
UCRL-JRNL-222324

Hexahedron Projection for
Curvilinear Grids

N. Max

June 21, 2006

Journal of Graphics Tools

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Hexahedron Projection for Curvilinear Grids

Nelson Max

Lawrence Livermore National Laboratory

ABSTRACT:

This paper presents a method of dividing into triangle fans the
most common projections of hexahedra from curvilinear meshes,
so that they can be volume rendered in hardware, with a fragment
program for 32-bit floating point compositing.

CR Categories and Subject Descriptors: 1.3 Computer Graphics

Additional Keywords: volume rendering, polyhedron projection

 1. INTRODUCTION
The polyhedron projection method for volume rendering

divides the projection of each volume cell into polygons which lie
inside the projections of a single front-facing and a single back-
facing cell face, as shown for several hexahedra in figure 1. In an
orthogonal view, the thickness, that is, the length of the viewing
ray inside the cell, varies linearly across such a projection polygon
if the faces are planar, as shown in a 2D analog in figure 2. The
thickness can thus be linearly interpolated by the hardware, in
preparation for shading to achieve back-to-front color-opacity
compositing. This hardware method was pioneered by Shirley and
Tuchman [1] for tetrahedra, and a corresponding method for
parallel projection of rectilinear grids of identically shaped cells
was described by Wilhelms and Van Gelder [2]. To form these
polygonal regions in the general case, the image plane must be
subdivided by the projections of all the edges of the volume cell.
This is a computational geometry problem. Wilhelms and Van
Gelder [2] described a line sweep method for constructing this
subdivision, and Max, Williams, and Silva [3] described an
incremental method which inserted the edge projections into the
subdivision one at a time. Such methods are difficult to implement
robustly, since they require topological consistency among
multiple tests for questions like "does point P lie to the left, on, or
to the right of line L?" The finite precision of floating point
arithmetic can cause inconsistent results from such tests.

Figure 1. Four projections of a hexahedron, showing the four

possibilities for the count discussed below: a: 0, b: 1, c: 2, and d: 4.

Schussman and Max [4] proposed a different sort of algorithm

for a perspective view of a regular cubical grid, which classified
the projections of a cube into one of a small number of cases,
based on tests on the whole cube, guaranteeing topological

consistency. Here we generalize this approach to hexahedra in a
curvilinear grid.

D

A

C

B

x B' D' C' A' X
Z

Figure 2. Parallel projection of quadrilateral ABCD to an image

line along the X axis. The segment of the viewing ray through
image point x, that lies within the quadrilateral, is shown as a bolder
line. Its length varies linearly with the position x within the four
segments A'B', B'D', and D'C'.

A cell in a curvilinear grid can be quite distorted, and one of its

faces can project to a self-intersecting "bow-tie" quadrilateral, as
shown in figure 3. For either way such a face is divided into two
triangles, the two triangle projections overlap. In this case, for one
of the hexahedra sharing the offending face, there is a viewing ray
which exits the hexahedron through one of the overlapping
triangles, and then re-enters it through the other. It is thus
impossible to construct a visibility sort for back to front
compositing. Similarly, a cell with a non-convex face, even
without self-intersection, can result in overlapping quadrilaterals,
which again allow a viewing ray to intersect the cell in two
disjoint segments, as shown in 4. Therefore, we first test each
hexahedron for non-convex faces. (Any self-intersecting face is
non-convex.) If any are found, the cell is subdivided into five or
six tetrahedra, and the Shirley-Tuchman triangle fans are used on
the tetrahedra. There may also be degenerate cells, where one or
more vertices coincide, for example, along the axis in cylindrical
or spherical coordinates. Such cells are also divided up into
tetrahedra, some of which may themselves be degenerate.

a db c

Figure 3. Hexahedron ABCDEFGH has a self-intersecting

projected face EFGH. If diagonal EG is drawn to divide this face
into two triangles, the ray at position X will intersect the resulting
polyhedron in two disjoint segments. Note that there are three

projected vertices C, D, and G, inside the projected face ABFE.

Figure 4. Hexahedron ABCDEFGH has two concave projected
faces ABCD and EFGH. The ray at position X will intersect the
concave polyhedron in two disjoint segments.

