
UCRL-CONF-222086

ParaDiS on Blue Gene/L:
stepping up to the challenge

Gregg Hommes, Athanasios Arsenlis, Vasily Bulatov,
Wei Cai , Richard Cook, Masato Hiratani, Tomas
Oppestrup, Moon Rhee, Meijie Tang

June 15, 2006

Supercomputing 2006
Tampa, FL, United States
November 11, 2006 through November 17, 2006

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

ParaDiS on BlueGene/L: stepping up to the challenge

G. Hommes, A. Arsenlis, V. V. Bulatov, W. Cai, R. Cook, M. Hiratani, T. Oppelstrup, M. Rhee
and M. Tang

Lawrence Livermore National Laboratory, University of California

Abstract

This paper reports on the efforts to enable fully scalable simulations of
Dislocation Line Dynamics (DLD) for direct calculations of strength of
crystalline materials. DLD simulations are challenging and do not lend
themselves naturally to parallel computing. Through a combinations of novel
physical approaches, mathematical algorithms and computational science
developments, a new DLD code ParaDiS is shown to take meaningful advantage
of BG/L and, by doing so, to enable discovery class science by computation.

I. Introduction: promise and challenge of Dislocation Line Dynamics

Discovery of dislocations is one of the most fascinating developments in the history of
materials physics. In 1934, three eminent scientists, E. Orowan, M. Polanyi and G. Taylor,
simultaneously and independently published three papers [1-3] proposing exactly the same
hypothesis to explain a ubiquitous yet perplexing observation of plastic deformation in crystals.
While it was firmly established that crystals yield to external loads by shearing atomic bonds
across crystal planes, the maximum loads that crystals were observed to sustain were orders of
magnitude below levels that a simple simultaneous bond-shearing theory of crystal deformation
would predict. The theory of dislocations explained this fundamental discrepancy by proposing
that atomic shearing takes place one bond at a time, by propagating topological wrinkles –
dislocation lines – along the crystal planes (this is what a smart housekeeper does to move a
heavy carpet lying on the floor). Remarkably, while explaining much of the observed behaviors,
dislocations remained a beautiful hypothesis for over 20 years until they were first observed with
the then newly invented experimental method of Transmission Electron Microscopy [4]. Over
time, the principal role of dislocations in crystal strength and ductility and numerous other
properties of crystalline materials has been established firmly and incontrovertibly.

The beauty of dislocation theory is its economy of means: it distills the whole complexity
of crystal strength and ductility into the motion and interaction of dislocations line defects that,
even in the worst circumstances, occupy no more than about 10-5 of the material volume while the
rest of the material remains essentially perfect and featureless. Thus, if one were to simulate, on a
computer, dislocation motion in response to external loads, material strength could be directly
computed. Such a direct simulation turns out to be a daunting task given that dislocation motion
takes place on the length and time scales of nanometers and picoseconds whereas the strength
response is defined by the collective motion of huge numbers of dislocation lines on the scales of
tens of microns and seconds. Consequently, even though material scientists have known for over
70 years that crystal strength is defined by dislocation physics, it has been impossible thus far to
put this knowledge to practical use and to compute crystal strength. As a result, the fact that
dislocation physics defines material strength has had little or no impact on practical engineering
applications that continue to rely on empirical knowledge and phenomenological descriptions of
material, such as in designing a new bridge or a car. The direct simulation approach of

Dislocation Line Dynamics (DLD) is being advanced to bridge this disconnect between the
fundamental physics of dislocation motion and engineering mechanics of material strength.

