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Abstract 

This paper reports on the efforts to enable fully scalable simulations of 
Dislocation Line Dynamics (DLD) for direct calculations of strength of 
crystalline materials.  DLD simulations are challenging and do not lend 
themselves naturally to parallel computing.  Through a combinations of novel 
physical approaches, mathematical algorithms and computational science 
developments, a new DLD code ParaDiS is shown to take meaningful advantage 
of BG/L and, by doing so, to enable discovery class science by computation.  

I. Introduction: promise and challenge of Dislocation Line Dynamics 

Discovery of dislocations is one of the most fascinating developments in the history of 
materials physics.  In 1934, three eminent scientists, E. Orowan, M. Polanyi and G. Taylor, 
simultaneously and independently published three papers [1-3] proposing exactly the same 
hypothesis to explain a ubiquitous yet perplexing observation of plastic deformation in crystals. 
While it was firmly established that crystals yield to external loads by shearing atomic bonds 
across crystal planes, the maximum loads that crystals were observed to sustain were orders of 
magnitude below levels that a simple simultaneous bond-shearing theory of crystal deformation 
would predict. The theory of dislocations explained this fundamental discrepancy by proposing 
that atomic shearing takes place one bond at a time, by propagating topological wrinkles – 
dislocation lines – along the crystal planes (this is what a smart housekeeper does to move a 
heavy carpet lying on the floor).  Remarkably, while explaining much of the observed behaviors, 
dislocations remained a beautiful hypothesis for over 20 years until they were first observed with 
the then newly invented experimental method of Transmission Electron Microscopy [4].   Over 
time, the principal role of dislocations in crystal strength and ductility and numerous other 
properties of crystalline materials has been established firmly and incontrovertibly.   

The beauty of dislocation theory is its economy of means: it distills the whole complexity 
of crystal strength and ductility into the motion and interaction of dislocations line defects that, 
even in the worst circumstances, occupy no more than about 10-5 of the material volume while the 
rest of the material remains essentially perfect and featureless. Thus, if one were to simulate, on a 
computer, dislocation motion in response to external loads, material strength could be directly 
computed. Such a direct simulation turns out to be a daunting task given that dislocation motion 
takes place on the length and time scales of nanometers and picoseconds whereas the strength 
response is defined by the collective motion of huge numbers of dislocation lines on the scales of 
tens of microns and seconds. Consequently, even though material scientists have known for over 
70 years that crystal strength is defined by dislocation physics, it has been impossible thus far to 
put this knowledge to practical use and to compute crystal strength.  As a result, the fact that 
dislocation physics defines material strength has had little or no impact on practical engineering 
applications that continue to rely on empirical knowledge and phenomenological descriptions of 
material, such as in designing a new bridge or a car.  The direct simulation approach of 



Dislocation Line Dynamics (DLD) is being advanced to bridge this disconnect between the 
fundamental physics of dislocation motion and engineering mechanics of material strength.  

 The basic premise of DLD is to represent the material subjected to deformation by a 
volume populated by dislocation lines and evolve this population using the known equations of 
dislocation theory [5,6].  DLD is an interface-tracking or, rather, a line-tracking approach. A 
single step of a DLD simulation consists of (1) computing forces on the properly discretized 
dislocation lines, (1) moving the lines in response to forces, (3) identifying instances in time and 
space when and where dislocation lines collide (intersect) or dissociate and (4) re-meshing the 
lines to better represent their evolving geometry. In principle, a DLD simulation can be used to 
subject the virtual crystal to arbitrary loading conditions (straining rate, temperature, pressure, 
etc) and to compute how much stress the material can sustain before collapsing under those 
conditions. Furthermore, not only the macroscopic average response of the material can be 
computed but also the underlying evolution of the dislocation network can be tracked in full 
detail.  Thus, DLD is not only a versatile virtual material-testing machine but simultaneously an 
amazing computational in situ microscope.  

