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Abstract. OpenMP provides a portable programming interface for shared mem-
ory parallel computers (SMPs). Although this interface hasproven successful for
small SMPs, it requies greater flexibility in light of the steadily growing size of
individual SMPs and the recent advent of multithreaded chips. In this paper, we
describe two application development experiences that exposed these expressiv-
ity problems in the current OpenMP specification. We then propose mechanisms
to overcome these limitations, including thread subteams and thread topologies.
Thus, we identify language features that improve OpenMP application perfor-
mance on emerging and large-scale platforms while preserving ease of program-
ming.

1 Introduction

OpenMP supports portable, high-level shared memory parallel programming and has
been successfully deployed on small-to-medium shared memory systems (SMPs) and
large-scale distributed shared memory platforms (DSMs). Its current version 2.5 [14]
merges C/C++ and Fortran bindings and clarifies some concepts, especially with regard
to the memory model. OpenMP 3.0 is expected to follow, and to consider a variety
of new features. Among the many open issues are some tough challenges including
extending OpenMP to SMP clusters and supporting other new architectures.

Several architectural trends to which we collectively callChip MultiThreading (CMT)
provide support for the simultaneous execution of two or more threads within one chip
. It may be implemented through several physical processor cores in a chip (Chip Mul-
tiProcessor, CMP) [13], a single core with replication of features to maintain the state
of multiple threads simultaneously (Simultaneous multithreading, SMT) [17] or their
combination [9, 10]. A hierarchical multithreading architecture results from using sev-
eral of these chips in a single SMP. OpenMP was not designed for such hierarchical
parallelism, nor to enable a programmer to assign differentworkloads to sibling threads
in order to avoid resource contention. Traditionally, OpenMP targets computationally
intensive, loop-based applications. CMT will probably dramatically increase the usage
of OpenMP. Programmers will need language mechanisms that facilitate scalable paral-
lel programming for these hierarchical systems, includingflexibility in the assignment
of work to threads.
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In this paper, we describe two application development experiences from different
domains that exposed problems with the expressivity of the current OpenMP specifica-
tion. The first example involved porting an industrial seismic data processing applica-
tion to OpenMP in order to create an easy-to-maintain version that exploited SMPs with
hyperthreading. The language extensions we designed basedon this effort turned out to
have a much wider applicability. The second example comes from experiences gained
while building scalable scientific applications on a large distributed shared-memory
platform. Here too, the extensions facilitated an appropriate mapping of work to threads
and led to a scalable parallel code. In each case, our inability to assign work to subsets
of threads in the current thread team, and to orchestrate thework of different threads,
in OpenMP 2.5 artificially limited performance. To overcomethis, we propose a new
clause for worksharing constructs that assigns the work to asubteam of the existing
threads. Further, we introduce the notion of a topology, which gives a subteam a shape,
and library routines to support these concepts. Finally, wealso propose new constructs
for improved work coordination between threads. We outlinethese applications and our
proposed OpenMP extensions that facilitate programming them in the next two sections.
Then, we discuss related work briefly before summarizing ourfindings.

2 Thread Subteams

Our experiences with commercial seismic data processing software initially motivated
our thread subteam concept. Kingdom Suite from Seismic Micro-Technology, Inc. is
an integrated geosciences interpretation software package for Windows systems used
by the energy industry in the search for oil. OpenMP was applied to TracePak, an I/O-
intensive module of Kingdom Suite to analyze and to process two-dimensional (2-D)
and three-dimensional (3-D) post-stack seismic data [16].Our goal was a parallel ver-
sion for Windows-based SMPs with hyperthreading enabled. This version must be as
close as possible to the original sequential code to simplify its maintenance, a common
industrial requirement. Although our example could be programmed in a low-level style
using thread IDs explicitly, this would require significantchanges in the source code.
In contrast, the suggested directives require only a minimal, localized modification of
the source code and maintain the ease of programming that makes OpenMP a desired
programming model. The subteam concept proposed here has been implemented in the
OpenUH compiler [15]. It is comparatively straightforward, requiring less implementa-
tion effort than nested parallelism. WE are currently implementing our other proposals.
Due to space limitations, implementation details will be addressed in a separate paper.