 The basic premise of DLD is to represent the material subjected to deformation by a
volume populated by dislocation lines and evolve this population using the known equations of
dislocation theory [5,6]. DLD is an interface-tracking or, rather, a line-tracking approach. A
single step of a DLD simulation consists of (1) computing forces on the properly discretized
dislocation lines, (1) moving the lines in response to forces, (3) identifying instances in time and
space when and where dislocation lines collide (intersect) or dissociate and (4) re-meshing the
lines to better represent their evolving geometry. In principle, a DLD simulation can be used to
subject the virtual crystal to arbitrary loading conditions (straining rate, temperature, pressure,
etc) and to compute how much stress the material can sustain before collapsing under those
conditions. Furthermore, not only the macroscopic average response of the material can be
computed but also the underlying evolution of the dislocation network can be tracked in full
detail. Thus, DLD is not only a versatile virtual material-testing machine but simultaneously an
amazing computational in situ microscope.

Unfortunately, the ability of DLD approach to deliver on its promise is severely limited
by the astonishing amount of calculations required to evolve large dislocation ensembles over
long time intervals. Massively parallel computing appears to be the only viable approach to
closing the wide gap between the levels of computational performance afforded by the existing
DLD codes and that required to compute crystal strength. Development of an efficient code for
DLD simulations on massively–parallel computing platforms has been the objective of the
ParaDiS (Parallel Dislocation Simulator) project at LLNL since its inception in 2001. The
ParaDiS team includes physicists and computer scientists working together to develop
mathematical algorithms and the parallel code capable of handling the multiple challenging
aspects of DLD simulations at very large scales.

Among the challenges of parallel DLD simulations, the first is the need to accurately
track the constantly evolving topology of dislocation line network across the boundaries of
computational sub-domains – this is a difficult task given the complexity of possible topological
scenarios and the distributed ownership of topological data. Written in C, more than half the lines
of ParaDiS code are dedicated to a consistent parallel treatment of the evolving line topology.
The second computational challenge is to properly cope with the extreme spatial and temporal
heterogeneity of dislocation network that evolves. Dislocations are known to become lumped into
dense bundles separated by large volumes of dislocation-free material in which periods of very
fast motion are interspersed with periods of relative calm. Such behaviors are similar to the
complex collective behaviors encountered in computational astrophysics or plasma
hydrodynamics. This commonality stems, in part, from the dominance of long-range interactions
in all these problems, including DLD. This long-range interaction, in itself, presents yet another
challenge for parallel implementation. Lastly, the same long-range interactions between
dislocation lines become singular at close encounters, causing extreme stiffness in the equations
of motion of dislocation lines.

The ParaDiS team and its collaborators have made significant progress addressing some
of these and other difficulties. Making DLD into a powerful method for computational prediction
of material strength necessitated new developments in dislocation theory, materials physics, and
mathematical algorithms: most of these developments have been presented in the literature [7-
11]. This paper reports on the computer science aspects of ParaDiS development with the
particular emphasis on overcoming the challenges of DLD simulations on the massively-parallel

Blue-Gene/L platform. The next section briefly describes main mathematical algorithms
implemented in ParaDiS. Section 3 presents and analyses the data of ultra-scale ParaDiS
simulations on Blue-Gene/L partitions ranging from 1,024 to the full-size 131,072 processors.
Section 4 contains a brief discussion of science implications of ParaDiS simulations on Blue-
Gene/L followed by a summary in section 5.