Unfortunately, the ability of DLD approach to deliver on its promise is severely limited 
by the astonishing amount of calculations required to evolve large dislocation ensembles over 
long time intervals.  Massively parallel computing appears to be the only viable approach to 
closing the wide gap between the levels of computational performance afforded by the existing 
DLD codes and that required to compute crystal strength.  Development of an efficient code for 
DLD simulations on massively–parallel computing platforms has been the objective of the 
ParaDiS (Parallel Dislocation Simulator) project at LLNL since its inception in 2001. The 
ParaDiS team includes physicists and computer scientists working together to develop 
mathematical algorithms and the parallel code capable of handling the multiple challenging 
aspects of DLD simulations at very large scales.    

Among the challenges of parallel DLD simulations, the first is the need to accurately 
track the constantly evolving topology of dislocation line network across the boundaries of 
computational sub-domains – this is a difficult task given the complexity of possible topological 
scenarios and the distributed ownership of topological data. Written in C, more than half the lines 
of ParaDiS code are dedicated to a consistent parallel treatment of the evolving line topology.  
The second computational challenge is to properly cope with the extreme spatial and temporal 
heterogeneity of dislocation network that evolves. Dislocations are known to become lumped into 
dense bundles separated by large volumes of dislocation-free material in which periods of very 
fast motion are interspersed with periods of relative calm.  Such behaviors are similar to the 
complex collective behaviors encountered in computational astrophysics or plasma 
hydrodynamics.  This commonality stems, in part, from the dominance of long-range interactions 
in all these problems, including DLD.  This long-range interaction, in itself, presents yet another 
challenge for parallel implementation.  Lastly, the same long-range interactions between 
dislocation lines become singular at close encounters, causing extreme stiffness in the equations 
of motion of dislocation lines.  

The ParaDiS team and its collaborators have made significant progress addressing some 
of these and other difficulties.  Making DLD into a powerful method for computational prediction 
of material strength necessitated new developments in dislocation theory, materials physics, and 
mathematical algorithms: most of these developments have been presented in the literature [7-
11].  This paper reports on the computer science aspects of ParaDiS development with the 
particular emphasis on overcoming the challenges of DLD simulations on the massively-parallel 



Blue-Gene/L platform. The next section briefly describes main mathematical algorithms 
implemented in ParaDiS. Section 3 presents and analyses the data of ultra-scale ParaDiS 
simulations on Blue-Gene/L partitions ranging from 1,024 to the full-size 131,072 processors.  
Section 4 contains a brief discussion of science implications of ParaDiS simulations on Blue-
Gene/L followed by a summary in section 5. 

II. ParaDiS algorithm 

ParaDiS represents the dislocation line network as a set of nodes connected to each other by 
straight line segments.  Because of the conservation of topological charge (the Burgers vector), 
the lines can not terminate anywhere but can branch at a node preserving the net charge balance 
at the node.  Therefore, all nodes must have at least two neighbor nodes to which they are 
connected, and there is no upper limit on the node connectivity.  Dislocation motion corresponds 
to motion of the nodes in space resulting in changes in the network geometry, i.e. length and 
orientation of the connecting segments. In addition, a variety of topological events can take place 
during which the connectivity of the network changes requiring the creation and/or deletion of 
nodes and segments. Among the critical events are (a) node dissociation in which a node with 
connectivity greater than four may split into two separate nodes while still preserving Burgers 
vector balance, and (b) collisions which occur when two unconnected dislocation lines intersect 
or come into contact with each other. To reduce complexity of topological operations and to 
enable efficient bookkeeping of network topology across the boundaries of computational 
domains, all such topological operations are logically reduced to combinations of events of only 
two types: split_node and merge_node.  The split_node operator moves selected connections 
from an existing node to a newly created node, and introduces a new connection between the 
existing node and the new node if it is needed to preserve the balance of the topological charge of 
the network. An example of the split_node operation is shown in Figure 1. The merge_node 
operation is the inverse of split_node: it collapses two existing nodes into one by moving all of 
the connections from one node to the other, resolving any topological inconsistencies that result, 
and deleting one of the nodes. Any topological event in the dislocation line network can be 
represented as a combination of these two basic operators. Furthermore, the balance of 
topological charge is maintained for as long as it is preserved in each split_node and merge_node 
operations.  Use of these two operators considerably simplifies treatment and bookkeeping of 
topological events in ParaDiS. 

