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We outline a method to study the spatial and orientation statistics of dy-

namical dislocation systems by modeling the dislocations as a stochastic

fiber process. Statistical measures have been introduced for the density,

velocity, and flux of dislocations, and the connection between these mea-

sures and the dislocation state and plastic distortion rate in the crystal

is explained. A dislocation dynamics simulation model has been used to

extract numerical data to study the evolution of these statistical mea-

sures numerically in a body-centered cubic crystal under deformation.

The orientation distribution of the dislocation density, velocity and dis-

location flux, as well as the dislocation correlations have been computed.

The importance of the statistical measures introduced here in building

continuum models of dislocation systems is highlighted.

1. Introduction

The plastic distortion of crystals proceeds by crystallographic slip, which is carried

by glide of crystal dislocations under the influence of applied load. The process

of crystallographic slip enters the crystal plasticity theory through the continuum

kinematics and constitutive laws; a set of shear strain rates defined for the individual

slip systems are superposed to give the rate of plastic distortion of the crystal, and

these strain rates are determined in terms of the local resolved shear stress on the

1Corresponding author. Email: anter@eng.fsu.edu
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respective crystallographic slip planes [1, 2]. At the mesoscale, however, the plastic

distortion of crystals is highly heterogeneous, an important feature that cannot be

captured by the crystal plasticity theory. Attempts to formulate a crystal plasticity

theory based upon direct modeling of dislocations led to the development of the

classical theory of dislocation fields [3, 4]. In this theory, dislocations are modeled by

a density tensor α, which, in the case of infinitesimal distortion, is defined by

α = curlβp, (1)

where βp is the plastic distortion. The sum of βp and its elastic counterpart βe gives

the continuum displacement gradient. By definition, the dislocation density tensor is

divergence free and its evolution is described by the rate form of equation (1) [5]. In

terms of crystal dislocations, the density tensor is represented by

α =
N3
n=1

8
4π

=(n)(m)
D
m⊗ b(n)

i
dΩ(m), (2)

in which N is the number of slip systems in the crystal, b(n) and =(n)(m) are the

Burgers vector and scalar density of dislocations with unit tangentm on the nth slip

system, respectively, and dΩ(m) is a differential solid angle element in the direction

m. The classical theory of dislocation fields needs a closure constitutive law connect-

ing the rate of plastic distortion β̇
p
with the local resolved shear stress. The task of

developing this constitutive law, however, proved to be difficult because the represen-

tation of the evolution of the dislocation field by the dislocation density tensor alone

is inadequate.

The invention of the dislocation dynamics simulation method about two decades

ago to model the collective behavior of dislocations and mesoscale plasticity represents

a turning point in the field — relevant 3D models can be found in [6, 7, 8]. The method

represents the dislocation lines in a discrete fashion by dividing these lines into a finite

number of connected segments the end or middle points of which are assigned velocity

values that depend on the local stress at these points. The velocity is then used to

update the position of the nodes or segments, thus updating the entire dislocation
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configuration. The rate of plastic distortion is computed using Orowan’s formula,

β̇
p
(x, t) =

N3
n=1

8
l(n)(t)

δ(x− xI)(dxI × v(xI, t))⊗ b(n), (3)

in which l(n)(t) is union of all dislocation lines on nth slip system, δ(x− xI) is the 3D
dirac-delta distribution, and v is the dislocation velocity. Equation (3) thus shows

that β̇
p
is non-trivial only along the line indicating its statistical character, which is a

consequence of the statistical line distribution. Having its long range part determined

by the system of dislocation lines, the stress field is also a statistical field. Ensemble

averaging or running volume averaging process can be used to extract continuous

approximations of these fields. Thus the method of dislocation dynamics simulation

is a statistical method.

The use of statistical mechanics concepts to describe the collective behavior of

dislocations was first suggested by Kröner who argued that the dislocation state of

a deformed body represents its internal mechanical state and that the incomplete

information about the dislocation state permits only probabilistic predictions [9, 10].

Lately, a statistical framework along the lines of the classical kinetic theory has been

developed to model the collective behavior of 3D dislocation systems [11]; see also

[12, 13]. In this framework, the dynamical dislocation system comprises a set of

families of planar curves, one family per slip system, each of which is represented

by a dislocation phase density ψ(α)(x,v, θ, t) in a 7D phase space that consists of

the real crystal space, the velocity space and the orientation space represented by an

angle θ describing the dislocation orientation in its slip plane. This kinetic approach

thus differentiates between the dislocation segments based on their line orientation,

which is required to avoid the difficulties that arise in connecting the dislocation

density evolution measure, such as the rate of plastic distortion (or dislocation flux

tensor), with the local stress state in the classical theory of dislocation fields. In

order to develop a complete theory based on this representation of the dislocation

system, four types of dislocation statistics must be modeled: spatial statistics, velocity

statistics, orientation statistics, and temporal statistics. These types of statistics have

been pointed out in Ref. [14], where the connection between the above phase density
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representation of dislocations and the concept of a stochastic fiber process was also

highlighted.