The goal of this paper is to classify the projections of the

remaining hexahedra, and subdivide them into triangle fans or
strips for hardware rendering. Since a single hexahedron can be
rendered much more quickly than five tetrahedra, in terms of
both vertex and fragment operations, this offers a significant
speed up over subdividing all the cells into tetrahedra.

For our specific application in simulated X-ray images, we
needed 32-bit floating point accuracy, which was available in
the fragment programs of our graphics chips, but not in the
compositing stage of the pipeline. In section 5 below, we
explain how we did floating point compositing in the GPU.

In a curvilinear grid, the faces can be non-planar, so the
assumption that the thickness varies linearly across the image
plane polygons in the subdivision is not true even in an
orthogonal projection, and is not true even for cubical cells in a
perspective projection. The problems of this nonlinearity are
discussed in Max, Williams, and Silva [5], and in section 7
below.

 2. PROJECTION CASE CLASSIFICATION
The projection cases handled here include the three discussed

in Schussman and Max [4], which can arise from the
perspective projection of a cube. They are shown in figure 1 b,
c, and d. There are several additional cases, such as the one

meshes. The test in [4] to distinguish the cases was simple,
since it used the fact that the cell was a cube. For curvilinear
grids, the tests are more involved, as described below.

The test first considers the six quadrilateral faces

shown in figure 1 a, which can occur only in curvilinear

 in turn,
lo

d as in figure 5. In
or

 3. COUNT 1 CASE
 the count = 1 projection topologies, which

ha
V7V4

an

Figure 5. Vertex indices for the standard count = 1 case. The first
triangle fan is shown shaded.

B F

C G
oking for non-convex faces, or faces which contain the

projection of a vertex from the opposite face. This testing stops
as soon as a face projection is found to contain one or more
vertex projections. The test is done as follows. The line
equations of the projections of the face's four edges are
computed. For each line, the other two vertices of the face are
checked to see if they are on the same side of the extended
edge. If not, the projection of the face will be a concave or self-
intersecting quadrilateral, and the cell is divided into tetrahedra.
Next, the other four cell vertices which are not vertices of this
face are tested with the four line equations, to see if any are
contained in the face projection. If so, the number that do is
saved in a variable called "count", and their vertex indices are
also saved. There are four possibilities for count: 0, 1, 2, and 4,
shown respectively in figure 1 a, b, c, and d. (A projection with
count = 3 would necessarily have a bow-tie quadrilateral, as in
Figure 3.) In figure 1 b, there are two quadrilaterals containing
a vertex projection, but once the first one is found and
processed, the containment testing will stop.

The vertices of our hexahedra are numbere

 X

HD

E A

HD

der to label the vertices in the triangle fans in a standard
order, a vertex index permutation corresponding to a 3D cube
rotation is found so that the vertices of the face that contains the
projected vertex or vertices end up with indices 0, 1, 2, and 3. A
further rotation permutation insures that in the count = 1 case,
the contained vertex has index 7, or in the count = 2 case, the
contained vertices have indices 6 and 7.

F

Let us start with
ve the most different configurations in curvilinear grids.
In the cube projection situation shown in figure 5, edges
d V0V1 intersect in a new vertex V8, and edges V7V6 and V1V2

intersect in a new vertex V9. The two triangle fans list vertex
indices 8, 1, 5, 4, 0, 3, 7, 1, and indices 9, 7, 3, 2, 6, 5, 1, 7.

V3

V0

V2

V4

V1

V7
V6

V5

V9

V8

C G

E A

X

B

In curvilinear grids, one of these edge intersections may not
x V8 is not found because edgebe found. If verte s V7V4 and V0V1

do

7 4 1 2 10

a

7 4 1 2 10

a

Figure 7. Vertex indices for alternate B of the count = 1 case. Figure 7. Vertex indices for alternate B of the count = 1 case.

V3

V0

V2

V5

V10

V8 V6

V V1 V9

V4

 not intersect, as shown in figure 6, we look instead for V8 at
the intersection of edges V7V4 and V1V2, and another new vertex
V10 at the intersection of edges V7V4 and V1V5. Three triangle
fans are used. The first lists vertex indices 9, 6, 2, 3, 7, 8, 10, 5,
6; the second lists indices 8, 7, 3, 0, 1; and the third lists indices
10, 8, 1, 0, 4, 5.

