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ABSTRACT:   

This paper presents a method of dividing into triangle fans the 
most common projections of hexahedra from curvilinear meshes, 
so that they can be volume rendered in hardware, with a fragment 
program for 32-bit floating point compositing. 

CR Categories and Subject Descriptors: 1.3 Computer Graphics 

Additional Keywords: volume rendering, polyhedron projection 

     1. INTRODUCTION 
The polyhedron projection method for volume rendering 

divides the projection of each volume cell into polygons which lie 
inside the projections of a single front-facing and a single back-
facing cell face, as shown for several hexahedra in figure 1. In an 
orthogonal view, the thickness, that is, the length of the viewing 
ray inside the cell, varies linearly across such a projection polygon 
if the faces are planar, as shown in a 2D analog in figure 2. The 
thickness can thus be linearly interpolated by the hardware, in 
preparation for shading to achieve back-to-front color-opacity 
compositing. This hardware method was pioneered by Shirley and 
Tuchman [1] for tetrahedra, and a corresponding method for 
parallel projection of rectilinear grids of identically shaped cells 
was described by Wilhelms and Van Gelder [2]. To form these 
polygonal regions in the general case, the image plane must be 
subdivided by the projections of all the edges of the volume cell. 
This is a computational geometry problem. Wilhelms and Van 
Gelder [2] described a line sweep method for constructing this 
subdivision, and Max, Williams, and Silva [3] described an 
incremental method which inserted the edge projections into the 
subdivision one at a time. Such methods are difficult to implement 
robustly, since they require topological consistency among 
multiple tests for questions like "does point P lie to the left, on, or 
to the right of line L?" The finite precision of floating point 
arithmetic can cause inconsistent results from such tests. 

 
 
 
 
 

 

 
Figure 1. Four projections of a hexahedron, showing the four 

possibilities for the count discussed below: a: 0, b: 1, c: 2, and d: 4. 
 

 
Schussman and Max [4] proposed a different sort of algorithm 

for a perspective view of a regular cubical grid, which classified 
the projections of a cube into one of a small number of cases, 
based on tests on the whole cube, guaranteeing topological 

consistency. Here we generalize this approach to hexahedra in a 
curvilinear grid. 
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Figure 2. Parallel projection of quadrilateral ABCD to an image 

line along the X axis. The segment of the viewing ray through 
image point x, that lies within the quadrilateral, is shown as a bolder 
line. Its length varies linearly with the position x within the four 
segments A'B', B'D', and D'C'. 

  
 
A cell in a curvilinear grid can be quite distorted, and one of its 

faces can project to a self-intersecting "bow-tie" quadrilateral, as 
shown in figure 3. For either way such a face is divided into two 
triangles, the two triangle projections overlap. In this case, for one 
of the hexahedra sharing the offending face, there is a viewing ray 
which exits the hexahedron through one of the overlapping 
triangles, and then re-enters it through the other. It is thus 
impossible to construct a visibility sort for back to front 
compositing. Similarly, a cell with a non-convex face, even 
without self-intersection, can result in overlapping quadrilaterals, 
which again allow a viewing ray to intersect the cell in two 
disjoint segments, as shown in 4. Therefore, we first test each 
hexahedron for non-convex faces. (Any self-intersecting face is 
non-convex.) If any are found, the cell is subdivided into five or 
six tetrahedra, and the Shirley-Tuchman triangle fans are used on 
the tetrahedra. There may also be degenerate cells, where one or 
more vertices coincide, for example, along the axis in cylindrical 
or spherical coordinates. Such cells are also divided up into 
tetrahedra, some of which may themselves be degenerate. 
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Figure 3. Hexahedron ABCDEFGH  has a self-intersecting 

projected face EFGH. If diagonal EG is drawn to divide this face 
into two triangles, the ray at position X will intersect the resulting 
polyhedron in two disjoint segments. Note that there are three 

projected vertices C, D, and G, inside the projected face ABFE. 

Figure 4. Hexahedron ABCDEFGH  has two concave projected 
faces ABCD and EFGH. The ray at position X will intersect the 
concave polyhedron in two disjoint segments. 

 
The goal of this paper is to classify the projections of the 

remaining hexahedra, and subdivide them into triangle fans or 
strips for hardware rendering. Since a single hexahedron can be 
rendered much more quickly than five tetrahedra, in terms of 
both vertex and fragment operations, this offers a significant 
speed up over subdividing all the cells into tetrahedra. 