This paper builds upon the statistical approach presented in Refs. [11, 14]. A

mathematical description of the spatial and orientation statistics of evolving disloca-

tion systems is introduced in section 2 based on the concept of stochastic fiber process

[15]. Statistical measures are given for the dislocation density, dislocation correlations,

velocity and the dislocation flux. The connection between statistical measures of the

velocity and flux) and the strain rate in deforming crystal is explained. Section 3

contains numerical simulations of the above statistical measures that were conducted

using the ParaDis dislocation dynamics code [16]. A discussion of the important find-

ings of this study and the relevance of the study to the development of a continuum

theory of dislocations is given in section 4.

2. Theoretical foundation

2.1. Dislocations as spatial curves

During plastic distortion under a general loading, dislocations of all Burgers vectors

increase in density. Because of the strong long-range interactions, cross slip and the

reactions at short range, the evolution of the density in the crystal is heterogeneous.

The dislocation dynamics simulation methods, part of the numerical tools used in this

work, can reveal the nature of the heterogeneity of the dislocation density evolution.

Figure 1 shows a typical dislocation density distribution in a body-centered cubic

crystal loaded in tension to a strain of 0.018 at elevated temperature. The crystal

has a shear modulus of 130 GPa and a poisson’s ratio of 0.31; see the ParaDis model

details in section 3.1.

Add figure 1 here.

If dislocation motion is restricted to glide in the slip planes, then the dislocation

system consists of a set of planar curves. This kind of motion is termed conser-

vative. On the other hand, if the dislocation motion has both glide and non-glide



Philosophical Magazine 5

Figure 1: Snapshot of the dislocation distribution in Nb crystal loaded in the [100] direction

at constant strain rate of 1 s−1 (strain = 0.018).
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components, that is, dislocations are permitted to move off their glide planes, then

the dislocation system consists of a set of spatial (3D) curves. The latter motion is

termed nonconservative. Irrespective of the type of motion, when the glide planes

undergo nonuniform finite lattice rotation, the dislocation lines are no longer planar.

For a given Burgers vector, the dislocation system includes dislocation lines on more

than one cross slip plane, and thus consists of spatial curves.

2.2. Stochastic fiber process

The definition of stochastic fiber process introduced here is adopted from Ref. [15].

The set theory terminology required to understand this section are compiled in the

appendix.

A spatial fiber is a smooth simple curve of finite length, which is a subset of R3.

It is the image of a curve l spanned by a parameterized position vector x(τ) ∈ R3

that is continuously differentiable, where τ ∈ [0, 1]. The mapping x(τ) is one-to-one
so that a fiber does not intersect itself. The length measure l of a fiber is

l(B) =

8 1

0

1B(l(τ))

eeeedxdτ
eeee dτ (4)

where 1B(l(τ)) is the indicator function defined, on a Borel set B, to be unity on l

and zero otherwise. A fiber system L is a closed subset of R3, which is the union

of countably many fibers l(i) with the property that a compact set is intersected by

only a finite number of the fibers. Distinct fibers within a fiber system has only end

points in common. This definition thus permits a system of networked dislocations

to be modeled as a fiber system. The length measure of a fiber system is defined by

L(B) =
3
l(i)∈L

l(i)(B). (5)

Obviously, the representation of L as a union of (locally finite) fibers is not unique

but all of the statistically relevant measures are not affected by such non-uniqueness.

The family of all fiber systems is denoted by F and it is endowed with a σ-algebra

F generated by sets of the form {L ∈ F : L(B) < q} for a Borel set B and some
real number q. A fiber process is a random variable Φ with values in [F,F ], that
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is, Φ is a random choice of one of the fiber systems in F. The distribution P of the

fiber process is the probability measure generated on [F,F ] by Φ. A stationary fiber
process is invariant with respect to translation and an isotropic process is invariant

with respect to rotation. The intensity measure Λ(B) is the expectation value E of

the random length measure Φ(B), that is

Λ(B) = E(Φ(B)) = E

⎛⎝3
l(i)∈L

l(i)(B)

⎞⎠ , (6)

which is interpreted as the mean value of L over the family of fiber systems F. We

note that the family of fiber systems F plays the role of a statistical ensemble, having

the restriction that the length measure L of the fiber system members of F is bounded.

