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Abstract

  Broadband subspace detectors are introduced for seismological applications that require the 
detection of repetitive sources that produce similar, yet significantly variable seismic signals.  
Like correlation detectors, of which they are a generalization, subspace detectors often permit 
remarkably sensitive detection of small events.  The subspace detector derives its name from the 
fact that it projects a sliding window of data  drawn from a continuous stream onto a vector signal 
subspace spanning the collection of signals expected to be generated by a particular source.  
Empirical procedures are presented for designing subspaces from clusters of events characterizing 
a source.  Furthermore, a solution is presented for the problem of selecting the dimension of the 
subspace to maximize the probability of detecting repetitive events at a fixed false alarm rate.  An 
example illustrates subspace design and detection using events in the 2002 San Ramon, California 
earthquake swarm.

Introduction

Motivation

  Correlation detectors are gaining in popularity due to the significant reductions in detection 
threshold that are sometimes possible [Wiechecki-Vergara et al., 2001;  Gibbons and Ringdal, 
2006] and due to the ability of such detectors to classify events as they are detected [Harris, 1991, 
1997, 2001].  Correlation detectors applied to array signals solve an age-old problem of beam-
forming loss due to signal decorrelation across a receiver aperture [Mykkeltveit et al., 1983], but 
at the expense of introducing a new problem of signal decorrelation in the source region.  Sub-
space detectors [Scharf and Friedlander, 1994;  Harris 1997, 2001, 2003, 2004] offer a partial 
solution to this problem by extending the space of signals that can be detected from a space 
spanned by a single waveform template to a subspace chosen to span the range of signals 
observed from previous events occurring at a source of interest.

  The detection and identification of proximate events producing similar signals occurs in many 
seismological applications.  For example, repeating events are used as markers along faults to 
estimate rates of slip and energy release [Nadeau et al., 1995;  Nadeau and McEvilly, 1997] and to 
estimate local changes in seismic velocity induced by large earthquakes [Schaff and Beroza, 
2004].  The proximity of earthquakes and mining explosions has been estimated using waveform 
correlations [Geller and Mueller, 1980;  Thorbjarnardottir and Pechman, 1987;  Harris, 1991].  
Interest in earthquakes with correlated waveforms has escalated due to successes in high-resolu-
tion relative relocation with correlation picks, for precise delineation of faults and identification 
of ground truth events for calibration purposes [e.g. Waldhauser and Ellsworth, 2000;  Rowe et 
al., 2002].  The discovery of correlated events for use in relative relocation is now a matter of con-
siderable interest.  Schaff, Richards and colleagues [Schaff and Richards, 2004;  Schaff et al., 
2003] have demonstrated in several regions that a large fraction of all earthquakes occur as correl-
ative twins, driving the potential for widespread application of precision relocation.

  Mining explosions also produce highly repetitive waveforms.  This fact has been used effec-
tively to classify mining explosions [Israelsson, 1990;  Harris, 1991;  Riviere-Barbier and Grant, 



1993], principally to screen them in test ban monitoring applications and when grooming catalogs 
of natural seismicity.  Commercial explosions also need to be identified to provide training sets in 
the design and testing of discriminants.

  Repeating events pose a challenge to the limited resources of all network operations whether for 
test-ban monitoring purposes, for hazard assessment or for fundamental investigations of earth 
structure.  Prolific mining explosions and aftershock and swarm events are the principal event 
types requiring effcient handling [see Figure 1].

Correlation and Subspace Detectors

  Correlation-type detectors offer one approach to screening or identifying repetitive events.  The 
classical detector for known signals is the matched filter [e.g. Van Trees, 1968], which correlates 
a template waveform against a continuous data stream to detect occurrences of that waveform.  
However, repeating sources frequently produce varied waveforms not well represented by a single 
template.  This situation occurs when events are spread out over a region larger than one or two 
wavelengths at the dominant frequency of the repeating waveforms [Harris, 1991], or when 
source mechanisms or time histories are complex and variable.  It is desirable to develop detectors 
that have much of the sensitivity of correlation detectors, but are more broadly applicable.

