¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-CONF-221478

Toward Enhancing OpenMP's
Work-Sharing Directives

B. M. Chapman, L. Huang, H. Jin, G. Jost,
B. R. de SupinskKi
May 18, 2006

Euro-Par 2006
Dresden, Germany
August 29, 2006 through September 1, 2006

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence
Livermore National Laboratory under Contract No. W-7405-Eng-48.

nunes18
Text Box
This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Toward Enhancing OpenM P’s Wor k-Sharing Directives

Barbara M. ChapmanLei Huand, Haogiang Jik, Gabriele Jost and
Bronis R. de Supinski

1 University of Houston, Houston TX 77004, USA
2 NASA Ames Research Center, USA
3 Sun Microsystems, Inc., USA
4 Lawrence Livermore National Laboratory, USA
chapman, | ei huang@s. uh. edu, hj i n@as. nasa. gov,
gabriel e.jost @un.combronis@I nl . gov

Abstract. OpenMP provides a portable programming interface for sharem-
ory parallel computers (SMPs). Although this interface piawen successful for
small SMPs, it requies greater flexibility in light of the atilly growing size of
individual SMPs and the recent advent of multithreadedsHipthis paper, we
describe two application development experiences thaisagthese expressiv-
ity problems in the current OpenMP specification. We themppse mechanisms
to overcome these limitations, including thread subteanastiaread topologies.
Thus, we identify language features that improve OpenMRicgifpn perfor-
mance on emerging and large-scale platforms while presgease of program-
ming.

1 Introduction

OpenMP supports portable, high-level shared memory ghnalbgramming and has
been successfully deployed on small-to-medium shared mesystems (SMPs) and
large-scale distributed shared memory platforms (DSMs)current version 2.5 [14]
merges C/C++ and Fortran bindings and clarifies some cosoegtecially with regard
to the memory model. OpenMP 3.0 is expected to follow, andosicler a variety
of new features. Among the many open issues are some toudjergdes including
extending OpenMP to SMP clusters and supporting other nefitactures.

Several architectural trends to which we collectively €ilp MultiThreading (CMT)
provide support for the simultaneous execution of two orertbreads within one chip
. It may be implemented through several physical process@sdn a chip (Chip Mul-
tiProcessor, CMP) [13], a single core with replication ddtieges to maintain the state
of multiple threads simultaneously (Simultaneous mukigtding, SMT) [17] or their
combination [9, 10]. A hierarchical multithreading areuture results from using sev-
eral of these chips in a single SMP. OpenMP was not desigresufth hierarchical
parallelism, nor to enable a programmer to assign differemnkloads to sibling threads
in order to avoid resource contention. Traditionally, O@éntargets computationally
intensive, loop-based applications. CMT will probablymetically increase the usage
of OpenMP. Programmers will need language mechanismsatititdte scalable paral-
lel programming for these hierarchical systems, includiegibility in the assignment
of work to threads.

In this paper, we describe two application development e&pees from different
domains that exposed problems with the expressivity of tiieeat OpenMP specifica-
tion. The first example involved porting an industrial seisaata processing applica-
tion to OpenMP in order to create an easy-to-maintain versiat exploited SMPs with
hyperthreading. The language extensions we designed baghib effort turned out to
have a much wider applicability. The second example conwas &xperiences gained
while building scalable scientific applications on a largstributed shared-memory
platform. Here too, the extensions facilitated an appeipnnapping of work to threads
and led to a scalable parallel code. In each case, our ityatmilassign work to subsets
of threads in the current thread team, and to orchestratedhle of different threads,
in OpenMP 2.5 artificially limited performance. To overcothés, we propose a hew
clause for worksharing constructs that assigns the workdobdeam of the existing
threads. Further, we introduce the notion of a topologycWigiives a subteam a shape,
and library routines to support these concepts. Finallyalse propose new constructs
for improved work coordination between threads. We outlirese applications and our
proposed OpenMP extensions that facilitate programmieigtim the next two sections.
Then, we discuss related work briefly before summarizindiodings.