2.1 Seismic Data Processing on an SMT Platform

Fig. 1 shows the structure of the sequential program. This code iteratively reads data
from an input file, processes it using different transform functions in a specified order,
and then writes the results to an output file. The amount of seismic data typically han-
dled in a job is quite large, ranging from 100MB to 100GB, and reading and writing
consume considerable time.
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1. for (i=0; i<N; i++) {
2. ReadFromFile(i,...);
3. for (j=0; j<ProcessingNum; j++)
4. for (k=0; k<M; k++) {
5. ProcessData(); //processing involves several

//different seismic functions
6. }
7. WriteResultsToFile(i);
8. }

Fig. 1. A sequential pseudo-code fragment for seismic data processing

Since OpenMP does not support parallel I/O, we decided that the best strategy to
parallelize the code of Fig. 1 is to overlap the sequential I/O operations (lines 2 and 7)
with the parallelized computation (line 5), as illustratedby the timeline view in Fig. 2.
A simple way to parallelize the computation is to enclose theinnermost loop (k-loop)
between threads in an “omp parallel for” directive. This approach, however, does not
overlap the computation and I/O, and moreover, frequently entering and leaving paral-
lel regions degrades performance. A dependence between theseismic data processing
functions prevents parallelization of the outer loop (j-loop). In order to overcome these
deficiencies, we enclose the entire loop nest in a parralel region as shown in Fig. 3. This
version preloads the data needed for the first iteration of the i-loop (line 6). Then, we
use “omp single nowait” and “omp for schedule(dynamic)” to enclose and to overlap
the I/O operations and computation. One thread reads the data for the next iteration and
another thread writes the results to an output file. The remaining threads share the work
of thej loop (line 11 of Fig. 3). The dynamic schedule enables the threads performing
I/O to subsequently join the computation.

The innermost, work-shared loop includes an implicit barrier at its end. Unfortu-
nately, we cannot simply remove it since the data processingfunctions must follow a
specific sequential order: each iteration uses results fromthe previous one. Thus al-
though plenty of computation remains, the computing threads must wait at the implicit
barrier until the I/O has completed, as shown in Fig. 4. Thus I/O operations and compu-
tation are not fully overlapped. Unfortunately, exchanging the order of the loops in the
nest would, if possible, require a complete rewrite. However, a parallelization strategy
that requires major code reorganization is unacceptable, as previously discussed.

Process
Data

Save Data:

Process Data:

Load Data:

Load Data

Save Data

Timeline

Fig. 2. Overlapping I/O with computation in the parallel seismic program
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1. #pragma omp parallel
2. { #pragma omp single
3. { //preload data to be used in the first iteration of the i-loop in line 6
4. ReadFromFile(0,...);
5. }
6. for (i=0; i<N; i++) {
7. #pragma omp single nowait
8. { //preload the data for next iteration of the i-loop
9. ReadFromFile(i+1...);
10. }
11. for (j=0; j< ProcessingNum; j++)
12. #pragma omp for schedule(dynamic)
13. for(k=0; k<M; k++) {
14. ProcessData(); //user configurable data processing functions
15. } //here is the barrier
16. #pragma omp single nowait
17. {
18. WriteResultsToFile(i);
19. }
20. }
21. }

Fig. 3. The OpenMP code for seismic data processing kernel

2.2 Performance Improvement

In a normal run, the ratio of I/O and computation is about 1.2:1, where the I/O takes
slightly longer than the computation. Thus, including the I/O threads in the barrier limits
the overlap of I/O with computation. To determine how much removing this limitation
would improve performance, we combined OpenMP with Windowsthreads for reading
and writing files and achieved much greater overlap than withpure OpenMP. Fig. 5
shows results on an HP XW8200 with dual Xeon 3.4 GHz CPUs, 1MB L2 cache, 3GB
memory, Intel extended memory 64, and hyperthreading technology. The compiler used
was Microsoft Visual C++ in Visual Studio 2005 with OpenMP support. The hybrid
version was 25% faster than standard OpenMP on four threads.

To achieve similar results with pure OpenMP, we require mechanisms to separate
the computational threads from the data handling threads, and to synchronize their ac-
tivities in the desired manner. We can achieve this with three parallel sections: read,
write, and computation. The computation section would create a nested parallel region
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threads to wait for I/O threads to complete.
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Fig. 4. Execution behavior of OpenMP seismic code
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and share the work among its threads. We either prefetch datain the previous iteration,
as in the code of Fig. 3, or use critical regions and arrays of variables. Unfortunately,
each iteration of the outer i-loop requires a new parallel region if we are to retain the
sequential program structure and the overheads for these are potentially high.