For a stationary random process, the invariance with respect to translation implies

that

Λ(B) = Iν(B) (7)

where I is the intensity of the fiber process and ν(B) is the Lebesgue measure of

B. In the context of crystal dislocations, I is interpreted as the mean dislocation

length per unit volume in R3 and ν(B) defines the volume over which dislocations are

distributed.

Consideration of the tangent of the fibers leads to the definition of the rose of

directions of the fiber process Φ, which is a measure on the set T of all directions

passing through the origin. Let t ∈ T and T be the σ-algebra over T which are the

unions of lines through the origin. For a stationary fiber process, the rose of directions

R is defined by

Iv(B)R(A) = E
w8

B

1(t(x) ∈ A)(x)Φ(dx)
W

for A ∈ T , (8)

where t(x) is the tangent to the fiber at x. In Ref. [15], the set T contains orientations

in the upper half sphere of orientations (polar angle φ ∈ [0, π/2] and azimuth θ ∈
[0, 2π)), thus no distinction is made between an orientation and its opposite. In

the case of dislocations, however, the elastic field of the dislocations and processes

such as the dislocation climb and cross slip depend on the line direction. Hence,
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two dislocation segments of opposite line directions are not equivalent and, therefore,

the entire sphere of orientations (φ ∈ [0,π] and θ ∈ [0, 2π)) must be considered
in computing the rose of directions. Another important point to mention here is

that, in the case of infinitesimal deformations, the dislocation lines are planar curves

distributed in 3D space. The intensity is thus interpreted as the average line length

per unit volume and the Lebesgue measure is the volume of the crystal space within

which dislocations are distributed. The concept of planar fiber process, however,

deals with systems of planar curves distributed in a plane, where the intensity is the

average length per unit area and the Lebesgue measure is the area of the domain over

which the curves are distributed.

2.3. A simple illustration

The above definitions are illustrated here by a simple example. Consider a system

of dislocation lines L with members l(i) ∈ L. Let these lines be contained in a 3D
crystal space B that has the form of a cube with side h. The Lebesgue measure of B

is the volume of the cube ν = h3. Assume that there is only one system of dislocation

lines in the family F. Let each of these lines be parameterized by the scalar distance

f along the dislocation line. The length measure of a single line and of the system of

dislocations are

l(B) =

8
L

df and L(B) =
3
l(i)∈L

8
l(i)
df. (9)

The intensity measure Λ(B) in this case is equal to L(B) because the expectation

value is computed over one system, the given system L. The intensity is then given

by I = Λ(B)/ν = L(B)/h3. The rose of directions is give by

R(l) =
�

l(i)∈L
$
l(i)
1(t(f) ∈ ∆Ω(l))df

∆Ω
�

l(i)∈L
$
l(i)
df

, (10)

where ∆Ω(l) is a small solid angle element at orientation l having the same value for

all orientations, and t is the line tangent.

Now consider a dislocation loop system L = {loops of radii r(i); i = 1, 2, ..., n}
residing on slip planes with normal along the x3 direction in a 3D crystal space
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B that has the form of a cube with side h. Let the line orientation for all loops

be counter clockwise in the x1x2-plane. All unit vectors passing through the origin

have the components (sinφ cos θ, sinφ sin θ and cosφ) along the x1, x2 and x3-axes,

respectively, where φ and θ are the usual spherical coordinates, with φ being the

angle between the unit vector and the x3-axis. The dislocation line length of a loop

l(i) is 2πr(i) and L =
�n

i=1 2πr
(i). Consider an orientation in the x1x2-plane that is

determined by φ = π/2 and some angle θ. A solid angle element ∆Ω = sinφ∆φ∆θ

around that orientation reduces to ∆φ∆θ since sinφ = 1. Because the loops lie in

the x1x2-plane, all segments with orientation within ∆Ω are localized at φ = π/2 and

their density is proportional to ∆φ. On each loop thus the line length of interest is

δ(φ− π/2)∆φ r(i)∆ϑ, where ϑ = θ − π/2 is the polar angle in the plane of the loops

measured counterclockwise relative to the x1-axis. Implementing equation (10) for

the rose of orientation leads to

R(φ, θ) = δ(φ− π/2)∆φ
�n

i=1 r
(i)∆θ

∆φ∆θ
�n

i=1 2πr
(i)

= δ(φ− π/2)
1

2π
. (11)

This is an example of anisotropic distribution, although it is isotropic with respect to

θ. It is easy to show that 8 π

0

dφ

8 2π

0

dθ sinφR(φ, θ) = 1. (12)

If the loops are of irregular shapes but still lie in the x1x2-plane, the rose of orientation

will have the form R(φ, θ) = δ(φ− π/2)f(θ)/2π.