 

Figure 1: Topological steps taken during a 
split_node operation performed on node 0 that 
initially has four connections, as shown in (a). 
(b) New node 5 is created taking two of four 
connections from node 0.  (c) An additional 
connection between nodes 0 and 5 is made, if 
necessary, to maintain the balance of topological 
charge. 

 

 



The nodes move in response to forces exerted by external loads and by the interactions 
among all line segments in the dislocation network.  The forces on a given node can be accurately 
computed using analytical equations supplied by the classical continuum theory of dislocations 
[12].  On the other hand, nodal response to these forces is ultimately defined by the details of 
atomic motion in the geometric center of the dislocation line around the node, the so-called 
dislocation core.  We rely on dislocation theory, atomistic simulations and experiments to define 
equations for nodal motion in response to the nodal forces [8,9]. Computing nodal forces 
resulting from the interaction among the dislocation segments is the bulk of the computational 
expense in ParaDiS.  The unit element of the force calculation is the evaluation of the force 
exerted by a single straight segment on a dislocation node.  Depending on the node connectivity, 
one such calculation takes on the order of a few microseconds.  Given that the interaction is long-
ranged, decaying as ~1/r, and the number of segments Ns in the network can be very large (many 
millions), the expense of computing the force on every node can be overwhelming if a 
straightforward O(Ns

2) algorithm is used. To reduce computational complexity to O(Ns), we 
developed an efficient  Fast Multipole Method (FMM) algorithm in which the effect of well 
separated groups of dislocations is lumped into a hierarchy of point-like sources (moments) of 
remote force.  Our version of FMM uses a regular grid decomposition of the entire simulation 
volume and Taylor expansion coefficients to represent the distribution of the remote force in 
every grid cell of the multipole hierarchy. So far, all ParaDiS simulations have been performed in 
a cube closed into a 3D torus by periodic boundary conditions (PBC). To account for the long-
range periodic image interactions, our version of FMM uses a correction procedure suggested in 
[13].  The calculation of nodal forces is broken into two components: (1) evaluation of forces 
from nearby segments using direct analytical expressions (typically more than a thousand of such 
segments for each node in the dislocation network) and (2) evaluation of forces exerted by all 
other, remote segments using the FMM algorithm.   

 The classical continuum theory of dislocations predicts that interaction forces among 
dislocations become very large (actually diverge as ~1/r) at close distances causing considerable 
stiffness of the nodal equations of motion. To remedy this non-physical singularity, various ad 
hoc cut-off procedures have been devised [12]. While working on ParaDiS, we developed a non-
singular version of the continuum theory of dislocations that dispenses with the cut-offs by 
smearing out a dislocation line into a distribution of lines (a bundle) with a characteristic radius a 
[7].  The new non-singular theory is free of inconsistencies that plagued the application of the 
classical singular theory in close range dislocation interactions.  Furthermore, by choosing an 
appropriate value for radius a, it is possible to significantly reduce the stiffness of the nodal 
equations of motion.  

 At the heart of our efforts to enable DLD simulations on massively parallel computers is 
the issue of load balancing.  As stated, in the course of a straining experiment, whether real or 
virtual, dislocation lines multiply incessantly and gradually organize themselves into increasingly 
heterogeneous (lumpy) structures where large numbers of lines bundle together into tight braids 
or walls leaving a lot of space devoid of any dislocations in between.  The scales of such 
heterogeneities of dislocation structures range from a few nanometers to multiple microns and 
possibly beyond.  Given this vast range and the fact that the structure is constantly evolving 
during the straining simulation, it was not even clear at the outset if efficient domain 
decomposition and load balancing among many thousands of processors was at all possible. In 
ParaDiS, we use a recursive coordinate sectioning algorithm [14] to partition the cube-shaped 
simulation volume into non-overlapping spatial domains.  Given a dislocation configuration, 
initial partitioning is performed using an estimated cost of computing forces on the nodes owned 
by a given processor.  First, the cube is divided into slabs along X direction so that the estimated 
cost is equally partitioned among the slabs.  Second, similar partitioning is done along Y direction 