In a similar case vertex V9 is the one not found, and the
revised vertex numbering is as shown in figure 7. We look for
V

 and V1V5. Three triangle
fans are used. The first lists vertex indices 9, 6, 2, 3, 7, 8, 10, 5,
6; the second lists indices 8, 7, 3, 0, 1; and the third lists indices
10, 8, 1, 0, 4, 5.

In a similar case vertex V9 is the one not found, and the
revised vertex numbering is as shown in figure 7. We look for
V

9 at the intersection of edges V7V6 and V0V1 and a new vertex

V10 at the intersection of edges V7V6 and V1V5. There are again
three triangle fans. The first lists vertex indices 10, 5, 6, 2, 1, 9,
8, 4, 5; the second list indices 9, 1, 2, 3, 7; and the third lists
indices 8, 9, 7, 3, 0, 4.

Going back to the situation in figure 6, if V8 is found at the
intersection of edges V V and V V , but V is not found at the
int

9 at the intersection of edges V7V6 and V0V1 and a new vertex
V10 at the intersection of edges V7V6 and V1V5. There are again
three triangle fans. The first lists vertex indices 10, 5, 6, 2, 1, 9,
8, 4, 5; the second list indices 9, 1, 2, 3, 7; and the third lists
indices 8, 9, 7, 3, 0, 4.

Going back to the situation in figure 6, if V8 is found at the
intersection of edges V V and V V , but V is not found at the
int

7

ersection of edges V7V4 and V1V5, then we look instead for
V10 at the intersection of edges V1V2 and V4V0. The
configuration is then as in figure 8, and the two triangle fans list
vertices 9, 2, 3, 7, 8, 4, 5, 6, 2, and 10, 7, 3, 0, 1, 5, 4, 8, 7.

There is a similar situation for the case in figure 7. If V10 is
not found as expected at the intersection of edges V7V6 and
V

ersection of edges V7V4 and V1V5, then we look instead for
V10 at the intersection of edges V1V2 and V4V0. The
configuration is then as in figure 8, and the two triangle fans list
vertices 9, 2, 3, 7, 8, 4, 5, 6, 2, and 10, 7, 3, 0, 1, 5, 4, 8, 7.

There is a similar situation for the case in figure 7. If V10 is
not found as expected at the intersection of edges V7V6 and
V

1V0, then we look for it at the intersection of edges V2V6 nd
V1V5. The configuration is then as in figure 9, and the two
triangle fans list vertices 8, 4, 0, 3, 7, 9, 6, 5, 4, and vertices 10,
6, 9, 7, 3, 2, 1, 5, 6.

1V0, then we look for it at the intersection of edges V2V6 nd
V1V5. The configuration is then as in figure 9, and the two
triangle fans list vertices 8, 4, 0, 3, 7, 9, 6, 5, 4, and vertices 10,
6, 9, 7, 3, 2, 1, 5, 6.

V4

Figure 8. Vertex indices for alternate C of the count = 1 case.

Figure 8. Vertex indices for alternate C of the count = 1 case.

V2
V3

4

V8

V5

V9 V6

V7

V1 V0

V10

V

Figure 6. Vertex indices for alternate A of the count = 1 case.
The three triangle fans are shown in different shades of grey.

Figure 6. Vertex indices for alternate A of the count = 1 case.
The three triangle fans are shown in different shades of grey.

V3

V0

V2

V5

V9

V8

V10

V6

V1

V7

Figure 9. Vertex indices for alternate D of the count = 1 case.

Figure 9. Vertex indices for alternate D of the count = 1 case.

V0

V1

V2 V3

V6

V7

V8

V10
V9

V5 V4

Figure 10. Vertex indices for the count = 4 case.

V0

V6

V3 V2

V4

V1

V7

V5

Figure 11.Vertex indices for the count = 2 case.