  Current practice in seismic signal detection is concentrated at the extremes of a spectrum of pos-
sibilities determined by the amount of information available about the temporal structure of sig-
nals to be detected.  On one end of the spectrum little signal information is available other than the 
frequency band where signal energy exists.  Incoherent energy detectors, such as STA/LTA algo-
rithms, lie at this end of the spectrum.  At the other end, complete information is available about 
the signal.  Correlation detectors, which coherently use the fine structure of signals both temporal 
and spatial to enhance sensitivity, sit at this end of the spectrum.  Each algorithm has advantages 
and disadvantages.  Simple energy detectors are broadly applicable, because they require so little 
information about the signals to be detected.  However, they have high false alarm rates when 
thresholds are set aggressively to detect smaller signals.  Correlation detectors are exquisitely sen-
sitive, having high probabilities of detection at low false alarm rates, even under conditions of 
threshold detection [Gibbons and Ringdal, 2006].  However, as noted above, they are applicable 
only to strictly repetitive sources confined to very compact geographic regions.

  Subspace detectors span the gap between  the strictly incoherent and coherent end-members of 
this spectrum.  These detectors invoke a model that represents the signals to be detected as a linear 
combination of orthogonal basis waveforms.  The essential parameters controlling the tradeoff 
between sensitivity and flexibility are the detection threshold and the dimension of the subspace, 
i.e. the number of basis waveforms.  In principal, a subspace representation can be constructed 
supporting a family of detectors that grade nearly continuously between correlation and energy 
detectors.  At the correlation end of the spectrum, the subspace dimension is one;  at the energy 
detector end, the size of the subspace is the dimension of the embedding signal space.

  A subspace signal representation is natural when detecting seismic waves traveling a (nearly) 
fixed path.  An individual seismogram  theoretically can be represented by a sum of convolu-s t( )



Figure 1  Mining explosions and earthquake aftershock sequences and swarms pose substantial
challenges for seismic network operations that may be alleviated with the use of subspace detec-
tors.  At top left is a ten-day sequence of waveform data from station RSSD.  This station is within
150 kilometers of several tens of large coal mines in the Powder River Basin.  The quasi-periodic
recurrence of events observed by this station clearly is dominated by the mines.  The mines shoot
in a regular daily progression of blasts during daylight hours and often at shift changes.  Contrast-
ed to this at lower left is the main shock and aftershock sequence of the 2004 Parkfield earthquake
observed at station SAO.  The events occur at random intervals and are a greater challenge for
screening as they are spread over a source region spanning tens of kilometers.
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tions of source time histories  with the corresponding elements of the Green’s function ten-

sor describing propagation along the path:

For a fixed source location  and receiver location  the elements of the Green’s function tensor 

 are invariant.  Transient events such as earthquakes and explosions have source 

time histories with finite durations and bandwidths.  At any given range, the effective duration of 
the observed seismogram is finite, for sake of concreteness  seconds.  Any signal of duration  

seconds with bandwidth  Hertz has at most  independent degrees of freedom (Nyquists the-

orem) and, thus, exists in a vector space of dimension .  The collection of possible seismo-
grams along a specific path is a subspace of this embedding vector space with potentially far 
fewer degrees of freedom.  Since, in the elastic earth and for sources small enough to be consid-
ered point sources, there are 6 independent moment tensor elements, the dimension of the sub-
space is at most  where  is the maximum duration of the source time histories.  At 

significant ranges, .  

  The key to successful exploitation of these observations for efficient detection is to find a low-
order basis for the subspace.  The approach described in this report is to derive a basis empirically 
from a collection of representative waveforms characterizing a particular repeating source.  