within each slab by assigning equal estimated cost to each “column” within each slab.  Finally, 
each column is partitioned along Z direction into “cells” such that each cell partition is expected 
to have approximately equal cost (Figure 2). Subsequent re-balancing is performed by monitoring 
how much time each CPU spends doing force evaluation (by far the most expensive element) on 
each compute cycle. Then, between the cycles, the boundaries of cells, columns and slabs are 
moved recursively to equalize the compute time among the neighboring domains.  Our earlier 
experience running ParaDiS generally attested to the efficiency of its algorithms [15] but also 
exposed significant problems that had to be addressed in order to achieve sustainable load 
balancing among 105 domains. These improvements will be discussed in more details in the next 
section.     

 

 

Figure 2: Decomposition of the simulation space into 3 × 3 × 
2 domains along X, Y, Z axes. 

 

 

 

III. ParaDiS on Blue-Gene/L: growing (together) pains  

BlueGene/L (BG/L) is a massively-parallel computing system developed by IBM in partnership 
with the US DOE/NNSA Advanced Simulation and Computing (ASC) program [16].  The system 
consists of 65,536 compute nodes each node containing two processors with 512 Mb of memory 
per node.  The system’s software provides two modes of operation for application programs.  In 
communication coprocessor mode there is one MPI task per node with one processor executing 
the application while much of the message passing communication is handled by the second 
processor. Virtual node mode allows two MPI tasks per node, one task per processor.  The 
machine recently achieved a sustained speed of 280.6 teraOPS on the Linpack benchmark at 
Lawrence Livermore National Laboratory, close to its theoretical peak performance of 360 
teraOPS.   

ParaDiS has had a history on BG/L.  That the new code might be able at some point to 
take advantage of the BG/L architecture was realized early, since DLD simulations have a 
relatively small memory footprint while commanding extremely large numbers of OPS per degree 
of freedom during each time step. In the summer of 2003, before the machine procurement to 
LLNL was approved, the code’s early version, then known as dd3d, was successfully ported to 
the early 32-node hardware prototype of the BG/L system.  The uniqueness of ParaDiS 
development on BG/L was that both the machine and the code grew together, from their infancy 
to adulthood.  An “adolescent” stage of this maturation process was reported in our paper 
presented at SC04 [15].  By the time the draft paper was due in April 2004, the code had ran on 
all 4,096 (4K) nodes of BG/L then available.  Over that summer, the machine grew to 16,384 
(16K) nodes, and the results of ParaDiS scaling runs on the enlarged machine were reported at 
the SC04 Conference in November 2004.   As the code grew and matured it was successfully 
executed on BG/L as the hardware grew over time from its original 32-node prototype to the full 



system configuration of 65,536 (64K) nodes with 131,072 (128K) processors.  This process was a 
slow (and sometimes painful) one as each step up to a larger number of processors revealed new 
and unexpected behaviors and limitations in the algorithms.  Over time, the code has been 
enhanced and refined to its current state where it has successfully scaled to the full 131,072 
processor BG/L system. 

This section describes the scaling performance of ParaDiS on BG/L. Typically, both 
weak and strong scaling performance data are given to gauge code performance on parallel 
computer architectures. Weak scaling tests assume that a change in the problem size should result 
in a proportional change of the computational cost. While this can be achieved by periodic 
replication of a small ParaDiS simulation, such configurations are not representative of the real 
system that grows increasingly heterogeneous as the simulation progresses. In this paper we 
present data only on more meaningful strong scaling tests of ParaDiS on BG/L.  The problem 
selected for the scaling tests was randomly selected from an actual production BG/L simulation 
that was performed to examine the effects of extremely high straining rates (104 s-1) on crystal 
strength and dislocation microstructure (see section IV). No additional optimization was 
performed to enhance the code performance in the scaling simulations: the scaling runs were 
performed using exactly the same runtime parameters as in the long production simulation.  The 
test problem consisted of a 10 x 10 x 10 µ3 cube containing about 10 million dislocation nodes.  
Scaling tests were executed at processor counts ranging from 1K to full systems runs at 128K.  
The 64K and 128K tests were executed in the virtual node mode and all other tests were executed 
in the co-processor mode.  