For our specific application in simulated X-ray images, we 
needed 32-bit floating point accuracy, which was available in 
the fragment programs of our graphics chips, but not in the 
compositing stage of the pipeline. In section 5 below, we 
explain how we did floating point compositing in the GPU. 

In a curvilinear grid, the faces can be non-planar, so the 
assumption that the thickness varies linearly across the image 
plane polygons in the subdivision is not true even in an 
orthogonal projection, and is not true even for cubical cells in a 
perspective projection. The problems of this nonlinearity are 
discussed in Max, Williams, and Silva [5], and in section 7 
below.  

     2.     PROJECTION CASE CLASSIFICATION 
The projection cases handled here include the three discussed 

in Schussman and Max [4], which can arise from the 
perspective projection of a cube. They are shown in figure 1 b, 
c, and d. There are several additional cases, such as the one 

meshes. The test in [4] to distinguish the cases was simple, 
since it used the fact that the cell was a cube. For curvilinear 
grids, the tests are more involved, as described below. 

The test first considers the six quadrilateral faces

shown in figure 1 a, which can occur only in curvilinear 

 in turn, 
lo

d as in figure 5. In 
or

     3.  COUNT 1 CASE 
 the count = 1 projection topologies, which 

ha
V7V4 
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Figure 5. Vertex indices for the standard count = 1 case. The first 
triangle fan is shown shaded. 

B F

C G 
oking for non-convex faces, or faces which contain the 

projection of a vertex from the opposite face. This testing stops 
as soon as a face projection is found to contain one or more 
vertex projections. The test is done as follows. The line 
equations of the projections of the face's four edges are 
computed. For each line, the other two vertices of the face are 
checked to see if they are on the same side of the extended 
edge. If not, the projection of the face will be a concave or self-
intersecting quadrilateral, and the cell is divided into tetrahedra. 
Next, the other four cell vertices which are not vertices of this 
face are tested with the four line equations, to see if any are 
contained in the face projection. If so, the number that do is 
saved in a variable called "count", and their vertex indices are 
also saved. There are four possibilities for count: 0, 1, 2, and 4, 
shown respectively in figure 1 a, b, c, and d. (A projection with 
count = 3 would necessarily have a bow-tie quadrilateral, as in 
Figure 3.) In figure 1 b, there are two quadrilaterals containing 
a vertex projection, but once the first one is found and 
processed, the containment testing will stop. 

The vertices of our hexahedra are numbere
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der to label the vertices in the triangle fans in a standard 
order, a vertex index permutation corresponding to a 3D cube 
rotation is found so that the vertices of the face that contains the 
projected vertex or vertices end up with indices 0, 1, 2, and 3. A 
further rotation permutation insures that in the count = 1 case, 
the contained vertex has index 7, or in the count = 2 case, the 
contained vertices have indices 6 and 7.  

F 

Let us start with
ve the most different configurations in curvilinear grids. 
In the cube projection situation shown in figure 5, edges 
d V0V1 intersect in a new vertex V8, and edges V7V6 and V1V2 

intersect in a new vertex V9. The two triangle fans list vertex 
indices 8, 1, 5, 4, 0, 3, 7, 1, and indices 9, 7, 3, 2, 6, 5, 1, 7. 
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In curvilinear grids, one of these edge intersections may not 
x V8 is not found because edgebe found. If verte s V7V4 and V0V1 
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Figure 7. Vertex indices for alternate B of the count = 1 case. Figure 7. Vertex indices for alternate B of the count = 1 case. 

V3

  
V0

V2 

V5

V10

V8 V6

V V1 V9 

V4

 not intersect, as shown in figure 6, we look instead for V8 at 
the intersection of edges V7V4 and V1V2, and another new vertex 
V10 at the intersection of edges V7V4 and V1V5. Three triangle 
fans are used. The first lists vertex indices 9, 6, 2, 3, 7, 8, 10, 5, 
6; the second lists indices 8, 7, 3, 0, 1; and the third lists indices 
10, 8, 1, 0, 4, 5. 

In a similar case vertex V9 is the one not found, and the 
revised vertex numbering is as shown in figure 7. We look for 
V

 and V1V5. Three triangle 
fans are used. The first lists vertex indices 9, 6, 2, 3, 7, 8, 10, 5, 
6; the second lists indices 8, 7, 3, 0, 1; and the third lists indices 
10, 8, 1, 0, 4, 5. 