2.3 Thread Subteam as a Solution

Nested parallelism can dynamically create, exploit and terminate teams of threads and
is well-suited to codes with needs that change over time. Ourcode structure is static.
The relative amount of data and computation does not vary, and we expect the number
of participating threads and their roles to remain the same.Nested parallelism is more
powerful than we require. Thus, we propose a simpler mechanism that allows us to bind
the execution of a worksharing or barrier construct to a subset of threads in the current
team. Only the threads in the specified subteam participate in its work, including any
barrier operations encountered. To synchronize the actions of multiple subteams, we
may use existing OpenMP constructs and take advantage of theshared memory.

To realize this idea, we define an “onthreads” clause for worksharing and barrier di-
rectives. In contrast to nested parallelism, it refers onlyto existing threads. This clause
permits us to specify that a worksharing directive is applied to asubteam of threads:
participation in the associated work is restricted to the specified members. In particular,
implicit and explicit barriers within the code it encloses do not block threads that are
not part of the subteam. This clause would require minimal change to the current speci-
fication. In addition we can define an “onthreads” directive that could enclose arbitrary
structured block of code within a parallel region. Work in the block would be carried
out by the specified subteam of threads.

Using the thread subteam notation, we can rewrite the example code in Fig. 3 to that
in Fig. 6. Line 5 and line 14 use the “onthreads” clause to limit the I/O to individual
threads, while line 7 defines a subteam of threads to process the data. The integer ex-
pressions in parentheses use OpenMP’s thread-ids and arraysection notation to specify
the desired subset of threads. The implicit barrier at line 12 applies only to the threads
defined in the subteam from line 7.

1. #pragma omp parallel
2. { #pragma omp single
3. ReadFromFile(0,...); //preloads data for first iteration of i-loop
4. for (i=0; i<N; i++) {
5. #pragma omp single onthreads(0)
6. ReadFromFile(i+1...); //preload data for next iter. of i-loop
7. #pragma omp onthreads ( 2:omp get num threads()-1 )
8. for (j=0; j< ProcessingNum; j++)
9. #pragma omp for schedule(dynamic)
10. for (k=0; k<M; k++) {
11. ProcessData(); //user configurable data processing functions
12. } //here is the group-internal barrier
13. #pragma omp barrier //this ensures we are ready for next iter.
14. #pragma omp single onthreads(1)
15. WriteResultsToFile(i);
16. }
17. }

Fig. 6. OpenMP seismic data processing kernel with the “onthreads”directive
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Additional syntax could enable the programmer to name thesesubsets. New run-
time library routines would be provided to get the number of threads in a (named)
subteam and a subteam-internal consecutive thread number.A programmer might also
want to permute the order of threads in a subteam to specify schedules that enforce a
certain work distribution, e.g. to support data reuse. Although none of these (except
possibly the library routines) are essential, they would greatly increase the expressive
power of this construct. Interactions between subteams could be made explicit by pro-
viding notation for communication between subteams. This might help a programmer
reason about the structure of this communication and avoid programming errors such
as deadlock. The same construct might also enable point-wise synchronization between
threads in a single subteam to avoid barriers. In the code fragment of Fig. 7, a post-
wait notation does this succinctly and we have named the thread team, whose order is a
permutation of the original thread numbers (used here only to illustrate the concept).

#pragma omp parallel
{

#pragma omp team CompthreadsReordered = threads(omp get num threads()-1:2:-1)
for (i = 0; i < N; i++) { //executed by all threads

#pragma omp single onthreads(0)
{ ReadFromFile(i);

#pragma omp post (dataready[i]) //signals reading is complete
} //thread(0) independently does this reading and posting
........
#pragma omp on CompthreadsReordered
{ //subteam starts to work

#pragma omp wait (dataready[i]) //after data is ready

Fig. 7. Excerpt from OpenMP code with named subteam and post/wait

The ability to divide work among subteams of threads, and thus to have different
subteams working concurrently and independently, seems tobe a fairly natural exten-
sion to the current API and it has a variety of potential uses.It would likely simplify the
use of OpenMP within third party libraries. It also enables the specification of multi-
disciplinary code ensembles and permits components written in traditional program-
ming languages to interact without the need to provide external file-based interactions.
It supports the simpler case of multilevel parallelism witha fixed team of threads with-
out the extra overheads and burden of nested parallelism.