2 Thread Subteams

Our experiences with commercial seismic data processiftgya@ initially motivated
our thread subteam concept. Kingdom Suite from Seismic dAi@chnology, Inc. is
an integrated geosciences interpretation software pactag/Nindows systems used
by the energy industry in the search for oil. OpenMP was app TracePak, an 1/O-
intensive module of Kingdom Suite to analyze and to processdimensional (2-D)
and three-dimensional (3-D) post-stack seismic data [@6t.goal was a parallel ver-
sion for Windows-based SMPs with hyperthreading enabléds Yersion must be as
close as possible to the original sequential code to signjpdifmaintenance, a common
industrial requirement. Although our example could be paogmed in a low-level style
using thread IDs explicitly, this would require significarftanges in the source code.
In contrast, the suggested directives require only a mihiloealized modification of
the source code and maintain the ease of programming thas@enMP a desired
programming model. The subteam concept proposed here bBasrbplemented in the
OpenUH compiler [15]. Itis comparatively straightforwarequiring less implementa-
tion effort than nested parallelism. WE are currently inmpésting our other proposals.
Due to space limitations, implementation details will be@$sed in a separate paper.

2.1 Seismic Data Processingon an SMT Platform

Fig. 1 shows the structure of the sequential program. Thie ¢eratively reads data
from an input file, processes it using different transformdiions in a specified order,
and then writes the results to an output file. The amount sfisieidata typically han-
dled in a job is quite large, ranging from 100MB to 100GB, aedding and writing

consume considerable time.

Cfor (i=0; i<N; i++) {
ReadFronFile(i,...);
for (j=0; j<ProcessingNum j++)
for (k=0; k<M k++) {
ProcessDat a(); // processinginvolves several
/ 1 different seismic functions

arwnpE

¥
WiteResultsToFile(i);

©o N

}

Fig. 1. A sequential pseudo-code fragment for seismic data primgess

Since OpenMP does not support parallel 1/0, we decided Heabest strategy to
parallelize the code of Fig. 1 is to overlap the sequent@ldperations (lines 2 and 7)
with the parallelized computation (line 5), as illustrat®dthe timeline view in Fig. 2.
A simple way to parallelize the computation is to encloseitimermost loop £-loop)
between threads in an “omp parallel for” directive. This rggeh, however, does not
overlap the computation and 1/0, and moreover, frequemitgring and leaving paral-
lel regions degrades performance. A dependence betweeseigraic data processing
functions prevents parallelization of the outer loggdop). In order to overcome these
deficiencies, we enclose the entire loop nest in a parrgj@meas shown in Fig. 3. This
version preloads the data needed for the first iteration@f-tbop (line 6). Then, we
use “omp single nowait” and “omp for schedule(dynamic)” telese and to overlap
the 1/O operations and computation. One thread reads thdatahe next iteration and
another thread writes the results to an output file. The neimgithreads share the work
of thej loop (line 11 of Fig. 3). The dynamic schedule enables thestis performing
1/0 to subsequently join the computation.

The innermost, work-shared loop includes an implicit keargt its end. Unfortu-
nately, we cannot simply remove it since the data procedsinctions must follow a
specific sequential order: each iteration uses results frarprevious one. Thus al-
though plenty of computation remains, the computing thseadst wait at the implicit
barrier until the 1/0 has completed, as shown in Fig. 4. ThHOperations and compu-
tation are not fully overlapped. Unfortunately, exchamgfime order of the loops in the
nest would, if possible, require a complete rewrite. Howeagoarallelization strategy
that requires major code reorganization is unacceptablereviously discussed.

Load Data
' '
v v

Load Data:

Process

Data Process Data:

Save Datd
N
14 v v

Save Data:
I

Timeline

Fig. 2. Overlapping I/O with computation in the parallel seismiogmam

1. #pragmaomp parallel

2. { #pragmaomp single

3. { 1/ preload data to be used in the first iteration of the i-loopria b
4., ReadFronFile(0,...);

5.