II. ParaDiS algorithm

ParaDiS represents the dislocation line network as a set of nodes connected to each other by
straight line segments. Because of the conservation of topological charge (the Burgers vector),
the lines can not terminate anywhere but can branch at a node preserving the net charge balance
at the node. Therefore, all nodes must have at least two neighbor nodes to which they are
connected, and there is no upper limit on the node connectivity. Dislocation motion corresponds
to motion of the nodes in space resulting in changes in the network geometry, i.e. length and
orientation of the connecting segments. In addition, a variety of topological events can take place
during which the connectivity of the network changes requiring the creation and/or deletion of
nodes and segments. Among the critical events are (a) node dissociation in which a node with
connectivity greater than four may split into two separate nodes while still preserving Burgers
vector balance, and (b) collisions which occur when two unconnected dislocation lines intersect
or come into contact with each other. To reduce complexity of topological operations and to
enable efficient bookkeeping of network topology across the boundaries of computational
domains, all such topological operations are logically reduced to combinations of events of only
two types: split_node and merge_node. The split_node operator moves selected connections
from an existing node to a newly created node, and introduces a new connection between the
existing node and the new node if it is needed to preserve the balance of the topological charge of
the network. An example of the split_node operation is shown in Figure 1. The merge_node
operation is the inverse of split_node: it collapses two existing nodes into one by moving all of
the connections from one node to the other, resolving any topological inconsistencies that result,
and deleting one of the nodes. Any topological event in the dislocation line network can be
represented as a combination of these two basic operators. Furthermore, the balance of
topological charge is maintained for as long as it is preserved in each split_node and merge_node
operations. Use of these two operators considerably simplifies treatment and bookkeeping of
topological events in ParaDiS.

Figure 1: Topological steps taken during a
split_node operation performed on node 0 that
initially has four connections, as shown in (a).
(b) New node 5 is created taking two of four
connections from node 0. (c) An additional
connection between nodes 0 and 5 is made, if
necessary, to maintain the balance of topological
charge.

The nodes move in response to forces exerted by external loads and by the interactions
among all line segments in the dislocation network. The forces on a given node can be accurately
computed using analytical equations supplied by the classical continuum theory of dislocations
[12]. On the other hand, nodal response to these forces is ultimately defined by the details of
atomic motion in the geometric center of the dislocation line around the node, the so-called
dislocation core. We rely on dislocation theory, atomistic simulations and experiments to define
equations for nodal motion in response to the nodal forces [8,9]. Computing nodal forces
resulting from the interaction among the dislocation segments is the bulk of the computational
expense in ParaDiS. The unit element of the force calculation is the evaluation of the force
exerted by a single straight segment on a dislocation node. Depending on the node connectivity,
one such calculation takes on the order of a few microseconds. Given that the interaction is long-
ranged, decaying as ~1/r, and the number of segments Ns in the network can be very large (many
millions), the expense of computing the force on every node can be overwhelming if a
straightforward O(Ns

2) algorithm is used. To reduce computational complexity to O(Ns), we
developed an efficient Fast Multipole Method (FMM) algorithm in which the effect of well
separated groups of dislocations is lumped into a hierarchy of point-like sources (moments) of
remote force. Our version of FMM uses a regular grid decomposition of the entire simulation
volume and Taylor expansion coefficients to represent the distribution of the remote force in
every grid cell of the multipole hierarchy. So far, all ParaDiS simulations have been performed in
a cube closed into a 3D torus by periodic boundary conditions (PBC). To account for the long-
range periodic image interactions, our version of FMM uses a correction procedure suggested in
[13]. The calculation of nodal forces is broken into two components: (1) evaluation of forces
from nearby segments using direct analytical expressions (typically more than a thousand of such
segments for each node in the dislocation network) and (2) evaluation of forces exerted by all
other, remote segments using the FMM algorithm.

 The classical continuum theory of dislocations predicts that interaction forces among
dislocations become very large (actually diverge as ~1/r) at close distances causing considerable
stiffness of the nodal equations of motion. To remedy this non-physical singularity, various ad
hoc cut-off procedures have been devised [12]. While working on ParaDiS, we developed a non-
singular version of the continuum theory of dislocations that dispenses with the cut-offs by
smearing out a dislocation line into a distribution of lines (a bundle) with a characteristic radius a
[7]. The new non-singular theory is free of inconsistencies that plagued the application of the
classical singular theory in close range dislocation interactions. Furthermore, by choosing an
appropriate value for radius a, it is possible to significantly reduce the stiffness of the nodal
equations of motion.