2.4. Dislocation correlations

The expectation value E(Φ(B)) of the fiber process defines the measure Λ(B) as a

first moment of the random variable Φ(B). According to [15] higher order moments

can also be defined. Of particular interest is the second order moment

µ(2) = E(Φ(B1)Φ(B2)) (13)

which can be used to define the pair correlation functions in fiber processes. Disre-

garding the line orientation and assuming a stationary and isotropic fiber process,
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a pair correlation function of dislocations g(∆r) given only in terms of the scalar

separation distance ∆r has been defined by

E (L(B1)L(B2)) = �L(B1)L(B2)X = g(∆r) �L(B1)X �L(B2)X = I2 ν(B1)ν(B2) (14)

for a pair of small regions B1 and B2 separated by distance ∆r, where < · > refers

to the ensemble average of the enclosed quantity. According to Ref. [17] the above

definition of the correlation function cannot completely solve the problem of geometric

description of the dislocation system.

Consideration of the line orientation in evaluating the dislocation correlations is an

important part of the 3D kinetic theory of dislocation [14]. In this theory, evolution

of the dislocation system is described by a coupled set of kinetic equations of the form

(∂/∂t+ v ·∇+ < v̇ > ·∇v)
a
ψ(n)
@
=
a
S(n)
@
−
a
δv̇ ·∇vδψ(n)

@
; n = 1, 2, ..., N (15)

where ψ(n)(x,v, l, t) is the phase density of dislocations on the nth slip system, and

δv̇ and δψ(n) are deviations of the acceleration and phase density from their ensemble

averages, respectively. The right hand side of (15) contains the dislocation correla-

tions, both in the first (source) and second (collision) terms. The source terms consist

of the cross slip and dislocation reaction terms. Ensemble averaging of the cross slip

terms does not give rise to correlations, but averaging of the reaction terms do [14].

Specifically, the treatment of the latter terms give rise to quantities of the forma
ψ(n)ψ(m)

@
=
a
ψ(n)
@ a
ψ(m)
@ J
1 + ζ(nm)

o
. (16)

where ζ(nm) = ζ(nm)((x,v, l)n, (x,v, l)m, t) is the correlation function for dislocations

on the nth and mth slip systems. The importance of these correlations is explained in

detail elsewhere [14]. In a general construction of the phase space, the correlations

are thus functions over 16D space. By integrating over the velocity part of the phase

space, equation (15) reduces to

∂
a
=(n)
@

∂t
+∇ ·

D
v
a
=(n)
@i
=
a
S(n)
@
; n = 1, 2, ..., N (17)

where v is the mean velocity field. The right hand side now contains terms of the

form a
=(n)=(m)

@
=
a
=(n)
@ a
=(m)
@ J
1 + ζ(nm)

o
=
a
=(n)
@ a
=(m)
@
g(nm), (18)
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in which ζ(nm) = ζ(nm)((x, l)n, (x, l)m, t), which are now functions over 10D space.

We note here that the unit vector l in 3D is defined by two angles φ and θ.

In principle, the correlation function defined by equation (18) can be computed

using a dislocation dynamics simulation model, for example, the ParaDis code (see

section 3.1), but it will be difficult to interpret or visualize the results. For this rea-

son, the correlations are computed in terms of the radial distance ∆r = |xn − xm|
and the two angular differences ∆φ = |φn − φm| and ∆θ = |θn − θm| in the current
investigation. This amounts to the assumption that the dislocation distribution is

statistically homogenous, which is motivated by the use of periodic boundary con-

ditions in the ParaDis model used to conduct the simulations. As shown later, the

function g(αβ)(∆r,∆φ,∆θ), rather than ζ(αβ)(∆r,∆φ,∆θ), will be computed.

It is possible to model the entire dislocation system by a single stochastic fiber

process. However, the distinction between the dislocations on various slip systems

must be maintained in order to understand the slip system interactions. This does not

constitute a difficulty since it is possible to model the entire dislocation system using

a set of stochastic fiber processes, one per slip system, with corresponding random

variables Φ(n); n = 1, 2, ..., N , such that

E
D
Φ(n)
i
= Λ(n) =

a
=(n)
@
ν. (19)

In the above equation
a
=(n)
@
plays the role of the intensity of the stochastic fiber

process, and ν is the crystal volume.