6. for (i=0; i<N i++) {

7. #pragma omp single nowait

8. { /! preload the data for next iteration of the i-loop
9. ReadFronFile(i+1...);

10. }

11. for (j=0; j< ProcessingNum j++)

12. #pragma omp for schedule(dynamic)

13. for(k=0; k<M k++) {

14. ProcessDat a(); // userconfigurable data processing functions
15. } /1 here is the barrier

16. #pragma omp single nowait

17. {

18. WiteResul tsToFile(i);

19.

20.

21.}

Fig. 3. The OpenMP code for seismic data processing kernel

2.2 Performance Improvement

In a normal run, the ratio of I/O and computation is aboutll,.here the 1/O takes
slightly longer than the computation. Thus, including tl@threads in the barrier limits
the overlap of I/0 with computation. To determine how muahaoging this limitation
would improve performance, we combined OpenMP with Windtwsads for reading
and writing files and achieved much greater overlap than pitte OpenMP. Fig. 5
shows results on an HP XW=8200 with dual Xeon 3.4 GHz CPUs, 1MBache, 3GB
memory, Intel extended memory 64, and hyperthreading tdolyg. The compiler used
was Microsoft Visual C++ in Visual Studio 2005 with OpenMPRpport. The hybrid
version was 25% faster than standard OpenMP on four threads.

To achieve similar results with pure OpenMP, we require raadms to separate
the computational threads from the data handling threamkt@synchronize their ac-
tivities in the desired manner. We can achieve this withedlparallel sections: read,
write, and computation. The computation section wouldtereanested parallel region

Load Data ‘

[sequential
B 4 OpenMP threads
7 2 OpenMP + 2

Process 25 Windows threads 7
Data Process Data:

A 4
A 4
v
©
o

I
14

Load Data:

Save Data
I N
L L4

X A 10

Timeline

Save Data:

Speedup
e
o

"omp for" implicit barrier causes the computatiol

threads t¢ it for I/O threads t lete. P . .
reads to wait for reads to complete Seismic Processing on two Xeon CPUs with HT

Fig. 4. Execution behavior of OpenMP seismic code Fig.5. Performance comparison:
OpenMP vs. hybrid OpenMP and
Windows API codes

\Y

and share the work among its threads. We either prefetchrdtiia previous iteration,
as in the code of Fig. 3, or use critical regions and arraysadghbles. Unfortunately,
each iteration of the outer i-loop requires a new parallgioe if we are to retain the
sequential program structure and the overheads for thegeogentially high.

2.3 Thread Subteam as a Solution

Nested parallelism can dynamically create, exploit anchigate teams of threads and
is well-suited to codes with needs that change over time.d@de structure is static.
The relative amount of data and computation does not vadyamexpect the number
of participating threads and their roles to remain the satested parallelism is more
powerful than we require. Thus, we propose a simpler meshatfiat allows us to bind
the execution of a worksharing or barrier construct to a subkthreads in the current
team. Only the threads in the specified subteam participaits ivork, including any
barrier operations encountered. To synchronize the actidmultiple subteams, we
may use existing OpenMP constructs and take advantage shi#ted memory.

To realize this idea, we define an “onthreads” clause for sloaking and barrier di-
rectives. In contrast to nested parallelism, it refers dolgxisting threads. This clause
permits us to specify that a worksharing directive is abti® a subteam of threads:
participation in the associated work is restricted to thecdfed members. In particular,
implicit and explicit barriers within the code it encloses ot block threads that are
not part of the subteam. This clause would require minimahge to the current speci-
fication. In addition we can define an “onthreads” directva tcould enclose arbitrary
structured block of code within a parallel region. Work ir thlock would be carried
out by the specified subteam of threads.