 At the heart of our efforts to enable DLD simulations on massively parallel computers is
the issue of load balancing. As stated, in the course of a straining experiment, whether real or
virtual, dislocation lines multiply incessantly and gradually organize themselves into increasingly
heterogeneous (lumpy) structures where large numbers of lines bundle together into tight braids
or walls leaving a lot of space devoid of any dislocations in between. The scales of such
heterogeneities of dislocation structures range from a few nanometers to multiple microns and
possibly beyond. Given this vast range and the fact that the structure is constantly evolving
during the straining simulation, it was not even clear at the outset if efficient domain
decomposition and load balancing among many thousands of processors was at all possible. In
ParaDiS, we use a recursive coordinate sectioning algorithm [14] to partition the cube-shaped
simulation volume into non-overlapping spatial domains. Given a dislocation configuration,
initial partitioning is performed using an estimated cost of computing forces on the nodes owned
by a given processor. First, the cube is divided into slabs along X direction so that the estimated
cost is equally partitioned among the slabs. Second, similar partitioning is done along Y direction

within each slab by assigning equal estimated cost to each “column” within each slab. Finally,
each column is partitioned along Z direction into “cells” such that each cell partition is expected
to have approximately equal cost (Figure 2). Subsequent re-balancing is performed by monitoring
how much time each CPU spends doing force evaluation (by far the most expensive element) on
each compute cycle. Then, between the cycles, the boundaries of cells, columns and slabs are
moved recursively to equalize the compute time among the neighboring domains. Our earlier
experience running ParaDiS generally attested to the efficiency of its algorithms [15] but also
exposed significant problems that had to be addressed in order to achieve sustainable load
balancing among 105 domains. These improvements will be discussed in more details in the next
section.

Figure 2: Decomposition of the simulation space into 3 × 3 ×
2 domains along X, Y, Z axes.

III. ParaDiS on Blue-Gene/L: growing (together) pains

BlueGene/L (BG/L) is a massively-parallel computing system developed by IBM in partnership
with the US DOE/NNSA Advanced Simulation and Computing (ASC) program [16]. The system
consists of 65,536 compute nodes each node containing two processors with 512 Mb of memory
per node. The system’s software provides two modes of operation for application programs. In
communication coprocessor mode there is one MPI task per node with one processor executing
the application while much of the message passing communication is handled by the second
processor. Virtual node mode allows two MPI tasks per node, one task per processor. The
machine recently achieved a sustained speed of 280.6 teraOPS on the Linpack benchmark at
Lawrence Livermore National Laboratory, close to its theoretical peak performance of 360
teraOPS.

ParaDiS has had a history on BG/L. That the new code might be able at some point to
take advantage of the BG/L architecture was realized early, since DLD simulations have a
relatively small memory footprint while commanding extremely large numbers of OPS per degree
of freedom during each time step. In the summer of 2003, before the machine procurement to
LLNL was approved, the code’s early version, then known as dd3d, was successfully ported to
the early 32-node hardware prototype of the BG/L system. The uniqueness of ParaDiS
development on BG/L was that both the machine and the code grew together, from their infancy
to adulthood. An “adolescent” stage of this maturation process was reported in our paper
presented at SC04 [15]. By the time the draft paper was due in April 2004, the code had ran on
all 4,096 (4K) nodes of BG/L then available. Over that summer, the machine grew to 16,384
(16K) nodes, and the results of ParaDiS scaling runs on the enlarged machine were reported at
the SC04 Conference in November 2004. As the code grew and matured it was successfully
executed on BG/L as the hardware grew over time from its original 32-node prototype to the full

system configuration of 65,536 (64K) nodes with 131,072 (128K) processors. This process was a
slow (and sometimes painful) one as each step up to a larger number of processors revealed new
and unexpected behaviors and limitations in the algorithms. Over time, the code has been
enhanced and refined to its current state where it has successfully scaled to the full 131,072
processor BG/L system.