3 Worksharing and Synchronization Across Loop Nests

Scientific and engineering computations must exploit largenumbers of threads, not only
in emerging, very large shared-memory systems, but also in smaller SMPs with CMPs.
Writing scalable code requires special care. Two of the authors previously proposed a
set of language features to enable the parallelization of multiple levels of loop nests
[8]. These features specify an appropriate execution schedule and assign threads to
loop levels, as well as additional synchronization that enables a pipelined execution
scheme in the LU benchmark from the NAS Parallel Benchmarks [2]. They addressed
scalability limitations in several applications despite the presence of sufficient inherent
parallelism.



VII

3.1 The LU Example

The LU application benchmark uses the symmetric successiveover-relaxation (SSOR)
method to solve a seven band block-diagonal system. Figure 8illustrates its lower tri-
angular phase. References to values of elements of arrayv in line 4 create dependences
between loop iterations that prevent straightforward parallelization. However, a wave-
front or a pipelined technique can enable considerable levels of parallelism to be ex-
ploited, since the value of an element ofv can be computed once the new values are
available from the previous iteration in each of the three dimensions.

A wave-front restructuring of the code reveals parallelismthat can be expressed with
the existing OpenMP parallel directive to update points on adiagonal plane concur-
rently. However, this method suffers from poor cache utilization. A pipelined approach,
in which data are partitioned as blocks in selected dimensions, usually gives better
cache performance. We illustrate the differences between wave-front and pipelined par-
allelism in Fig. 9. Expression of the parallelism in two dimensions would reduce the
cost of pipeline startup and shutdown, and support good cache performance for this
kernel. However, OpenMP currently can only successfully exploit parallelism in one
dimension. Parallelization in multiple dimensions requires nested parallelism, which
results in multiple one-dimensional pipelines and incurs high overheads [7].

1. for (k = 1; k < nz; k++) {
2. for (j = 1; j < ny; j++) {
3. for (i = 1; i < nx; i++) {
4. v[k][j][i] =

v[k][j][i] +
a*v[k][j][i-1] +
b*v[k][j-1][i] +
c*v[k-1][j][i];

5. . . .
6. }
7. }
8. }

Fig. 8. The LU computational kernel
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3.2 Thread Topology

We introduce the notion of a thread topology to support pipelined algorithms. A thread
topology does not create new threads; instead, itreshapes the thread (sub)team and
associates a new naming scheme with existing threads. We canuse the topology to
specify a variety of new schedules for worksharing directives. Our syntax requires the
programmer to provide the number of dimensions in the topology and the coordinates
in each dimension. We will also need a default strategy for mapping the linearly num-
bered threads to a Cartesian grid. The basic syntax of specifying a topology is:

#pragma omp topology name(ndim,start,stop,stride,fixedorder)

wherename defines a name of the topology. Thendim argument specifies the num-
ber of dimensions. The argumentsstart, stop, andstride are arrays with one
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entry per dimension to specify the topological shape.fixedorder is a Boolean vari-
able that tells the compiler whether or not the default strategy for associating these
threads with the linear thread numbers must be applied. If not, the system can choose
any mapping of threads to the topology. For example, if 16 threads exist, the directive
can reshape threads into a4 × 2 × 2 grid with coordinates fromstart[]=(0,0,0) to
stop[]=(3,1,1) andstride[]=(1,1,1) or any other numbering scheme we desire that
has 16 threads.

We can associate a defined topology with a worksharing construct using the “on-
threads” clause. We use standard section notation to specify the target of the work-
sharing directive in each topological grid dimension. We use “:” to denote the entire
dimension of an array. Dimensions not involved in the worksharing are marked via a
dummy “*” and the computation is replicated in those dimensions. A runtime function
“omp get coord(name,idim)” can obtain coordinates of a thread in the grid topology.

We illustrate the use of our topology notation in Fig. 10 for the LU computational
kernel. We introduce a 2-D logical grid of threads with the same number of threads in
each dimension. Our thread subteam clause maps the iterations of two different loops to
threads using our grid topology through two worksharing constructs (this notation does
not conform to current OpenMP rules). The 2-D topology is used to distribute the work
in thei andj loop nests among threads.