V3

5

V7

V8

V6

V0

4

V9

V1

V2

 4. OTHER COUNTS
case shown in figure 10 needs no extra
le fans are used. The first fan lists vertex

in

ection of edges V7V4 and V0V1, a new vertex V9 at the
in

ertices and there are no
no

triangle strip with vertex indices 7, 6, 11, 5, 10, 4, 3, 9, 2.

N

ew Vertex Intersecting Edges
V8 V0V3 V1V6
V9 V0V3 V2V5
V10 V4V7 V2V5
V1 V1 4V7 V1V6

Table 1.

5. FLOATING POINT COMPOSITING
In our simulated X-ray application, we needed floating point

compositing. Initially, we considered absorption-only images.
lated opacity along a ray, so

th

olume rendering,
w

Figure 12. x indices for count = 0 case.

V0 V3

V4

V6

V7

V8 V9

V10 V11

V5

V1 V2

VV

Verte

The count = 4
vertices. Two triang

These involve only the total accumu
at back to front visibility sorting is not required. We used a

frame buffer object containing the accumulated image as a source
texture, and also as a render target when we composited each new
cell by a floating point fragment program, as described in sections
4 and 7.1 of Laney et al. [6]. It is a hazard to use the same frame
buffer object as a source texture and a render target, because of
the long delays in the pixel write pipeline, and because the texture
cache may not be up to date. Instead of writing a large polygon to
clear the write pipeline and texture cache, as described in [6], we
now clear the write pipeline by reading out one pixel from the
frame buffer object, and clear the texture cache by unbinding and
rebinding the texture. In [6], rather than doing this after every cell
is projected, we had an extra step to sort the cells into non-
overlapping layers. One of the reviewers of [6] suggested that
such layers could be found from standard visibility sort of the
cells, and we now do this, as described below.

We are currently doing absorption plus emission X-ray
simulations, to account for X-ray emission from hot materials.
This is equivalent to standard color/opacity v

dices 4, 0, 3, 7, 6, 5, 1, 0; and the second lists indices 6, 7, 3,
2, 1, 5.

The count = 2 case shown in figure 11 has a new vertex V8 at
the inters

tersection of edges V6V5 and V0V1. As in [4], we use a triangle
fan, with vertex indices 7, 8, 0, 3, 2, 6, 9, 8, and a triangle strip
with vertex indices 0, 4, 8, 5, 9, 1, 6, 2.

The last case to consider is when count = 0. If no
quadrilateral contains other projected v

n-convex projections, the projected vertices form a convex
octagon, as in figure 1 a, or figure 12. In this case, the vertex
renumbering scheme is somewhat different. The vertex indices
are permuted so that they run counter-clockwise around the
octagon, as in figure 12. Each of the four diagonal projected
edges that are not on the perimeter of the octagon belong to one
quadrilateral whose other sides are part of the perimeter, and
therefore must join a vertex i with vertex (i + 3) mod 8 or (i - 3)
mod 8. If vertex 0 is connected by such a diagonal to vertex 5
(the i – 3 case), the vertices are renumbered by replacing index i
by index 8 – i, so that the projection topology is as in figure 12.

The new vertices are then found as shown in table 1. We use
a triangle fan with vertex indices 8, 0, 1, 2, 9, 10, 11, 7, 0, and a

here the opacity may be wavelength dependent. We are using
cell centered data, where the material variables affecting color
(emissivity) and opacity (extinction coefficient) are constant on
each cell. Since the RGBA fragment program can operate on four
vector components in parallel, we can simulate four wavelength

bands at once. However, the exponential of minus the product of
the extinction coefficient times the thickness (interpolated from
vertex values by the scan conversion stage of the GPU), to get the
transparency for compositing, must be done in four GPU
instructions, because exponentiation does not currently operate on
four-component vectors.