 

 

 

Figure 3:  Estimated time required 
to compute forces on a single CPU 
of BG/L as a function of the number 
of dislocation segments Ns. The time 
scales as O(Ns) provided the number 
of FMM subcells is chosen 
optimally.  

 

 

Given that most of every compute cycle is taken by the calculations of forces on 
dislocation segments, it is critically important to minimize this cost. Assuming that the segments 
are distributed uniformly in the volume (a very strong assumption!), the single CPU time required 
to compute the forces can be approximated as a function of the number of segments, N, the 
number of FMM subcells, K, the order of the multipole expansion of the lumped sources, M, and 
the order of the Taylor series expansion used for interpolation of the far field stress, S. It turns out 
that, compared to all other routines, the local segment-segment force calculations (segsegforce) 
and evaluation of the Taylor expansion coefficients for the local stress due remote segments 



(mktaylor) are by far the costliest.  The estimated total time spent calculating forces during a 
single integration time step on a single processor is approximately1 

mktayloresegsegforc CKC
K
NKNC ⋅+⋅= 21627),(

2
 ,          (1) 

where Csegsegforce  = 13.2µs and Cmktaylor = 553µs on BG/L for M=2 and S=4. To achieve the desired 
O(N) scaling, the number of multipole subcells K is selected from the powers of 8 to minimize 
the total cost for a given number of segments N, as shown in Figure 3. 
 

The minimal BG/L partition size of our actual timing runs was 1,024 processors because 
it was impossible to fit all of the data for 9,558,824 dislocation nodes in the memory on the 
smaller partitions. Still, it is possible to use formula (1) to estimate the speedup (in the force 
calculations only) from the single processor to the full machine.  Assuming that communication 
between CPUs is instantaneous and that 9558824 degrees of freedom are evenly distributed over 
the whole machine, the most optimistic (perfect scaling) estimate for the time spent calculating 
forces during a time-step is approximately 1.2 s. A more realistic estimate leads to a higher 
estimate, at 2.7 s.  This latter value accounts for our deliberate decision, in the present version of 
ParaDiS, to compute force interactions multiple times if the degrees of freedom are owned by 
different processors rather than increase the inter-processor communication between during the 
force calculation. Comparing this estimate to the achieved timing of 4.8s (Table 1) yields a 56% 
utilization of the single processor performance on the full BG/L.  This figure is consistent with 
another measure of load balance presented in Figure 6 to be discussed below.  

Table 1:  Time spent on force calculations in a single cycle of ParaDiS simulation on BG/L 
partitions from 1K to 128K processors 

CPU count Dislocation nodes Total  time 

(sec) 

Time spent in force 
calculation (sec) 

1024 9558824 278.71 267.75 
16384 9558824 27.71 24.76 
32768 9558824 15.44 12.92 
65536 9558824 10.40 7.38 

131072 9558824 8.91 4.85 

Table 1 summarizes the total single-cycle times and the times spent on force calculations 
measured in the series of scaling tests.  The code exhibits good overall scaling with increasing 
processor count showing considerable speedups up to the full machine size with 131,072 
processors.  This performance is outstanding given the inherently challenging character of 
Dislocation Line Dynamics simulations.  As mentioned, the greatest of all difficulties is the 
naturally developing heterogeneity of the dislocation density.  For example, among 64 x 64 x 64 
FMM subcells used in the full machine simulation, some of the subcells located in areas where 
dislocations have “lumped” together in high density formations contain many hundreds of 
dislocation nodes while numerous other subcells are completely empty.  Given this extreme 
spatial non-uniformity, the ability to dynamically balance the computational load has been 
absolutely critical to scaling to large numbers of processors.   