This section describes the scaling performance of ParaDiS on BG/L. Typically, both
weak and strong scaling performance data are given to gauge code performance on parallel
computer architectures. Weak scaling tests assume that a change in the problem size should result
in a proportional change of the computational cost. While this can be achieved by periodic
replication of a small ParaDiS simulation, such configurations are not representative of the real
system that grows increasingly heterogeneous as the simulation progresses. In this paper we
present data only on more meaningful strong scaling tests of ParaDiS on BG/L. The problem
selected for the scaling tests was randomly selected from an actual production BG/L simulation
that was performed to examine the effects of extremely high straining rates (104 s-1) on crystal
strength and dislocation microstructure (see section IV). No additional optimization was
performed to enhance the code performance in the scaling simulations: the scaling runs were
performed using exactly the same runtime parameters as in the long production simulation. The
test problem consisted of a 10 x 10 x 10 µ3 cube containing about 10 million dislocation nodes.
Scaling tests were executed at processor counts ranging from 1K to full systems runs at 128K.
The 64K and 128K tests were executed in the virtual node mode and all other tests were executed
in the co-processor mode.

Figure 3: Estimated time required
to compute forces on a single CPU
of BG/L as a function of the number
of dislocation segments Ns. The time
scales as O(Ns) provided the number
of FMM subcells is chosen
optimally.

Given that most of every compute cycle is taken by the calculations of forces on
dislocation segments, it is critically important to minimize this cost. Assuming that the segments
are distributed uniformly in the volume (a very strong assumption!), the single CPU time required
to compute the forces can be approximated as a function of the number of segments, N, the
number of FMM subcells, K, the order of the multipole expansion of the lumped sources, M, and
the order of the Taylor series expansion used for interpolation of the far field stress, S. It turns out
that, compared to all other routines, the local segment-segment force calculations (segsegforce)
and evaluation of the Taylor expansion coefficients for the local stress due remote segments

(mktaylor) are by far the costliest. The estimated total time spent calculating forces during a
single integration time step on a single processor is approximately1

mktayloresegsegforc CKC
K
NKNC ⋅+⋅= 21627),(

2
 , (1)

where Csegsegforce = 13.2µs and Cmktaylor = 553µs on BG/L for M=2 and S=4. To achieve the desired
O(N) scaling, the number of multipole subcells K is selected from the powers of 8 to minimize
the total cost for a given number of segments N, as shown in Figure 3.

The minimal BG/L partition size of our actual timing runs was 1,024 processors because
it was impossible to fit all of the data for 9,558,824 dislocation nodes in the memory on the
smaller partitions. Still, it is possible to use formula (1) to estimate the speedup (in the force
calculations only) from the single processor to the full machine. Assuming that communication
between CPUs is instantaneous and that 9558824 degrees of freedom are evenly distributed over
the whole machine, the most optimistic (perfect scaling) estimate for the time spent calculating
forces during a time-step is approximately 1.2 s. A more realistic estimate leads to a higher
estimate, at 2.7 s. This latter value accounts for our deliberate decision, in the present version of
ParaDiS, to compute force interactions multiple times if the degrees of freedom are owned by
different processors rather than increase the inter-processor communication between during the
force calculation. Comparing this estimate to the achieved timing of 4.8s (Table 1) yields a 56%
utilization of the single processor performance on the full BG/L. This figure is consistent with
another measure of load balance presented in Figure 6 to be discussed below.