2.4. Dislocation velocity and flux statistics

In addition to the spatial and orientation statistics discussed above, it is important to

understand the velocity and dislocation flux statistics since they are directly related

to the plastic strain rate parts carried by dislocation families of various orientations.

There is, however, a number of ways to study these statistics. Consider again a

system of dislocation lines L = ∪Nn=1L(n), where N is the number if slip systems, with

members l(i) ∈ L, each of which being parameterized by the length f and contained in
a 3D crystal space B. The simplest possible representation of the velocity statistics
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is given by the set of functions f (n)(v) = f (n)(|v|) defined by

f (n)(v) =

�
l(i)∈L(n)

$
l(i)
1(|v(f)| ∈ ∆v(v))df

∆v
�

l(i)∈L(n)
$
l(i)
df

, (20)

where ∆v(v) is a finite but arbitrarily small interval about speed v. The velocity

spectrum for the entire crystal is defined by

f(v) =
1

N

N3
n=1

f (n)(v). (21)

The function f(v) has the meaning that If(v)dv is the total dislocation length in the

entire crystal having velocity within the range dv about v, with I being the intensity

or the total dislocation length in the crystal.

In order to take into consideration the orientation of the velocity, we define two

types of rose of orientations. The first is associated with the velocity, denoted R(n)
v (l),

and is defined as follows:

R(n)
v (l) =

�
l(i)∈L(n)

$
l(i)
1(η(f) ∈ ∆Ω(l))df

∆Ω
�

l(i)∈L(n)
$
l(i)
df

, for n = 1, 2, ..., N, (22)

in which η = v/v is a unit vector in the direction of the dislocation velocity. R(n)
v (l)

is thus defined such that I(n)R(n)
v (l)dΩ(l) is the total dislocation length with velocity

direction contained in the differential solid angle element dΩ(l) on the nth slip system.

In the special case of conservative motion where dislocations are restricted to glide

in their well-defined slip planes, the velocity roses of directions of the individual slip

systems can be obtained from the (density) rose of directions by a π/2 rotation about

their respective slip plane normals.

The second rose of orientations is denoted by R(n)
F (l). It is associated with the

dislocation flux and defined by

R(n)
F (l) =

�
l(i)∈L(n)

$
l(i)
1(η(f) ∈ ∆Ω(l))|v|df

∆Ω
�

l(i)∈L(n)
$
l(i)
|v|df , for n = 1, 2, ..., N, (23)

which means that Ȧ(n)R(n)
F (l)dΩ(l) is the rate of area swept by dislocations with

velocity direction in the differential solid angle dΩ(l) on the αth slip system, where

Ȧ(n) is the total rate of area swept by dislocations moving in all orientations on the
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same slip system. It is worth noting here that the velocity and flux roses of directions,

given respectively by equations (22) and (23), can be redefined with the orientation

l being the dislocation line direction instead of being the direction of the dislocation

velocity.

The distributions f (n)(v), R(n)
v (l) and R(n)

F (l) are connected with the shear strain

rate on the nth slip system. For example, the average shear strain rate over a volume

ν on the nth slip system is given in terms of f (n)(v) by

γ̇
(n)
= |b(n)|

a
=(n)
@ 8

v

vf (n)(v)dv. (24)

It is also given in terms of R(n)
v (l) and R(n)

F (l) by

γ̇
(n)

= |b(n)|
a
=(n)
@ 8

Ω

|v(l)|R(n)
v (l)dΩ(l)

= |b(n)|
a
=(n)
@ 8

Ω

vΩR(n)
F (l)dΩ(l), (25)

where b(n) is the Burgers vector of the nth slip system and vΩ is the average over all

orientations of the mean dislocation speed on the same slip system. The choice of

one expression of the shear strain rate over the others is then dictated by the kind of

information available.

3. Numerical simulation

3.1. The dislocation dynamics model

The ParaDis dislocation dynamics model, see [16, 18] for details, has been used to

obtain numerical data to implement the definitions developed in section 2. In the

ParaDis model, the dislocation configuration is a collection of piece-wise linear seg-

ments connected at nodes. This configuration is evolved by integrating the nodal

velocities with respect to time. The velocities are computed using a force-velocity

law in which the (Peach-Koehler) force is computed either as the negative gradient

of the energy of the dislocation system with respect to the nodal coordinates, or by

the integral over segments incident with each node, of the point-wise forces on the
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segments times some weight function. Non-singular expressions of the dislocation

stress field and energy that have been recently derived are used for this purpose [18].