In a similar case vertex V9 is the one not found, and the 
revised vertex numbering is as shown in figure 7. We look for 
V

  

  

  

  
9 at the intersection of edges V7V6 and V0V1 and a new vertex 

V10 at the intersection of edges V7V6 and V1V5. There are again 
three triangle fans. The first lists vertex indices 10, 5, 6, 2, 1, 9, 
8, 4, 5; the second list indices 9, 1, 2, 3, 7; and the third lists 
indices 8, 9, 7, 3, 0, 4. 

Going back to the situation in figure 6, if V8 is found at the 
intersection of edges V V  and V V , but V  is not found at the 
int

9 at the intersection of edges V7V6 and V0V1 and a new vertex 
V10 at the intersection of edges V7V6 and V1V5. There are again 
three triangle fans. The first lists vertex indices 10, 5, 6, 2, 1, 9, 
8, 4, 5; the second list indices 9, 1, 2, 3, 7; and the third lists 
indices 8, 9, 7, 3, 0, 4. 

Going back to the situation in figure 6, if V8 is found at the 
intersection of edges V V  and V V , but V  is not found at the 
int

7 
  

  

  

ersection of edges V7V4 and V1V5, then we look instead for 
V10 at the intersection of edges V1V2 and V4V0. The 
configuration is then as in figure 8, and the two triangle fans list 
vertices 9, 2, 3, 7, 8, 4, 5, 6, 2, and 10, 7, 3, 0, 1, 5, 4, 8, 7. 

There is a similar situation for the case in figure 7. If V10 is 
not found as expected at the intersection of edges V7V6 and 
V

ersection of edges V7V4 and V1V5, then we look instead for 
V10 at the intersection of edges V1V2 and V4V0. The 
configuration is then as in figure 8, and the two triangle fans list 
vertices 9, 2, 3, 7, 8, 4, 5, 6, 2, and 10, 7, 3, 0, 1, 5, 4, 8, 7. 

There is a similar situation for the case in figure 7. If V10 is 
not found as expected at the intersection of edges V7V6 and 
V

  

1V0,  then  we look for it at the intersection of edges  V2V6  nd 
V1V5. The configuration is then as in figure 9, and the two 
triangle fans list vertices 8, 4, 0, 3, 7, 9, 6, 5, 4, and vertices 10, 
6, 9, 7, 3, 2, 1, 5, 6. 

1V0,  then  we look for it at the intersection of edges  V2V6  nd 
V1V5. The configuration is then as in figure 9, and the two 
triangle fans list vertices 8, 4, 0, 3, 7, 9, 6, 5, 4, and vertices 10, 
6, 9, 7, 3, 2, 1, 5, 6. 

V4 

 
 

Figure 8. Vertex indices for alternate C of the count = 1 case. 

 
 

Figure 8. Vertex indices for alternate C of the count = 1 case. 
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Figure 6. Vertex indices for alternate A of the count = 1 case. 
The three triangle fans are shown in different shades of grey. 

 

 

Figure 6. Vertex indices for alternate A of the count = 1 case. 
The three triangle fans are shown in different shades of grey. 
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Figure 9. Vertex indices for alternate D of the count = 1 case. 

 

Figure 9. Vertex indices for alternate D of the count = 1 case. 
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Figure 10. Vertex indices for the count = 4 case. 
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Figure 11.Vertex indices for the count = 2 case. 
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     4. OTHER COUNTS 
case shown in figure 10 needs no extra 
le fans are used. The first fan lists vertex 

in

ection of edges V7V4 and V0V1, a new vertex V9 at the 
in

ertices and there are no 
no

triangle strip with vertex indices 7, 6, 11, 5, 10, 4, 3, 9, 2. 

N

 
 

ew Vertex Intersecting Edges 
V8 V0V3          V1V6 
V9 V0V3          V2V5 
V10 V4V7          V2V5 
V1  V1 4V7          V1V6 

 
Table 1. 
 