  The remainder of this report develops an argument for subspace detectors in five sections.  The 
first formulates the detection problem introducing the new facet of a subspace signal representa-
tion, defines a probability model for the observations and derives the structure of the subspace 
detector.  The second section discusses the probability model for the sufficient statistic that the 
detector calculates, laying the necessary groundwork for optimizing the detector (principally 
selection of the detection threshold and subspace dimension).  The third section presents a proce-
dure for detector subspace design, illustrating the approach using a concrete example of events 
from the 2002 San Ramon, California swarm.  The fourth section measures the performance of 
the detector against ground truth information available from the NCSN catalog.  The paper con-
cludes with a discussion of the implications of the subspace approach (and generalization of the 
presented approach) for lowering detection thresholds in more general circumstances (e.g. appli-
cation to arrays) where the signal to be detected is uncertain.
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Formulation of the Detection Problem

  Our objective is to detect the occurrence of signals of a particular class in a noisy, possibly mul-
tichannel data stream.  The data may be observations of a single seismic trace, a multichannel 
waveform from a three-component station or a multichannel waveform from an array or network.  
We consider discrete-time data streams , with n an integer time index.  The 

streams are the digitized representations of bandpass analog signals  sampled every  sec-

onds.  The channel index i  assumes values {1, 2, ..., NC} with NC the total number of data channel 

streams.  For what follows, it frequently will be convenient to pack the  individual streams 

into a single channel-sequential multiplexed stream:

By convention, when referring to single-channel signals we will use the symbol  and when 

referring to the corresponding multiplexed signals, we will use the symbol 
.
  Detectors usually are conceived to implement a binary hypothesis test on the presence or 
absence of a signal in a data observation window [Van Trees, 1968].  The test chooses between the 
null hypothesis H0, that noise only is present, and the alternative hypothesis H1 , that both signal 
and noise are present (Figure 2).  Under several possible criteria, the detection rule is a likelihood 
ratio test that compares the probability that the observed data are due to signal and noise to the 
probability that they are due to noise alone:

The data vector  reformats into a vector a finite segment of the continuous multiplexed 

stream of equation 1 (Figure 3) beginning at sample  in the individual scalar signals:

The superscript  denotes the transpose operation.  Defining the duration of the observation win-

dow as  samples for each of the individual channels , the total number of samples compris-

ing  is .

  In this discussion, the probability model for the data is multivariate Gaussian.  The data consist 
of noise alone or signal with additive noise:
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Figure 2  The detection problem is usually formulated for a window sliding along a continuous
data stream.  At each window position, a binary hypothesis test is conducted, testing whether the
data in the window consist of noise alone or signal and noise superimposed.  In a subspace detec-
tor, the signal is modeled as the sum of weighted basis functions.  The weights are considered de-
terministic, but unknown and must be estimated for each position of the window.
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Figure 3  To simplify mathematical expressions and to support an efficient correlation algorithm,
it is convenient to reformat multichannel data and signal-matching templates into channel-se-
quential multiplexed form.  The example above shows a portion of a three-component data stream
with vertical, north and east (z,n,e) channels and a corresponding three-component template in
the upper part of the diagram.  In a correlation-matching operation, the template effectively over-
lays the data in the detection window.  The product of data and template samples from corre-
sponding channels (z with z, n with n and e with e) is formed and the resulting products are
summed to form the correlation value, as in Figure 1.  In the bottom part f the diagram, the same
sum of products can be formed by a simple dot product of data and template when reordered into
single channel-sequential multiplexed vectors or streams.
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The noise  is assumed to be zero-mean, and temporally and spatially uncorrelated with 

unknown power level (i.e. unknown variance ). but with the same power on all channels.  This 
simplifying assumption leads to closed-form solution for the detection problem that will be 
relaxed in follow-on work.  The signal is assumed to be deterministic, but dependent upon a vec-
tor of unknown parameters , and is specified as an unknown linear combination of basis wave-
forms:

The d columns of the  representation matrix  constitute the waveform basis in sampled 

form.  The dimension  may take any value from 1 to , the number of observed samples.  The 
set of all signals satisfying the form (6) are referred to as the signal subspace.  Without loss of 
generality,  can be made orthonormal: 

where  is the  identity matrix.  

  Under these assumptions, the probability density function for the observed data is 

under the null hypothesis (no signal present) and

under the alternative hypothesis (signal present).