In the ParaDis code version used in conjunction with this study, dislocations of screw

character do not have well defined glide planes in body-centered cubic crystals. As

a consequence, the dislocation segments connected to those of screw character can

in some cases move non conservatively. In the latest version of the ParaDis code,

however, dislocations execute conservative motion only [19]. In all ParaDis versions,

periodic boundary conditions are employed.

3.2. Simulation methodology

A body-centered cubic crystal is considered in the present study, which has slip sys-

tems of the type a/2 < 111 > {110}, with the magnitude of the Burgers vector
b = 2.725Å. This family of Burgers vectors include a/2[111], a/2[111̄], a/2[11̄1], and

a/2[11̄1̄], which are denoted here by b1, b2, b3 and b4, respectively. The crystal is

loaded in the [100] direction at constant strain rate. Two values of the strain rate ε̇

have been used, ε̇1 = 10 s
−1 and ε̇2 = 1 s−1, corresponding to the higher and lower

stress-strain curves in Figure 2, respectively. Numerical data has been collected at

four strain levels on each of the two curves in order to study the effect of both the

strain and its rate on the evolution of the statistical quantities of the dislocation

system. On the high stress-strain curve, data has been collected at strain values of

0.0025, 0.005, 0.0096 and 0.013. These points are denoted by H1, H2, H3 and H4,

respectively. On the lower stress-strain curve, data has been collected at strain values

of 0.0012, 0.0075, 0.015 and 0.022, which are denoted by L1, L2, L3 and L4, respec-

tively. The crystal simulation volume is of the form of a cube with edge length of

17.5× 103b.

Add figure 2 here.

The numerical data collected includes the nodal coordinates, segment connectiv-

ity, line sense, and the nodal and segment velocities, which was then used to analyze

the orientation, spatial, velocity and flux statistics in accordance with the expres-

sions presented in the previous section. In constructing R(l), Rv(l), RF (l) and
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Figure 2: Stress-strain curve of a Nb crystal loaded along the [100] direction at two strain

rates, 10 s−1 (higher curve) and 1 s−1 (lower curve). All Burgers vectors are active.
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g(∆r,∆φ,∆θ), the angular coordinates have been discretized into 18 and 36 intervals

for φ and θ, respectively. The maximum spatial range considered in computing the

dislocation correlations is 17.5× 103b, which is the same as the size of the simulation
box. In implementing the formula (18) for the correlation function g, the box has

been divided into 10× 10× 10 elements and replicated is all directions to avoid any
edge effects.

3.3. Results and discussion

Figure 3 shows the evolution of the rose of directions of dislocations with Burgers

vector b1 at the points H1, H2 and H3 on the high strain rate curve in Figure 2.

The initial rose of directions shows that the density is localized on the three cross

slip planes sharing the Burgers vector b1. As the strain increases, and due to the

nonconservative motion considered in the ParaDis model used in this study, the rose of

directions spreads to fill orientations that do not belong to the three cross slip planes

associated with b1. Moreover, the density grows preferentially along the direction of

the Burgers vector as the strain increases, indicating a buildup of screw dislocation

line density. All the three cross slip planes contribute to the screw orientation peaks

because this orientation is shared by these planes.

A comparison between the rose of directions of dislocations of Burgers vectors b1,

b2 and b3 at point H4 is shown in Figure 4. Again, in these roses, peaks follow the

directions of the Burgers vectors, indicating buildup of the screw density in all cases.

During the course of this study, it has been also found that the evolution of the rose

of directions exhibits strong dependence on the strain rate. In particular, at lower

strain rate the screw orientation peaks have been found to be less sharper and the

effect of the nonconservative motion is more pronounced. It is anticipated that the

evolution of the rose of directions will also depend on the loading direction of the

crystal, but this has not been a part of this investigation.

Add figure 3 here.

Add figure 4 here.
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H1 H2

H3

Figure 3: The rose of directions of dislocations with Burgers vector b1 at the points H1,

H2 and H3.
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b1
b2

b3

Figure 4: The rose of directions of dislocations with Burgers vector b1, b2 and b3 at the

point H4.
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The velocity spectrum has been computed using equations (21) at four points on

each of the stress-strain curves shown in Figure 2. Plots of the spectra at these points

are shown in Figure 5. In all cases, the velocity spectrum shows a peak close to zero

velocity, indicating that a fraction of the dislocation density is sessile or has very low

velocity, which is characteristic of dislocation motion in body-centered cubic crystals.