Finally, we need a way to define synchronization between threads in a topology. We
cannot use existing features of OpenMP, since the interaction required is not between
iterations but threads. This is achieved here usingpost andwait directives with our
2-D thread-ids. In our example, each thread of the topology must wait for its neighbors
to the left and below it to finish their computation except forwhere the thread does
not have a neighbor. For instance, thread 0 does not have a neighbor and can start
right away. Once its work is done, a thread signals its neighbors to the right and above
that they can continue. The ability to synchronize between threads is very important for
implementing the pipelined approach in the LU algorithm. Ingeneral, it enables loosely
synchronous algorithms [12].

4 Related Work

The NanosCompiler team has proposed groups of threads in association with parallel
regions [5, 6]. Their notation permits the user to specify the number of independent
teams of threads that will be created. Since these thread groups are associated with the
parallel region, additional notation is required to assignwork to the individual groups.
They also propose extensions to express the precedence relations in pipelined computa-
tions. These extensions are also valid in the scope of nestedparallelism and are based on
the ability to name worksharing constructs and to specify a predecessor-successor rela-
tionship between them to support synchronization. Our topology simplifies specifying
the desired target sets and is more intuitive than the predecessor-successor relationship.
Furthermore, it does not rely on nested parallelism and the associated overhead.

There have been a variety of proposals for multilevel loop parallelism. The SGI
compiler for the Origin [11] provides the SGI NEST clause on the OMP DO directive.
The NEST clause requires at least two variables as argumentsto identify indices of
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mystart([0] = 0; mystart[1] = 0; ... // assign values to mystart[:] and mystop[:]
#pragma omp parallel {
#pragma omp topology grid(2,mystart,mystop,mystride,1)

// arrange threads logically into a square called grid
iam1 = omp get coord(grid,1);
iam2 = omp get coord(grid,2); // my coords in grid

1. for (k = 1; k < nz; k++) {
#pragma omp wait grid (iam1-1,iam2) // wait for thread below to complete its portion
#pragma omp wait grid (iam1,iam2-1) // wait for thread on left to complete its portion
#pragma omp for nowait onthreads(grid(:,*)) // share out to first dimension of grid

2. for (j = 1; j < ny; j++) {
#pragma omp for nowait onthreads(grid(*,:)) // share out to second dimension of grid

3. for (i = 1; i < nx; i++) {
4. v[k][j][i] = v[k][j][i] + a*v[k][j][i-1] +

b*v[k][j-1][i] + c*v[k-1][j][i];
5. . . .
6. }
7. }

#pragma omp post grid(iam1,iam2+1) // indicate to thread on right that it is ready
#pragma omp post grid(iam1+1,iam2) // indicate to thread above that it is ready

8. }
}

Fig. 10. The multilevel LU computational kernel using thread topology

subsequent DO-loops, which must be perfectly nested. It informs the compiler that
the entire set of iterations across the identified loops can be executed in parallel. The
compiler can then linearize the iteration space and divide it among the threads. Intel has
proposed a new directive to enable wavefront execution schema. Although this might
sometimes be appropriate, we expect that it will be hard to achieve good data locality
in most cases. Our proposal explicitly enables control of work distribution and, thus,
enables the expression of data locality.

New programming languages [1, 3, 4] are being proposed to facilitate high end ap-
plication development in a multithreading environment. They address problems faced
by levels of scaling that are far from those currently envisaged for hierarchical SMPs,
and they provide a wealth of new ideas related to correctness, locality, efficiency of
shared memory updates, and more. We will explore these ideasin the context of OpenMP.

5 Conclusions

OpenMP is a widely deployed shared-memory programming API that offers the promise
of performance and ease of use. It seems possible that the judicious addition of language
features that increase the power of expressivity might alsoimprove the achievable per-
formance of a variety of OpenMP codes. In this paper, we introduced a unified notation
for sharing work among subteams of threads and for flexibly executing multiple levels
of loop nests in parallel. Table 1 lists the proposed new OpenMP constructs and clauses
in the paper. This approach fits in well with existing features of the API. As our fu-
ture work, we will conduct more detailed performance study of the proposed subteam
concept implemented in the OpenUH compiler.
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Proposed OpenMP Directives/Clauses Description
omp onthreads / onthreads (clause only)Defines thread subteams for work sharing

omp topology name Defines the thread topology
omp post / omp wait Uses for point-wise synchronization

Table 1. Proposed new OpenMP Constructs and Clauses
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