Using the thread subteam notation, we can rewrite the exaangle in Fig. 3 to that
in Fig. 6. Line 5 and line 14 use the “onthreads” clause totlitmé I/O to individual
threads, while line 7 defines a subteam of threads to probessata. The integer ex-
pressions in parentheses use OpenMP’s thread-ids andsactgn notation to specify
the desired subset of threads. The implicit barrier at li@gplies only to the threads
defined in the subteam from line 7.

1. #pragmaomp parallel

2. { #pragmaomp single

3 ReadFronFil e(0,...); //preloads data for first iteration of i-loop
4 for (i=0; i<N;, i++) {

5. #pragma omp single onthreads(0)

6. ReadFronFil e(i +1...); // preload data for next iter. of i-loop
7 #pragma omp onthreads (2:omp_get_num_threads()-1)

8 for (j=0; j< ProcessingNum j++)

9. #pragma omp for schedule(dynamic)

10. for (k=0; k<M k++) {

11. ProcessDat a(); // userconfigurable data processing functions
12. } /1 here is the group-internal barrier

13. #pragma omp barrier // this ensures we are ready for next iter.

14. #pragma omp single onthreads(1)

15. WiteResul tsToFile(i);

16.

17.}

Fig. 6. OpenMP seismic data processing kernel with the “onthredulsttive

Vi

Additional syntax could enable the programmer to name tkabsets. New run-
time library routines would be provided to get the numbertoktads in a (named)
subteam and a subteam-internal consecutive thread nuApesgrammer might also
want to permute the order of threads in a subteam to spedifydsdes that enforce a
certain work distribution, e.g. to support data reuse. édlifh none of these (except
possibly the library routines) are essential, they woulehtly increase the expressive
power of this construct. Interactions between subteamkldmimade explicit by pro-
viding notation for communication between subteams. Thightrhelp a programmer
reason about the structure of this communication and avaigramming errors such
as deadlock. The same construct might also enable poietsyischronization between
threads in a single subteam to avoid barriers. In the codgrfeat of Fig. 7, a post-
wait notation does this succinctly and we have named thadhtieam, whose order is a
permutation of the original thread numbers (used here anljuistrate the concept).

#pragma omp parallel
{

#pragma omp team CompthreadsReor dered = threads(omp_-get_num_threads()-1:2:-1)
for (i =0; i <N i++) { //executed by all threads

#pragma omp single onthreads(0)

{ ReadFronFile(i);

#pragma omp post (dataready[i]) // signals reading is complete

} /1 thread(0) independently does this reading and posting

#pragma omp on CompthreadsReor dered

{ 1/ subteam starts to work

#pragma omp wait (dataready[i]) // after data is ready

Fig. 7. Excerpt from OpenMP code with named subteam and post/wait

The ability to divide work among subteams of threads, and touhave different
subteams working concurrently and independently, seerbs tfairly natural exten-
sion to the current APl and it has a variety of potential ukegould likely simplify the
use of OpenMP within third party libraries. It also enables specification of multi-
disciplinary code ensembles and permits components writté¢raditional program-
ming languages to interact without the need to provide ezgldile-based interactions.
It supports the simpler case of multilevel parallelism vétfixed team of threads with-
out the extra overheads and burden of nested parallelism.

3 Worksharing and Synchronization Across Loop Nests

Scientific and engineering computations must exploit lagabers of threads, not only
in emerging, very large shared-memory systems, but alsmatlsr SMPs with CMPs.
Writing scalable code requires special care. Two of the@sthpreviously proposed a
set of language features to enable the parallelization dfipfailevels of loop nests
[8]. These features specify an appropriate execution sgdbemhd assign threads to
loop levels, as well as additional synchronization thatbégma pipelined execution
scheme in the LU benchmark from the NAS Parallel Benchma&ksThey addressed

scalability limitations in several applications desphe presence of sufficient inherent
parallelism.