Color/opacity compositing requires a back-to-front visibility
sort. The traditional directed graph visibility sort algorithm of
Williams [7] has a node for each cell, and a directed edge for each
fa

ber of incoming directed
ed

nd removed from
fr

 a volume made up of 32 curvilinear grids, with
t of 1 ,960 hexahedra. Among these hexahedra, 50,352

te, with two or more vertices coinciding, and 924
m

ure 7, 16 as in
fi

5.27 seconds, of which 0.13 were
us

 algorithm produced 43 layers, and drew 274 hexahedra
an

The projections discussed here were discovered one by one by
ses that arose in projecting the data set in figure

13

faces. The
al

s for the front and back cell faces. For a bilinear
pa

exahedra with coinciding vertices. A
te

d under the
au ices of the U. S. Department of Energy by University of
C

ce shared by two cells, pointing from the cell farther from the
viewpoint to the adjacent one closer to the viewpoint, which
directly occludes it. The algorithm of Cook et al. [8] augments
this graph with directed edges for additional direct occlusion
relations between cells across concavities or internal voids in the
mesh. The "exterior" faces that are not shared by two cells are
scan converted in software into an A-buffer (as in Carpenter [9]),
which stores a depth-sorted list of such faces overlapping each
pixel. The extra occlusion relations can then be discovered from
adjacent pairs of entries in these lists.

Once the augmented visibility graph is constructed, a
topological depth first search established the visibility order, as
follows. An initial pass counts the num

ges to each cell (from cells that it directly occludes), and puts
those cells with no incoming edges into a first-in-first-out (FIFO)
queue. Then, while the queue is non-empty, the cell at its head can
be removed and composited onto the image, since it occludes no
cell that has not already been composited. Each directed edge
leaving the cell is followed to decrement the incoming edge count
of the cell it points to, and if that cell's count becomes zero, it is
added to the FIFO queue. (See [7] for details.)

In order to determine the non-overlapping layers of cells, a
special token is inserted at the end of the FIFO queue after the
initial pass. When this token is encountered a

ont of the queue, a layer is complete, so the GPU write pipeline
and texture cache are cleared as described above, and the token is
inserted again at the end of queue to delimit the next layer. It costs
time to clear the GPU pipeline after each layer. This is another
reason to render hexahedra as a whole when possible, instead of
dividing them all up into tetrahedra, which would increase the
number of layers.

6. RESULTS
Figure 13 shows

a otal 41
were degenera

ore had non-convex face projections. In both these cases, we
subdivided the offending cell into six tetrahedra.

There remained 90,684 hexahedra. Among the count = 1 cases,
there were 78,146 standard projections as in figure 5, 242
alternate projections as in figure 6, 532 as in fig

gure 8, and 31 as in figure 9. There were 223 count = 4 cases as
in figure 10, 11,333 count = 2 cases as in figure 11, and 161
count = 0 cases as in figure 12.

Using one processor of an 800 MHz dual Pentium4 Xeon PC,
and an nVidia 5900FXUltra graphics card, the absorption only X-
ray simulation in figure 13 took

ed to read in the data, 3.5 were used to classify the cases, and
1.51 were used for preparing and rendering the triangle strips and
fans.

Figure 14 shows a volume rendering of half a cylindrical shell,
twisted to form non-planar faces for its 300 hexahedra. The
sorting

d 156 tetrahedra in 1.25 seconds, of which .19 seconds were for

sorting, .34 seconds were for classification and rendering, and the
rest for input and output.

7. DISCUSSION

analysing the ca
. No other cases were discovered among the projections of

10,000,000,000 hexahedra, with vertices chosen randomly inside
a unit cube, but so far we do not have a proof that no others exist
among projections of non-degenerate hexahedra with no bow-tie
or concave quadrilaterals. In fact, the vast majority of the random
hexahedra fell into these two rejected cases, but this is of course
not the case for hexahedra arising from practical grids.

Figure 15 shows an extreme twisting of the cylindrical shell.
The dark artifacts are caused by severely non-planar

gorithm described here uses a piecewise-linear approximation to
the thickness through the cell, which is linear on each triangle in
the triangle fans. The subdivision of a face into triangles in these
fans is not consistent for the two cells sharing the face, since the
cells have other unshared edges contributing to their respective
subdivisions. The artifacts in figure 15 are caused by this
inconsistency.

A solution to this problem would be to compute for every pixel
consistent depth

rametric face interpolating four non-co-planar points, this
involves solving a quadratic polynomial, which is unstable when
the ray is close to tangent to the surface. Instead, we divide each
quadrilateral into two triangles, using the diagonal starting from
the vertex of lowest index. This choice of diagonal is consistent
for the two cells sharing a face, and also with the method in Max
[10] which we use to divide cells with non-convex face
projections into tetrahedra. We use this method in software to find
the thickness at triangle fan vertices like V1 and V7 in figure 5,
whose viewing rays intersect the interior of the opposite face. It
remains future work to compute such a thickness for every
fragment in the GPU.