                                                 
1 On each integration time-step the local force routine segsegforce is called twice.  



As was described in the previous section, the mechanism used in ParaDiS to partition the 
computational load and to maintain load balance dynamically is by a hierarchical recursive 
sectioning algorithm combined with domain relaxation.  This algorithm is able to track the 
constantly changing distribution of computational load with admirable consistency.  Shown in 
Figure 4 are two planar cross-sections through the computational volume.  The cross-section on 
the left shows where the dislocation lines intersect the cutting plane, whereas the cross-section on 
the right shows the distribution and shapes of compute domains that develop through load 
relaxation to deal with that heterogeneity at the same instant in time.  Clearly, the load balancing 
algorithm goes a great distance trying to maintain an equal load distribution and generally does a 
good job tracking locations with very high dislocation densities. Remarkably, while the volumes 
of the largest and the smallest computational domains in this simulation differ by astounding 
three (!) orders of magnitude, the sustained load balance remains around 80% for most of the 
tested partition sizes dropping to 64% for the full 128K partition of BG/L (Figure 6).  

 

Figure 4:  (a) Dislocation distribution in a single planar cross-section through the 
computation volume.  (b) The instantaneous distribution of computational domains 
attained in the same region of the computation volume as in (a).  

The overall rate of speedup does drop off as the processor count increases. This less than 
perfect speedup is more pronounced for the overall cycle time shown in Figure 5 while the 
speedup for the time spent on force calculations is significantly better.  There are several factors 
accounting for these behaviors.  In ParaDiS, work load is balanced based on the amount of time 
each processor spends calculating forces on the dislocation segments.  Although the force 
calculations consume the dominant portion of computing time, there are several other relatively 
expensive tasks whose timing is also less predictable from cycle to cycle.  As the processor count 
increases and ParaDiS works to minimize the time spent in the force calculations, the amount of 
time spent in these other tasks also decreases, but not as significantly.  Hence, these other tasks 
begin to use a larger portion of the overall time with adverse effects on scaling. Another factor is 
that in ParaDiS, the majority of processor-to-processor communications are not just nearest-
neighbor, but also “nearby neighbor”.  As more and more processors are used, the number of 
nearby neighbors can increase significantly resulting in a larger fraction of the compute cycle 
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time spent communicating.  This communication overload increases with the increasing number 
of processors and becomes a factor at extremely large processor counts.  Our use of the recursive 
partitioning algorithm contributes to this problem because sub-volumes assigned to different 
processors can not adjust their shapes independently but are constrained to relax within their 
respective columns and slabs. Working to re-balance the evolving load, this algorithm leads to the 
development of sub-volumes with large aspect ratios (Figure 4) that also tend to have large 
numbers of nearby neighbors. Another potential drawback of recursive partitioning manifests 
itself is slow overall relaxation of load imbalance – depending on the number of domains and the 
initial problem imbalance, this relaxation can take hundreds of cycles before achieving an optimal 
balance. To enhance the rate of relaxation of partition boundaries, we developed a procedure in 
which, rather than timing the whole cycle of force calculations for each processor, ParaDiS 
estimates the per-processor load by counting the number of times the segsegforce calls each 
processor would make and shifting the domain boundaries to balance the counts. Such “empty” 
cycles are computationally expedient and can be repeated many times for a given instantaneous 
load distribution allowing to greatly enhance the relaxation rates and to rebalance the load more 
efficiently.  

 

 

Figure 5:  Relative overall speedup for 
strong scaling ParaDiS simulations on 
BG/L. 

 

 

 

 

 

The overall effectiveness of this dynamic load balancing algorithm is shown in Figure 6 for all 
tested processor counts.  In addition to a gradual reduction trend, there is a more significant drop 
in the load balance from 64K to 128K processors which was in large part due to the fact that the 
test problem was a bit too small for the full 128K partition2.  Still, the data does indicate that, for 
very large and heterogeneous simulations, the current load balancing algorithm may need 
improvement.  This is an area that remains to be explored to further improve the scalability of 
ParaDiS. 