These sessile or slowly moving dislocations are either participating in junctions or the

force acting on them is below the Peierls barrier. The spectrum also falls off quickly

at higher velocity values but maintains a long tail, indicating that a small number

of segments aquire velocity far higher than the average. It is also shown that, at

higher strain rate, a larger fraction of the dislocations has higher velocity; that is,

the average velocity of dislocations increases at higher strain rate, which is consistent

with the increased value of the external stress.

Add figure 5 here.

The rose of directions of the dislocation velocity and flux have been computed

using equations (22) and (23) for the dislocations sharing the same Burgers vector.

Figure 6 shows these rose of directions at the points L2 and L3 on the lower stress-

strain curve in Figure 2 for Burgers vector b1. It is noted that these roses of directions

peak along the direction of the Burgers vector, which is the direction of the motion

of the edge components on all cross slip planes sharing b1 as their Burgers vector.

The analysis further shows that these rose of directions exhibit strong dependence on

the strain level and strain rate. Because the resolved shear stress on all slip planes

depend on the loading configuration of the crystal, it is anticipated that the velocity

and flux rose of directions will also strongly depend on the way the crystal is being

loaded.

Add figure 6 here.

Equation (18) for the correlation function has been implemented for dislocations

belonging to specific Burgers vector. This selection has been motivated in part by

the fact that, in the ParaDis model used here, not all dislocations have well defined
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Figure 5: The velocity spectra at the points L1, L2, L3 and L4, and H1, H2, H3 and H4

on the stress-strain curves shown in Figure 2.
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(a) (b)

(c) (d)

Figure 6: The rose of directions for the dislocation flux (a and b) and velocity (c and d)

at points L2 (a and c) and L3 (b and d) of the lower stress-strain curve in Figure 2.
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slip planes and, therefore, dislocations can only be distinguished by their Burgers

vector. It has also been motivated by the fact that the formalism treats all segment

orientations by two angles (θ, φ), irrespective of their Burgers vector or slip planes.

Thus, in this study, results are presented for correlations of the form

g(bjbj) =

a
=(bj)=(bj)

@
�=(bj)X �=(bj)X , (26)

where bj is an element of the set {b1, b2,b3,b4}. The cross correlations between slip
systems are left for a future study.

In implementing the expression (26), the ensemble averages of the densities and

density pair products have been computed in terms of the appropriate sums of den-

sities and density pair products. Figure 7 shows two sample results of dislocation

correlations for b3 and b4 at the point H4 on the higher stress-strain curve in Figure

2. The ranges of∆r,∆θ and∆φ in these figures are 17.5×103b, 2π and π, respectively.
Figure 7a shows an isosurface g(b3b3) = 0.316, an orthoslice at∆r = 3.5×103b and two
other orthoslices at ∆θ = ∆φ = π/9. Figure 7b shows an isosurface at g(b4b4) = 0.83

an orthoslice at ∆r = 3.5 × 103b and two other slices at ∆θ = ∆φ = π/9. The

color code is such that the yellow is the highest numerical value and the gray is the

lowest one. While it is difficult to visualize and interpret the simulated dislocation

correlations in a space of dimension 3 or higher, a number of preliminary observations

have been made during the course of the present study. First, the correlation shows a

sharp peak at (∆r,∆θ,∆φ) = (0, 0, 0). This behavior is displayed by the yellow range

of color on the orthoslices. Second, the correlation initially decays away from the ori-

gin along the three axes. However, this decay continues monotonically only along

∆r and the correlation rather peaks again in other regions of the (∆θ∆φ)−plane,
particularly at points that correspond to opposite line sense, which reflects the for-

mation of dislocation dipoles. This observation is consistent with the peaking of the

rose of directions at certain orientations and their opposite. Third, the monotonic

decay along ∆r-axis resembles a 1/∆r behavior over a large portion of the ∆r range,

indicating a possible effect of the long range stress field.

Add figure 7 here.
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(a)

(b)

Figure 7: Dislocation correlations for dislocations of Burgers vectors b3 (a) and b4 (b).
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4. Concluding remarks and future directions

The present work represents a first step towards a formal treatment of the statis-

tics of dynamical dislocation systems, which is an important part of the statistical

framework of modeling the collective behavior of dislocation and mesoscale crystal

deformation. A number of statistical dislocation measures have been introduced in

the present study, which include three roses of directions that characterize the ori-

entation dependence of the dislocation density, velocity and flux. The dislocation

correlation is also introduced as a fourth statistical measure that depends on the

spatial and angular distances between pairs of dislocation densities. The connection

between these statistical measures and the kinetic evolution of dislocations has been

outlined.