Vil

3.1 ThelLU Example

The LU application benchmark uses the symmetric succeesierelaxation (SSOR)
method to solve a seven band block-diagonal system. Figiliis8ates its lower tri-
angular phase. References to values of elements of alireljne 4 create dependences
between loop iterations that prevent straightforward lpglization. However, a wave-
front or a pipelined technique can enable considerablddefeparallelism to be ex-
ploited, since the value of an elementwtan be computed once the new values are
available from the previous iteration in each of the threeatisions.

A wave-frontrestructuring of the code reveals parallelisat can be expressed with
the existing OpenMP parallel directive to update points atiagonal plane concur-
rently. However, this method suffers from poor cache wtian. A pipelined approach,
in which data are partitioned as blocks in selected dimewssiasually gives better
cache performance. We illustrate the differences betwesesfront and pipelined par-
allelism in Fig. 9. Expression of the parallelism in two dims®ns would reduce the
cost of pipeline startup and shutdown, and support goodecpelformance for this
kernel. However, OpenMP currently can only successfullyl@k parallelism in one
dimension. Parallelization in multiple dimensions regainested parallelism, which
results in multiple one-dimensional pipelines and incugh toverheads [7].

wave-front pipelining

1. for (k =1; k < nz; k++) { 0O 0000 O0O0O o 0 o
2. for (j =1; j <ny; j++) { I 0000 O0O0O oo o
3. for (i =1; i <nx; i++) { 5 6 o 0o e oTon So o
4. VIKI[jILi] =

VIKITiTi] + _ o0 opo o

axv[k][j][i-1] +] e o o

bev[K][}-1][i] + S o oo
5 cxv[k-1][j][i]; o o S
6. } o O 0 O
7.} k
8. }

Fig.9. Wave-front and pipelined algorithmg, %
Fig.8. The LU computational kernel are data dimensiong.in the left panel indicates

a diagonal plane. Numbers in the right panel indi-

cate data blocks mapped to different threads.

3.2 Thread Topology

We introduce the notion of a thread topology to support jrieel algorithms. A thread
topology does not create new threads; insteadeshapes the thread (sub)team and
associates a new naming scheme with existing threads. Weiseithe topology to
specify a variety of new schedules for worksharing direxgivOur syntax requires the
programmer to provide the number of dimensions in the tapobind the coordinates
in each dimension. We will also need a default strategy fappireg the linearly num-
bered threads to a Cartesian grid. The basic syntax of sjregi topology is:
#pragma onp topol ogy name(ndi mstart, stop, stride, fixedorder)

wherenane defines a name of the topology. Thdi margument specifies the num-
ber of dimensions. The argumergtsart, st op, andstri de are arrays with one

Vi

entry per dimension to specify the topological shdpexedor der is a Boolean vari-
able that tells the compiler whether or not the default sgratfor associating these
threads with the linear thread numbers must be applied.t/fthe system can choose
any mapping of threads to the topology. For example, if 16ats exist, the directive
can reshape threads intotax 2 x 2 grid with coordinates fronst ar t [[=(0,0,0) to

st op[]=(3,1,1) andst r i de[]=(1,1,1) or any other numbering scheme we desire that
has 16 threads.

We can associate a defined topology with a worksharing aectsising the “on-
threads” clause. We use standard section notation to gpeheftarget of the work-
sharing directive in each topological grid dimension. We U8 to denote the entire
dimension of an array. Dimensions not involved in the wogksig are marked via a
dummy “*” and the computation is replicated in those dimensi A runtime function
“omp_getcoordfiane,i di m” can obtain coordinates of a thread in the grid topology.

We illustrate the use of our topology notation in Fig. 10 foe LU computational
kernel. We introduce a 2-D logical grid of threads with thensanumber of threads in
each dimension. Our thread subteam clause maps the itesafiowo different loops to
threads using our grid topology through two worksharingstarcts (this notation does
not conform to current OpenMP rules). The 2-D topology isdusedistribute the work
in thei andj loop nests among threads.