 

                                                 
2To generate a large dislocation network that is representative of real crystals, we had to let our line 
network “grow” on BG/L.  Yet, we were unable to “grow” our simulation to a size that could take full 
advantage of the entire BG/L before the machine was taken down to prepare it for classified service in 
support of the NNSA stockpile science mission. 
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Figure 6: Percent load balance as a 
function of processor count. As a measure 
of load balance here we use the ratio of 
the average time spent by each processor 
performing its own force calculation, to 
the average time each processor spends 
computing the forces and waiting all other 
processors to finish their force 
calculations.   

 

 

IV. Glimpses of new physics from ParaDiS simulations 

Recently the new capability for DLD simulations embodied in ParaDiS was used to discover new 
mechanism of strain hardening in metals. The initial observation of anomalously strong 
dislocation tangles – multi-junctions - came directly from ParaDiS simulations.  These 
observations were subsequently verified by direct atomistic simulations and Transmission 
Electron Microscopy experiments.  Finally, very large scale ParaDiS simulations produced direct 
evidence for the key role of the multi-junctions in defining the anomalously large orientation 
dependence of strength in BCC metals – a behavior long observed and yet puzzling [17].   

 The simulation reported here is more than a scaling test.  It predicts the strength of a 
crystal under an extremely high straining rate.  Such simulations are needed for accurate 
predictions of the behavior of stockpile materials during nuclear device detonation and are an 
integral part of the NNSA ASC Program. Under the current moratorium on nuclear tests, 
simulations have grown to become one of the primary tools for certification of the aging nuclear 
stockpile.  In this particular simulation we examined the behavior of a single crystal of 
molybdenum under compressive straining at the rate 104 s-1. Initially, a few dislocations lines 
were inserted in the simulation volume.  Soon after the straining load was applied, dislocations 
started to multiply at a very high rate eventually increasing the number of dislocation lines by 
nearly three orders of magnitude.  The multiplication was so profuse that we had to successively 
increase the number of processors from the initial 64 CPUs (on the Thunder machine at LLNL) to 
128, 256, 1K and so on, all the way to 64K and 128K of BG/L. As a result, the number of 
dislocation nodes increased from a few hundred to over 12 million, still shy of the 15-20 million 
dislocation nodes which was our eventual target for this simulation.  

 We are just beginning to analyze this huge simulation3 and will present its results in the 
literature in a near future.  Preliminary indications are that dislocations appear to organize 
themselves into a network with fractal geometry – the significance and origin of this striking 
behavior remain unclear.  Figure 7 shows dislocations in a thin (1/16th of the total depth) cross-
section of the simulation cube at an intermediate stage of the simulation (at about 8 million 
dislocation nodes).  

                                                 
3 We are currently developing means to handle, analyze and visualize the immense amounts of data 
obtained in this simulation: the data for a single simulation snapshot takes about 3.5 Gb of disk space.   



 

Figure 7: A thin cross-sectional view through the simulation box – dislocations are shown as thin 
green lines.  

V. Summary  

 Development of predictive Dislocation Line Dynamics simulations bridges the gap 
between the physical mechanisms of material deformation at the atomistic scale and the practical 
mechanics of materials for engineering applications.  This is one of the cases where new ability to 
compute large and long brings about new physical insights and generates valuable engineering 
data that is impossible or impractical to obtain experimentally.  In addition to demonstrating the 
feasibility of DLD as a practical approach for predicting material’s strength by direct 
computation, a broader significance of this study is in demonstrating that even in a challenging 
physics application that does not lend itself naturally to parallel computing, it is still possible to 
take meaningful advantage of a massively parallel machine of the BG/L scale. We hope that this 
demonstration will be encouraging for researchers in computational astrophysics, computational 
plasma hydrodynamics and other fields where severe computational limits stand in the way of 
further progress in understanding.   
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are deeply indebted to Tim Pierce for his early courageous effort in ParaDiS code development 
and for subsequently sharing with us valuable ideas and insights. This work was performed under 
the Auspices of the U.S. Department of Energy by the University of California Lawrence 
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