Table 1: Time spent on force calculations in a single cycle of ParaDiS simulation on BG/L
partitions from 1K to 128K processors

CPU count Dislocation nodes Total time

(sec)

Time spent in force
calculation (sec)

1024 9558824 278.71 267.75
16384 9558824 27.71 24.76
32768 9558824 15.44 12.92
65536 9558824 10.40 7.38

131072 9558824 8.91 4.85

Table 1 summarizes the total single-cycle times and the times spent on force calculations
measured in the series of scaling tests. The code exhibits good overall scaling with increasing
processor count showing considerable speedups up to the full machine size with 131,072
processors. This performance is outstanding given the inherently challenging character of
Dislocation Line Dynamics simulations. As mentioned, the greatest of all difficulties is the
naturally developing heterogeneity of the dislocation density. For example, among 64 x 64 x 64
FMM subcells used in the full machine simulation, some of the subcells located in areas where
dislocations have “lumped” together in high density formations contain many hundreds of
dislocation nodes while numerous other subcells are completely empty. Given this extreme
spatial non-uniformity, the ability to dynamically balance the computational load has been
absolutely critical to scaling to large numbers of processors.

1 On each integration time-step the local force routine segsegforce is called twice.

As was described in the previous section, the mechanism used in ParaDiS to partition the
computational load and to maintain load balance dynamically is by a hierarchical recursive
sectioning algorithm combined with domain relaxation. This algorithm is able to track the
constantly changing distribution of computational load with admirable consistency. Shown in
Figure 4 are two planar cross-sections through the computational volume. The cross-section on
the left shows where the dislocation lines intersect the cutting plane, whereas the cross-section on
the right shows the distribution and shapes of compute domains that develop through load
relaxation to deal with that heterogeneity at the same instant in time. Clearly, the load balancing
algorithm goes a great distance trying to maintain an equal load distribution and generally does a
good job tracking locations with very high dislocation densities. Remarkably, while the volumes
of the largest and the smallest computational domains in this simulation differ by astounding
three (!) orders of magnitude, the sustained load balance remains around 80% for most of the
tested partition sizes dropping to 64% for the full 128K partition of BG/L (Figure 6).

Figure 4: (a) Dislocation distribution in a single planar cross-section through the
computation volume. (b) The instantaneous distribution of computational domains
attained in the same region of the computation volume as in (a).

The overall rate of speedup does drop off as the processor count increases. This less than
perfect speedup is more pronounced for the overall cycle time shown in Figure 5 while the
speedup for the time spent on force calculations is significantly better. There are several factors
accounting for these behaviors. In ParaDiS, work load is balanced based on the amount of time
each processor spends calculating forces on the dislocation segments. Although the force
calculations consume the dominant portion of computing time, there are several other relatively
expensive tasks whose timing is also less predictable from cycle to cycle. As the processor count
increases and ParaDiS works to minimize the time spent in the force calculations, the amount of
time spent in these other tasks also decreases, but not as significantly. Hence, these other tasks
begin to use a larger portion of the overall time with adverse effects on scaling. Another factor is
that in ParaDiS, the majority of processor-to-processor communications are not just nearest-
neighbor, but also “nearby neighbor”. As more and more processors are used, the number of
nearby neighbors can increase significantly resulting in a larger fraction of the compute cycle

 1

 10

 100

 1000 10000 100000

S
p
e
e
d
u
p

CPUs

Optimal
Achieved

time spent communicating. This communication overload increases with the increasing number
of processors and becomes a factor at extremely large processor counts. Our use of the recursive
partitioning algorithm contributes to this problem because sub-volumes assigned to different
processors can not adjust their shapes independently but are constrained to relax within their
respective columns and slabs. Working to re-balance the evolving load, this algorithm leads to the
development of sub-volumes with large aspect ratios (Figure 4) that also tend to have large
numbers of nearby neighbors. Another potential drawback of recursive partitioning manifests
itself is slow overall relaxation of load imbalance – depending on the number of domains and the
initial problem imbalance, this relaxation can take hundreds of cycles before achieving an optimal
balance. To enhance the rate of relaxation of partition boundaries, we developed a procedure in
which, rather than timing the whole cycle of force calculations for each processor, ParaDiS
estimates the per-processor load by counting the number of times the segsegforce calls each
processor would make and shifting the domain boundaries to balance the counts. Such “empty”
cycles are computationally expedient and can be repeated many times for a given instantaneous
load distribution allowing to greatly enhance the relaxation rates and to rebalance the load more
efficiently.