5.   FLOATING POINT COMPOSITING 
In our simulated X-ray application, we needed floating point 

compositing. Initially, we considered absorption-only images. 
lated opacity along a ray, so 

th

olume rendering, 
w

 

 
Figure 12. x indices for count = 0 case.  
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The count = 4 
vertices. Two triang

These involve only the total accumu
at back to front visibility sorting is not required. We used a 

frame buffer object containing the accumulated image as a source 
texture, and also as a render target when we composited each new 
cell by a floating point fragment program, as described in sections 
4 and 7.1 of Laney et al. [6]. It is a hazard to use the same frame 
buffer object as a source texture and a render target, because of 
the long delays in the pixel write pipeline, and because the texture 
cache may not be up to date. Instead of writing a large polygon to 
clear the write pipeline and texture cache, as described in [6], we 
now clear the write pipeline by reading out one pixel from the 
frame buffer object, and clear the texture cache by unbinding and 
rebinding the texture. In [6], rather than doing this after every cell 
is projected, we had an extra step to sort the cells into non-
overlapping layers. One of the reviewers of [6] suggested that 
such layers could be found from standard visibility sort of the 
cells, and we now do this, as described below. 

We are currently doing absorption plus emission X-ray 
simulations, to account for X-ray emission from hot materials. 
This is equivalent to standard color/opacity v

dices 4, 0, 3, 7, 6, 5, 1, 0; and the second lists indices 6, 7, 3, 
2, 1, 5.  

The count = 2 case shown in figure 11 has a new vertex V8 at 
the inters

tersection of edges V6V5 and V0V1. As in [4], we use a triangle 
fan, with vertex indices 7, 8, 0, 3, 2, 6, 9, 8, and a triangle strip 
with vertex indices 0, 4, 8, 5, 9, 1, 6, 2. 

The last case to consider is when count = 0. If no 
quadrilateral contains other projected v

n-convex projections, the projected vertices form a convex 
octagon, as in figure 1 a, or figure 12. In this case, the vertex 
renumbering scheme is somewhat different. The vertex indices 
are permuted so that they run counter-clockwise around the 
octagon, as in figure 12. Each of the four diagonal projected 
edges that are not on the perimeter of the octagon belong to one 
quadrilateral whose other sides are part of the perimeter, and 
therefore must join a vertex i with vertex (i + 3) mod 8 or (i - 3) 
mod 8. If vertex 0 is connected by such a diagonal to vertex 5 
(the i – 3 case), the vertices are renumbered by replacing index i 
by index 8 – i, so that the projection topology is as in figure 12.  

The new vertices are then found as shown in table 1.  We use 
a triangle fan with vertex indices 8, 0, 1, 2, 9, 10, 11, 7, 0, and a 

here the opacity may be wavelength dependent. We are using 
cell centered data, where the material variables affecting color 
(emissivity) and opacity (extinction coefficient) are constant on 
each cell. Since the RGBA fragment program can operate on four 
vector components in parallel, we can simulate four wavelength 



bands at once. However, the exponential of minus the product of 
the extinction coefficient times the thickness (interpolated from 
vertex values by the scan conversion stage of the GPU), to get the 
transparency for compositing, must be done in four GPU 
instructions, because exponentiation does not currently operate on 
four-component vectors. 

Color/opacity compositing requires a back-to-front visibility 
sort. The traditional directed graph visibility sort algorithm of 
Williams [7] has a node for each cell, and a directed edge for each 
fa

ber of incoming directed 
ed

nd removed from 
fr

 a volume made up of 32 curvilinear grids, with 
t  of 1 ,960 hexahedra. Among these hexahedra, 50,352 

te, with two or more vertices coinciding, and 924 
m

ure 7,  16 as in 
fi

5.27 seconds, of which 0.13 were 
us

 algorithm produced 43 layers, and drew 274 hexahedra 
an

The projections discussed here were discovered one by one by 
ses that arose in projecting the data set in figure 

13

faces. The 
al

s for the front and back cell faces. For a bilinear 
pa

exahedra with coinciding vertices. A 
te

d under the 
au ices of the U. S. Department of Energy by University of 
C

ce shared by two cells, pointing from the cell farther from the 
viewpoint to the adjacent one closer to the viewpoint, which 
directly occludes it. The algorithm of Cook et al. [8] augments 
this graph with directed edges for additional direct occlusion 
relations between cells across concavities or internal voids in the 
mesh. The "exterior" faces that are not shared by two cells are 
scan converted in software into an A-buffer (as in Carpenter [9]), 
which stores a depth-sorted list of such faces overlapping each 
pixel. The extra occlusion relations can then be discovered from 
adjacent pairs of entries in these lists.  