Finally, we need a way to define synchronization betweerattgé a topology. We
cannot use existing features of OpenMP, since the interactiquired is not between
iterations but threads. This is achieved here ugiagt andwai t directives with our
2-D thread-ids. In our example, each thread of the topologstwait for its neighbors
to the left and below it to finish their computation except fdrere the thread does
not have a neighbor. For instance, thread 0 does not havegalbweiand can start
right away. Once its work is done, a thread signals its neghto the right and above
that they can continue. The ability to synchronize betweesdds is very important for
implementing the pipelined approach in the LU algorithngémeral, it enables loosely
synchronous algorithms [12].

4 Related Work

The NanosCompiler team has proposed groups of threadsagiassn with parallel
regions [5, 6]. Their notation permits the user to specify ttumber of independent
teams of threads that will be created. Since these threaghgmre associated with the
parallel region, additional notation is required to assignk to the individual groups.
They also propose extensions to express the precedentieneia pipelined computa-
tions. These extensions are also valid in the scope of npatedlelism and are based on
the ability to name worksharing constructs and to specifyea@@cessor-successor rela-
tionship between them to support synchronization. Ourlwposimplifies specifying
the desired target sets and is more intuitive than the pesgec-successor relationship.
Furthermore, it does not rely on nested parallelism andtke@ated overhead.

There have been a variety of proposals for multilevel loomaipalism. The SGI
compiler for the Origin [11] provides the SGI NEST clause ba OMP DO directive.
The NEST clause requires at least two variables as arguntemdentify indices of

nystart([0] = 0; nystart[1] = O; ... //assignvaluesto mystart[:] and mystop[:]
#pragma omp parallel {
#pragma omp topology grid(2,mystart,mystop,mystride,1)
/I arrange threads logically into a square called grid
ianml = onp-get _coord(grid,1);
ian2 = onp_get_coord(grid,2); //mycoordsingrid
1. for (k =1; k < nz; k++) {
#pragma omp wait grid (iam1-1,iam2) // wait for thread below to complete its portion
#pragma omp wait grid (iam1,jam2-1) // wait for thread on left to complete its portion
#pragma omp for nowait onthreads(grid(:,*)) // share out to first dimension of grid
2. for (j =1; j <ny; j++) {
#pragma omp for nowait onthreads(grid(*,:)) // share out to second dimension of grid

3. for (i =1; i <nx; i++) {

4. VIKILPIDi] = viKI[j1[i] + axv[Kk][j][i-1] +
s brv[KI[j-1][i] + cxv[k-1][j][i];
6: }. ..

7.}

#pragma omp post grid(iaml,iam2+1) // indicate to thread on right that it is ready
#pragma omp post grid(iam1+1,iam2) // indicate to thread above that it is ready

Fig. 10. The multilevel LU computational kernel using thread togylo

subsequent DO-loops, which must be perfectly nested. ¢trin§ the compiler that
the entire set of iterations across the identified loops eaxecuted in parallel. The
compiler can then linearize the iteration space and ditidebng the threads. Intel has
proposed a new directive to enable wavefront executionmsahd@lthough this might
sometimes be appropriate, we expect that it will be hard tweze good data locality
in most cases. Our proposal explicitly enables control ofkndistribution and, thus,
enables the expression of data locality.

New programming languages [1, 3, 4] are being proposed tlitéde high end ap-
plication development in a multithreading environmentey laddress problems faced
by levels of scaling that are far from those currently eryéshfor hierarchical SMPs,
and they provide a wealth of new ideas related to correcthesslity, efficiency of
shared memory updates, and more. We will explore these id#as context of OpenMP.

5 Conclusions

OpenMP is awidely deployed shared-memory programming W&tldffers the promise
of performance and ease of use. It seems possible that tis@usladdition of language
features that increase the power of expressivity mightiatpoove the achievable per-
formance of a variety of OpenMP codes. In this paper, we thtced a unified notation
for sharing work among subteams of threads and for flexibécating multiple levels
of loop nests in parallel. Table 1 lists the proposed new @fF2oonstructs and clauses
in the paper. This approach fits in well with existing featuoé the API. As our fu-
ture work, we will conduct more detailed performance stufithe proposed subteam
concept implemented in the OpenUH compiler.

