using methane injection through a porous 

plug injector [9]. 

B.  Toroidal profiles in forward and reversed BT  configurations 

The CD emission profiles obtained along the 45 deg tiles of the inner divertor [Fig. 1(a)] 

are toroidally periodic and show maxima at the upstream surface of each tile [Fig. 1(b) and 

1(c)]. Toroidal emission profiles were measured for given radial locations on the 45 deg tiles 

[Fig. 2(a) and (b)], which show that the CD emission peaks near the edge of the adjacent tile 

downstream of the tile gap. Within the limited spatial resolution of the camera system, it is 

impossible to distinguish weather the peak of the emission is right at the edge of the tile or on 

the tile surface. Further uncertainty was introduced by the alignment of the images with the 

DIII-D vacuum vessel, which was obtained from images taken during abnormal plasma 

events, such as large disruptions, when the vessel was illuminated. Less variation of the CD 

emission was generally observed along the outer strike zone, due to the more shallow 

viewing geometry for this part of the vessel. However, with the outer strike on ports, or close 

to the lower outer baffle, significantly stronger CD emission was observed from port edges 

and the face of the baffle. A CMOS-type camera vertically viewing only the outer strike point 

region corroborates these results. Using this camera we observed enhanced CD emission 

around radial tile gaps, with nearly constant emission elsewhere across the tile surface. 
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For the same plasmas toroidally symmetric D  emission was observed along the inner 

strike zone in forward and reversed BT  configuration, while toroidally periodic D  profiles 

similar to those of CD were seen along the 45 deg tiles in reversed BT  configuration (Fig. 2). 

The D  and D  emission profiles were consistently toroidally symmetric along the inner 

strike zone, however, the partially detached plasma conditions in the inner divertor lead to 2-

3 fold stronger neutral deuterium emission in forward BT  than in reversed BT  configuration. 

Spectral contamination is an issue when measuring neighboring lines or bands with 

insufficiently narrow band-pass filters, or if one neighboring spectral region is significantly 

brighter than the one of interest. This could affect the CD emission measured in forward BT  

discharges, since the D  emission along the inner divertor is an order of magnitude stronger 

than CD, as well as the D  line emission measured radially inboard of the inner strike point 

at the 45 deg tiles in reversed BT . 

Using the MDS spectrometer, the CH/CD band was well observed at the outer strike zone 

when methane was puffed through the porous plug, and barely above background in 

discharges without CH4  injection. One view chord of the MDS system was aligned with the 

porous plug head, while others viewed the inner strike zone, the private flux region, and the 

outer baffle region. The MDS view chords are 2 cm in diameter, centered on each tile 

viewed. In comparison, the average dimensions of tiles along the floor and 45 deg tiles are 

16.5 cm x 14.5 cm (toroidal x radial). The spectroscopic brightness at the D  line convolved 

with the camera D  filter transmission curve is consistent with the photometric 

measurements from the camera within the uncertainty of both measurements. The more 

sensitive Reticon system, on the other hand, detected the CH/CD band head at the outer strike 

point region during the methane puff as well as without the injection. In discharges without 

CH4  puffing the filter-weighted brightness of the CD band observed with the Reticon system 
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is approximately a factor 5 lower than measured with the cameras. The spectral range of the 

Reticon system, however, was insufficient to span the full CD A2 X 2  resonance band, 

explaining some of the discrepancy between spectrometer and camera measurements. Given 

the uncertainties due to differences in viewing geometry and limited spectrometer sensitivity, 

we estimated for the camera measurements a maximum spectral contamination of D  on CD 

of the order 10%. If the D  contribution were to be subtracted from the CD emission, this 

would yield even stronger peaking of the CD emission at the upstream tile surface along the 

inner divertor in forward BT  [Fig. 2(a)]. Conversely, it is conceivable that the measured D  

emission at the 45 deg tiles in reversed BT  was mostly caused by cross-talk from the CD 

band because of the 3.0 nm band-pass filter used. A sufficiently sensitive spectrometer 

viewing the tile center and tile gap regions is necessary to conclusively resolve the issue of 

spectral contamination. 

The surface temperature distribution measured with a vertically viewing IR camera [10] 

was found to be toroidally periodic along the inner divertor, in forward and reversed BT  

configurations. The IR camera measures the thermal emission from the tiles over a 

wavelength range of 8-12 μm, thus avoiding spectral contamination with deuterium 

molecular bands at 2-3 μm [11]. In Ohmic and L-mode plasmas the measured surface 

temperatures (Tsurf ) are generally low, between 20°C and 40°C, varying from tile to tile as 

well as across individual tiles. As shown in Fig. 3, in these experiments Tsurf  peaks toroidally 

at the upstream surface of each tile, and decreases by ~3°C toward the downstream edge. 