Figure 5: Relative overall speedup for
strong scaling ParaDiS simulations on
BG/L.

The overall effectiveness of this dynamic load balancing algorithm is shown in Figure 6 for all
tested processor counts. In addition to a gradual reduction trend, there is a more significant drop
in the load balance from 64K to 128K processors which was in large part due to the fact that the
test problem was a bit too small for the full 128K partition2. Still, the data does indicate that, for
very large and heterogeneous simulations, the current load balancing algorithm may need
improvement. This is an area that remains to be explored to further improve the scalability of
ParaDiS.

2To generate a large dislocation network that is representative of real crystals, we had to let our line
network “grow” on BG/L. Yet, we were unable to “grow” our simulation to a size that could take full
advantage of the entire BG/L before the machine was taken down to prepare it for classified service in
support of the NNSA stockpile science mission.

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000 140000

P
er

ce
nt

 B
al

an
ce

CPUs

Figure 6: Percent load balance as a
function of processor count. As a measure
of load balance here we use the ratio of
the average time spent by each processor
performing its own force calculation, to
the average time each processor spends
computing the forces and waiting all other
processors to finish their force
calculations.

IV. Glimpses of new physics from ParaDiS simulations

Recently the new capability for DLD simulations embodied in ParaDiS was used to discover new
mechanism of strain hardening in metals. The initial observation of anomalously strong
dislocation tangles – multi-junctions - came directly from ParaDiS simulations. These
observations were subsequently verified by direct atomistic simulations and Transmission
Electron Microscopy experiments. Finally, very large scale ParaDiS simulations produced direct
evidence for the key role of the multi-junctions in defining the anomalously large orientation
dependence of strength in BCC metals – a behavior long observed and yet puzzling [17].

 The simulation reported here is more than a scaling test. It predicts the strength of a
crystal under an extremely high straining rate. Such simulations are needed for accurate
predictions of the behavior of stockpile materials during nuclear device detonation and are an
integral part of the NNSA ASC Program. Under the current moratorium on nuclear tests,
simulations have grown to become one of the primary tools for certification of the aging nuclear
stockpile. In this particular simulation we examined the behavior of a single crystal of
molybdenum under compressive straining at the rate 104 s-1. Initially, a few dislocations lines
were inserted in the simulation volume. Soon after the straining load was applied, dislocations
started to multiply at a very high rate eventually increasing the number of dislocation lines by
nearly three orders of magnitude. The multiplication was so profuse that we had to successively
increase the number of processors from the initial 64 CPUs (on the Thunder machine at LLNL) to
128, 256, 1K and so on, all the way to 64K and 128K of BG/L. As a result, the number of
dislocation nodes increased from a few hundred to over 12 million, still shy of the 15-20 million
dislocation nodes which was our eventual target for this simulation.

 We are just beginning to analyze this huge simulation3 and will present its results in the
literature in a near future. Preliminary indications are that dislocations appear to organize
themselves into a network with fractal geometry – the significance and origin of this striking
behavior remain unclear. Figure 7 shows dislocations in a thin (1/16th of the total depth) cross-
section of the simulation cube at an intermediate stage of the simulation (at about 8 million
dislocation nodes).

3 We are currently developing means to handle, analyze and visualize the immense amounts of data
obtained in this simulation: the data for a single simulation snapshot takes about 3.5 Gb of disk space.

Figure 7: A thin cross-sectional view through the simulation box – dislocations are shown as thin
green lines.