Another problem is with the degenerate tetrahedra which result
from subdividing h

trahedron with exactly two coinciding vertices will also have
two coinciding non-degenerate faces. If the viewing ray is not
tangent to these faces, then in the directed graph for the visibility
sort, there must be one incoming directed edge and one outgoing
directed edge for this cell. But since the cell has zero volume, it is
impossible to decide which directed edge should be incoming,
when considering the cell in isolation. Therefore, in order to get a
consistent directed graph, this decision must be propagated
incrementally across the grid, starting from some cell of non-zero
volume, as described in section 4 of Williams [11].

Acknowledgement: This work was performe
sp

alifornia, Lawrence Livermore National Laboratory under
contract number W-7405-ENG-48. we thank Yang Liu and Henry
Moreton for discussions on how to efficiently clear the GPU
pipeline between layers, and Peter Williams for explaining the
method in [11] for dealing with degenerate tetrahedra.

REFERENCES

 [1] Peter Shirley and Alan Tuchman, "A Polygonal Approximation to
Direct Scalar Volume Rendering", Computer Graphics Vol. 24, No.
5 (Special Issue on San Diego Workshop on Volume Visualization),
ACM Press, pp. 63 – 70, 1990.

[2] Jane Wilhelms and Alan Van Gelder, "A Coherent Projection
Approach for Direct Volume Rendering", Computer Graphics Vol.
25, No, 4 (Siggraph 1991 Proceedings), ACM Press and Addison
Wesley, pp. 275 – 284, 1991.

[3] Nelson Max, Peter Williams, and Claudio Silva, "Approximate
Volume Rendering for Curvilinear and Unstructured Grids by
Hardware-Assisted Polyhedron Projection", International Journal of
Imaging Systems and Technology, Vol. 11, pp. 53 – 61, 2000.

 [4] Greg Schussman and Nelson Max, "Hierarchical Perspective
Volume Rendering Using Triangle Fans", Volume Graphics 2001,
Springer, Vienna, pp. 309 - 320, 2001.

[5] Nelson Max, Peter Williams, and Claudio Silva, "Cell Projection of
Meshes with Non-Planar Faces", Data Visualization: The State of
The Art (Post, Nielson, and Bonneau, editors), Kluwer, Boston, pp.
157 – 168, 2003.

Figure 13. Projection of a half a laser fusion target. The RGB
colors represent absorption at different wavelengths. The yellow
region is half of the actual target, and the red region is a grid into

which the target material spreads when heated by the laser. [6] Daniel Laney, Steven Callahan, Nelson Max, Claudio Silva, Steven
Langer, and Randall Frank, "Hardware Accelerated Simulated
Radiography", Proceedings of IEEE Visualization 2005. pp. 343 -
350.

[7] Peter Williams, "Visibility Ordering Meshed Polyhedra", ACM

Transactions on Graphics, Vol. 11 No. 2 (April 1992) pp. 103 – 126.

 [8] Richard Cook, Nelson Max, Claudio Silva, and Peter Williams,
“Image-Space Visibility Ordering for Cell Projection Volume
Rendering of Unstructured Data”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 10 No. 6, pp. 695 – 707.

[9] Loren Carpenter, "The A-Buffer, an antialiased hidden surface

method", ACM Siggraph 1984 Conference Proceedings, pp. 1-3 –
108.

[10] Nelson Max, "Consistent Subdivision of Convex Polyhedra into

Tetrahedra", journal of graphics tools, Vol. 6, no. 3, 2002, pp. 29 -
36.

[11] Peter Williams, "Parallel Volume Rendering Finite Element Data",

in "Communicating With Virtual Worlds, Nadia and Daniel
Thalmann, editors, Springer Verlag 1993, pp. 473 – 484.

Figure 14. Volume rendering of a colored twisted cylindrical grid.

Figure 15. Artifacts from severely twisted hexahedra.