III. Discussion 

CD and IR imaging of the inner divertor region in DIII-D indicated that the plasma-

surface interaction is strongest at the upstream edge of the tile surfaces independent of the 

toroidal field direction. Visible inspection of the graphite tiles during shutdown periods 
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showed that tile edges are much more eroded than the tile centers; they are literally rounded 

off. Field lines typically graze the divertor tiles with an angle of 2-3 deg. Tile-to-tile gaps and 

tile misalignment can lead to nearly-normal incidence of the field lines onto the upstream 

side wall of tiles, and thus the particle and heat fluxes to a small area of the side wall can be 

20-30 times higher than to the plasma-facing flat surface. Flat tiles installed on circular 

(center post) or conical (inner divertor 45 deg) surfaces lead to shadowing of the upstream 

edge of the adjacent tile that is in the BT  direction [12]. In such a situation one would expect 

stronger fluxes to the downstream tile surface, which is not seen experimentally. Slight tile 

misalignment and larger tile gaps along these surfaces can offset the effect of heat flux 

shadowing, and thus provide more heat to the upstream edge of some tiles. Since the ion 

Larmor radius is sub-millimeter for the magnetic fields in DIII-D, and typical SOL ion 

energies (Ti =  10-30 eV), gyro-orbit effects are negligible. 

Toroidal variations of the plasma conditions can produce different surface films on the 

plasma-facing tile surfaces, tile edges, and tile side walls, which may contribute to the 

measured CD emission profiles. For a given temperature in the range observed in this study, 

Ychem  can vary by a factor of 5 between hard and soft amorphous carbon films [3]. Very little 

is known experimentally about these films, in particular in tile gaps, in the discharges 

described here, and detailed modeling of the dynamics of erosion, deposition, and re-erosion 

at gaps and tile edges is needed [13].  

During the 2005-2006 DIII-D shutdown, the lower inner divertor (45 deg tiles) and the 

lowest three rows of the center post of flat tiles were replaced with contoured tiles to improve 

the toroidal uniformity of the target heat flux. Field line tracing showed that contouring of 

these tiles will lead to a two-fold reduction of the peak heat load to the downstream end of 

tiles [12]. In addition, the reduction of the averaged gap size by a factor of 2 to approximately 

1 mm, and leveling of the tiles to a fraction of 1 mm [14] will significantly contribute to 
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producing toroidally more uniform fluxes to the target plate. The installation of virgin 

graphite (ATJ graphite) tiles provides a unique opportunity to monitor the long-term 

evolution of the hydrocarbon emission with diagnostics previously unavailable. 

IV. Summary 

Spatial distribution profiles of molecular CD and thermal IR emissions measured in DIII-

D with cameras indicate that the carbon chemical sputtering sources in the lower divertor is 

not axisymmetric, but concentrated near tile edges. Toroidally periodic emission profiles 

were obtained in lower single-null L-mode discharges along the inner (45 deg) divertor tiles, 

with the maximum emission measured near the upstream tile edge in forward and reversed 

toroidal field configurations. The temperature variation across tiles in the toroidal direction is 

small, at most 3°C, thus the increase in the chemical sputtering source is likely to be due to 

increased particle fluxes to tile edges rather than a tile temperature effect. The toroidally 

periodic distribution of CD emission concentrated near tile edge along the 45 deg divertor 

tiles is consistent with low/negligible CD intensities measured by the MDS spectrometer 

viewing the tile centers. If spectral contamination of D  line emission on the CD 

measurement is significant, visible spectroscopy viewing the tile center only may 

underestimate the peak-to-valley CD band emission ratio by as much as an order of 

magnitude. Toroidally asymmetric CD emission profiles were also observed in partially 

detached, high-confinement (H-mode) discharges, and appear to correlate with the recycling 

flux distribution as measured by D  emission during ELMs. 
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Figure captions 

Fig. 1. Approximate viewing geometry of the DIII-D lower divertor tangential camera (a), 

and spatial distribution profiles of the CD emission in (b) forward and (c) reversed BT  

configuration. The inserts give a magnified view of the inner divertor (45 deg tiles) region. 

The green grid lines illustrate the locations of tile gaps.  

Fig. 2. Toroidal CD and D  emission profile along the inner divertor (45 deg tiles) obtained 

in forward (a) and reversed (b) BT  configuration. In forward BT  the profile was taken at 

radial location R = 1.03 m, in reversed BT  at R = 1.14 m, leading to slightly different 

locations of the tile gaps (vertical lines) on the (X,Y) image grid. The inserts show the 

alignment of the (total) magnetic field vector, B, with respect to the tile surface. 

Fig. 3. Toroidal emission profiles along the inner divertor (45 deg tiles) measured in forward 

(a) and reversed (b) BT  configuration. The radial profiles were taken at radial location R = 

1.14 m. The vertical lines indicate tile gaps along the inner divertor. 
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