The rose of directions used in the present work is the first velocity moment of

the phase density measure introduced in the earlier work by El-Azab [11, 14]. This

statistical measure has been defined in connection with the theory of stochastic fiber

process [15]. An additional part of this theory, which studies the intersection of

two stochastic fiber processes, can be further used in modeling dislocation systems.

The intersection of two stochastic fiber processes Φ(n) and Φ(m) with intensities I(n)

and I(m) and rose of directions R(n) and R(n), respectively, yields a stochastic point

process of intensity λ given by

λ = I(n)I(m)F [R(n)(l),R(m)(m); l,m], (27)

where F [·] is a functional of the roses of directions and the unit vectors l andm. The
intensity λ then defines the number of intersection points per unit volume. Assuming

that the stochastic fiber processes Φ(n) and Φ(m) represent dislocations on two different

slip systems, then the intensity of the associated stochastic point process defines points

at which special events such as junctions formation, annihilation, or Burgers vector

reactions take place. The types of intersection can be distinguished through the

definition of the functional F . Furthermore, the spatial distributions of the points of
intersection can be analyzed statistically to provide quantitative measures that help

model the density of short range reaction events. The fact that the intensity of the
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stochastic point process resulting from the intersection of two fiber processes must be

related to the dislocation correlations is intuitive. Further analysis in this direction

will thus enable the modeling of the source terms in the kinetic theory presented in

[11, 14]; see also equations (15) and (17). Future elaboration of the theory of stochastic

fiber processes in the context of dislocation dynamics and mesoscale plasticity thus

seems a promising direction to follow in developing continuum theories.
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Appendix: Borel sets and σ−algebra

Stoyan and co-authors [15] make an extensive use of the set theory language to define

the stochastic fiber process. In adopting the pertinent definitions after these authors,

the terms Borel set and σ-algebra have been used in this paper. These terms are

defined in this appendix.

A σ-algebra or a σ-field over a set S is a collection Σ of subsets of S that is

closed under countable set operations. σ-algebras have developed in order to define

measures on a set S; a measure is a function that assigns a number, for example a size,

to subsets of a given set, which facilitates integration over the set. Σ is a σ-algebra

if and only if it has the following properties: (P1) the empty set is in Σ, (P2) if E is

in Σ then so is its complement S\E, and (P3) the union of countably many sets in
Σ is also in Σ. From the properties P1 and P2, it follows that S is in Σ, and from

P2 and P3 it follows that the σ-algebra is also closed under countable intersections.

Elements of the σ-algebra are called measurable sets. An ordered pair [S,Σ], where



Philosophical Magazine 26

S is a set and Σ is a σ-algebra over S, is called a measurable space. A measure µ on

a measurable space [S,Σ] define a measure space [S,Σ, µ].

The Borel algebra (or Borel σ-algebra) on a topological space S is a σ-algebra of

subsets of S associated to the topology of S. The elements of the Borel algebra are

called Borel sets, which can be constructed from open or closed sets by countable

unions and intersections. The class Bd of Borel sets in Rd is the smallest collection of
sets that includes open and closed sets such that if E,E1,E1, ... are in Bd, then so are
∪∞i=1Ei, ∩∞i=1Ei, and Rd\E [20, 21]. Rd the Euclidean space of dimension d. For the
sake of the present problem, Borel sets indicate crystal regions over which dislocations

are distributed.
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Figures captions

Figure 1. Snapshot of the dislocation distribution in Nb crystal loaded in the [100]

direction at constant strain rate of 1 s−1 (strain = 0.018).

Figure 2. Stress-strain curve of a Nb crystal loaded along the [100] direction at two

strain rates, 10 s−1 (higher curve) and 1 s−1 (lower curve). All Burgers vectors are

active.

Figure 3. The rose of directions of dislocations with Burgers vector b1 at the points

H1, H2 and H3.

Figure 4. The rose of directions of dislocations with Burgers vector b1, b2 and b3 at

the point H4.

Figure 5. The velocity spectra at the points L1, L2, L3 and L4, and H1, H2, H3 and

H4 on the stress-strain curves shown in Figure 2.

Figure 6. The rose of directions for the dislocation flux (a and b) and velocity (c and

d) at points L2 (a and c) and L3 (b and d) of the lower stress-strain curve in Figure

2.

Figure 7. Dislocation correlations for dislocations of Burgers vectors b3 (a) and b4

(b).
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