Once the augmented visibility graph is constructed, a 
topological depth first search established the visibility order, as 
follows. An initial pass counts the num

ges to each cell (from cells that it directly occludes), and puts 
those cells with no incoming edges into a first-in-first-out (FIFO) 
queue. Then, while the queue is non-empty, the cell at its head can 
be removed and composited onto the image, since it occludes no 
cell that has not already been composited. Each directed edge 
leaving the cell is followed to decrement the incoming edge count 
of the cell it points to, and if that cell's count becomes zero, it is 
added to the FIFO queue.  (See [7] for details.) 

In order to determine the non-overlapping layers of cells, a 
special token is inserted at the end of the FIFO queue after the 
initial pass. When this token is encountered a

ont of the queue, a layer is complete, so the GPU write pipeline 
and texture cache are cleared as described above, and the token is 
inserted again at the end of queue to delimit the next layer. It costs 
time to clear the GPU pipeline after each layer. This is another 
reason to render hexahedra as a whole when possible, instead of 
dividing them all up into tetrahedra, which would increase the 
number of layers. 

6.    RESULTS 
Figure 13 shows

a otal 41
were degenera

ore had non-convex face projections. In both these cases, we 
subdivided the offending cell into six tetrahedra. 

There remained 90,684 hexahedra. Among the count = 1 cases, 
there were 78,146 standard projections as in figure 5,  242 
alternate projections as in figure 6,  532 as in fig

gure 8, and 31 as in figure 9. There were 223 count = 4 cases as 
in figure 10,  11,333 count = 2 cases as in figure 11, and 161 
count = 0 cases as in figure 12.  

Using one processor of an 800 MHz dual Pentium4 Xeon PC, 
and an nVidia 5900FXUltra graphics card, the absorption only X-
ray simulation in figure 13 took 

ed to read in the data, 3.5 were used to classify the cases, and 
1.51 were used for preparing and rendering the triangle strips and 
fans. 

Figure 14 shows a volume rendering of half a cylindrical shell, 
twisted to form non-planar faces for its 300 hexahedra. The 
sorting

d 156 tetrahedra in 1.25 seconds, of which .19 seconds were for 

sorting, .34 seconds were for classification and rendering, and the 
rest for input and output. 

7. DISCUSSION 

analysing the ca
. No other cases were discovered among the projections of 

10,000,000,000 hexahedra, with vertices chosen randomly inside 
a unit cube, but so far we do not have a proof that no others exist 
among projections of non-degenerate hexahedra with no bow-tie 
or concave quadrilaterals. In fact, the vast majority of the random 
hexahedra fell into these two rejected cases, but this is of course 
not the case for hexahedra arising from practical grids. 

Figure 15 shows an extreme twisting of the cylindrical shell. 
The dark artifacts are caused by severely non-planar 

gorithm described here uses a piecewise-linear approximation to 
the thickness through the cell, which is linear on each triangle in 
the triangle fans. The subdivision of a face into triangles in these 
fans is not consistent for the two cells sharing the face, since the 
cells have other unshared edges contributing to their respective 
subdivisions. The artifacts in figure 15 are caused by this 
inconsistency. 

A solution to this problem would be to compute for every pixel 
consistent depth

rametric face interpolating four non-co-planar points, this 
involves solving a quadratic polynomial, which is unstable when 
the ray is close to tangent to the surface. Instead, we divide each 
quadrilateral into two triangles, using the diagonal starting from 
the vertex of lowest index. This choice of diagonal is consistent 
for the two cells sharing a face, and also with the method in Max 
[10] which we use to divide cells with non-convex face 
projections into tetrahedra. We use this method in software to find 
the thickness at triangle fan vertices like V1 and V7 in figure 5, 
whose viewing rays intersect the interior of the opposite face. It 
remains future work to compute such a thickness for every 
fragment in the GPU. 

Another problem is with the degenerate tetrahedra which result 
from subdividing h

trahedron with exactly two coinciding vertices will also have 
two coinciding non-degenerate faces. If the viewing ray is not 
tangent to these faces, then in the directed graph for the visibility 
sort, there must be one incoming directed edge and one outgoing 
directed edge for this cell. But since the cell has zero volume, it is 
impossible to decide which directed edge should be incoming, 
when considering the cell in isolation. Therefore, in order to get a 
consistent directed graph, this decision must be propagated 
incrementally across the grid, starting from some cell of non-zero 
volume, as described in section 4 of Williams [11]. 
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Figure 14.  Volume rendering of a colored twisted cylindrical grid. 
 

 
 

 
 

 
 

 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 15. Artifacts from severely twisted hexahedra. 

 