V. Summary

 Development of predictive Dislocation Line Dynamics simulations bridges the gap
between the physical mechanisms of material deformation at the atomistic scale and the practical
mechanics of materials for engineering applications. This is one of the cases where new ability to
compute large and long brings about new physical insights and generates valuable engineering
data that is impossible or impractical to obtain experimentally. In addition to demonstrating the
feasibility of DLD as a practical approach for predicting material’s strength by direct
computation, a broader significance of this study is in demonstrating that even in a challenging
physics application that does not lend itself naturally to parallel computing, it is still possible to
take meaningful advantage of a massively parallel machine of the BG/L scale. We hope that this
demonstration will be encouraging for researchers in computational astrophysics, computational
plasma hydrodynamics and other fields where severe computational limits stand in the way of
further progress in understanding.

 This work was supported over the years by the US DOE/NNSA ASC Program and LLNL
LDRD office. We thank E. Chandler, K. Budil, T. Diaz de la Rubia, D. Nielsen, M. McCoy and
D. Kusnezov for their encouragement and support of the ParaDiS code development effort. We
are deeply indebted to Tim Pierce for his early courageous effort in ParaDiS code development
and for subsequently sharing with us valuable ideas and insights. This work was performed under
the Auspices of the U.S. Department of Energy by the University of California Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48.

References

1. E. Orowan. Zur kristallplastizitat. Zeitschrift Phys. 89, 605-659 (1934).

2. G. Taylor. The mechanism of plastic deformation in crystal. Part I. Theoretical. Proc. Roy.
Soc. A 145, 363-404 (1934).

3. M. Polanyi. Uber eine Art Gutterstorung, die einen kristall plastich machen konnte.
Zeitschrift Phys. 89, 660-664 (1934).

4. P. B. Hirsch, R. W. Horne, and M. J. Whelan. Direct observations of the arrangement and
motion of dislocations in aluminium. Phil. Mag. 1, 677-684 (1956).

5. K. W. Schwarz, Simulation of dislocations on the mesoscopic scale. I. Methods and
examples. J. Appl. Phys. 85, 108(1999).

6. B. Devincre and L. P. Kubin. Mesoscopic simulations of dislocations and plasticity. Mater.
Sci. Eng. A 8, 234-236 (1997).

7. W. Cai, T. Arsenlis, C.R. Wenberger, and V.V. Bulatov. A non-singular continuum theory
of dislocations. J. Mech. Phys. Solids 54, 561-587 (2005).

8. W. Cai, V. V. Bulatov, Ju Li, J.P. Chang and Sid Yip. Dislocation core structure and
mobility”, (2004) in: Dislocations in Solids, volume 12, edited by F.R.N. Nabarro, pp. 1-
80.

9. W. Cai and V.V. Bulatov. Mobility laws in dislocation dynamics simulations. Mater. Sci.
Eng. A 387-389, 277-281 (2004).

10. W. Cai, V. V. Bulatov, T. G. Pierce, M. Hiratani, M. Rhee and M. Tang. Massively-parallel
Dislocation Dynamics simulations”, in Mesoscopic Dynamics of Fracture Processes and
Materials Strength, IUTAM Symp. Proceedings (Osaka, 2003), 1-11.

11. W. Cai, V. V. Bulatov, J. Li, J.P. Chang and Sid Yip. Periodic image effects in dislocation
modeling. Philosophical Magazine 83, 539 (2003).

12. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd edn (Wiley, New York, 1982) 857 p.

13. M. Challacombe, C. White and M. Head-Gordon. Periodic boundary conditions and the
fast multipole method. J. Chem. Phys. 107, 10131-10140 (1997).

14. M. Berger and S. Bokhari. A partitioning strategy for nonuniform problems on
multiprocessors. IEEE Trans. Computers C-36, 570-580 (1987).

15. Bulatov, V.V. et al. Scalable line dynamics in ParaDiS. Supercomputing (2004).

http://www.sc-conference.org/sc2004/schedule/pdfs/pap206.pdf

16. http://www.llnl.gov/computing/hpc/resources/OCF_resources.html#bluegenel

17. V. V. Bulatov et al. Dislocation multi-junctions and strain hardening. Nature 440, 1174-
1178 (2006).