Proposed OpenMP Directives/CIaus{es Description

omp onthreads / onthreads (clause olidgfines thread subteams for work shafing
omp topology name Defines the thread topology

omp post / omp wait Uses for point-wise synchronization

Table 1. Proposed new OpenMP Constructs and Clauses

References

1.

10.

11.

12.

13.

14.

15.
16.

17.

E. Allen, D. Chase, V. Luchangco, J-W. Maessen, S. Ryu, &éele Jr., S. Tobin-Hochstadt.
“The Fortress Language Specification, Version 0.785.”
http://research.sun.com/projects/plrg/fortressOy@bs.

. D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. 8yand M. Yarrow, “The NAS

Parallel Benchmarks 2.0,” RNR-95-020, NASA Ames Researmht€r, 1995.

. Cray Inc., “Chapel Specification 0.4.” http://chapelesshington.edu/specification.pdf
. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kia|sK. Ebcioglu, C. von Praun

and V. Sarkar, “X10: an object-oriented approach to noffieami cluster computing.” in the
proceedings of OOPSLA '05, pp. 519-538, 2005

K. Ebcioglu, V. Saraswat and V. Sarkar. “ X10: Programming Herarchical parallelism
and nonuniform data access (extended abstract).” OOPSDA)20ctober 2004.

. M. Gonzalez, E. Ayguade, X. Martorell and J. Labarta. “Biefj and Supporting Pipelined

Executions in OpenMP.” in the proceedings of WOMPAT 2001y 2001.

. M. Gonzalez, J. Oliver, X. Martorell, E. Ayguade, J. Labaand N. Navarro. “OpenMP Ex-

tensions for Thread Groups and Their Run-time Supportliéyproceedings of LCPC’2000,
New York (USA), pp. 317-331, August 2000.

. H.Jin, G. Jost, J. Yan, E. Ayguade, M. Gonzalez, and X. dalt “Automatic Multilevel

Parallelization Using OpenMP,” Scientific Programming|.\id, No. 2, pp. 177-190, 2003.

. H. Jin and G. Jost. “Support of Multidimensional Paralal in the OpenMP Programming

Model,” WOMPEI2003, Tokyo, Japan, October 2003, in the Peatings of the International
Symposium on High Performance Computing (ISHPC-V).

. R.Kalla, B. Sinharoy, and J. Tendler. “IBM POWERS5 chipualtore multithreaded proces-

sor”, in IEEE Micro, 24(2): 40-47, 2004.

P. Kongetira. “A 32-way Multithreaded SPARC ProcessiorHot Chips 16,
http://www.hotchips.org/archives/hc16/.

MIPSPro 7 Fortran 90 Commands and Directives Refereraraulsl 007-3696-03.
http://techpubs.sgi.com/.

Z. Liu, B. Chapman, Y. Wen, L. Huang and O. Hernandez. t¥ses and Optimizations
for the Translation of OpenMP Codes into SPMD Style,” Pro©MPAT 03, LNCS 2716,
26-41, Springer Verlag, 2003.

K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. &tg, “The Case for a Single-
Chip Multiprocessor”, in Intl. Conf. on Architectural Sump for Programming Languages
and Operating Systems, 1996, pp. 2-11.

OpenMP Application Program Interface, Version 2.5, Mag5.
http://www.openmp.org/drupal/mp-documents/specZ5.pd

“The OpenUH compiler project”, http://www.cs.uh.edpenuh

Sesimc Micro-Technology, Inc., TracePak Module,
http://www.seismicmicro.com/PraoGeo.htm.

D. Tullsen, S. Eggers, and H. Levy, “Simultaneous Mutgading: Maximizing On-Chip
Parallelism”, Intl. Symp. on Computer Architecture, pp23903, 1995.