  Because there are unknown parameters in the probability densities under each hypothesis, the 
likelihood ratio test of equation (3) must be modified to use definite parameter values.  A reason-
able choice for the parameter values is their maximum likelihood estimates given the available 
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data.  The likelihood ratio test that results is referred to as the Generalized Likelihood Ratio Test 
(GLRT) [Van Trees, 1968]:

The GLRT usually gives good performance in the detectors that implement it.  

  It is convenient to work with the natural logarithm of the likelihood ratio 
 when the pdfs involved are in the exponential family.  Carrying out the 

maximizations indicated in equation (10) (see Appendix A), the log generalized likelihood ratio is 
easily shown to have the simple form:

The vector  is the least-squares estimate of the signal in the detection window, and is 

obtained by projecting the data in the detection window into the subspace defined by  (Figure 

4).  The quantity  is the ratio of the energy in the projected data to the energy in the original 
data.  It is a positive quantity with values ranging between 0 and 1.  It closely resembles the 
square of a correlation coefficient (it is exactly that for the case , i.e. the correlation detec-

tor).  This quantity  is the sufficient statistic for a subspace detector.
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Figure 4  The subspace detector operates by projecting the (possibly multichannel) data in a de-
tection window (treated as a vector ) into a subspace spanned by the columns of the subspace
representation matrix .  The ratio of the squared norm of the projected vector to the squared
norm of the original data vector is the detection statistic.  This statistic resembles a correlation
coefficient in that it ranges between 0 and 1 and measures the linear dependence between the data
and the set of vectors comprising the subspace representation.  This statistic is computed contin-
uously as the data window slides down the continuous data stream one sample at a time.  When
the statistic exceeds a predefined threshold value, a detection is declared.
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Theoretical Distribution of the Sufficient Statistic and Detector Performance

  Subspace detectors compute the sufficient statistic  (equation 11) continuously and compare 
it against a threshold, declaring detections when the threshold is exceeded.  Estimation and opti-
mization of average detector performance require an understanding of the distribution of the suffi-
cient statistic.  Under the simplifying assumption of uncorrelated, white, normally-distributed 
background noise, the sufficient statistic is a ratio of sums of squares of normal random variables, 
and, hence, with suitable normalization, has a beta distribution.  The numerator of the sufficient 

statistic, normalized by the noise variance, , is chi-square distributed with  

degrees of freedom, since the column dimension of the orthonormal matrix  is .  Under  

this quantity is a central chi-square variable.  Under , when a signal of  the form  is present, 

the numerator has a non-central chi-square distribution with non-centrality parameter .  
The non-centrality parameter is the ratio of signal energy to two-sided noise power spectral den-
sity [Urkowitz, 1967].  

  The denominator of the sufficient statistic

can be decomposed as the sum of two statistically independent terms.  The first, the same as the 
numerator, represents the energy in the data projected into the detection subspace, and the second 
represents the energy in the orthogonal complement to the subspace.  When normalized by the 
noise variance, both of these terms are distributed as chi-square with  and  degrees of free-
dom respectively.  

  To compute the probabilities associated with this distribution, it is convenient to manipulate 
 into a quantity that is F distributed and use available software routines [Mudholkar et al., 

1976] for the non-central F distribution.  The test for declaration of a detection assumes the form:

(12)
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As observed above,  resembles the square of a correlation coefficient and, thus, ranges 

between 0 and 1.  Consequently, the threshold  will be chosen between 0 and 1.  Equations (13) 
can be manipulated into:

Note that the quantity at left in the relations above has a central F distribution with 
with  and  degrees of freedom under  and non-central F with non-centrality 

parameter  and the same numbers of degrees of freedom under .

Effects of Signal Mismatch

  The discussion so far has relied upon the assumption that the signal, when present, has the form 
of (6).  This assumption implies that the detection subspace has been chosen to represent perfectly 
the class of signals intended to be detected.  As will be made clear in the next section, perfect rep-
resentation may not be possible or even desirable.  The foregoing discussion of the sufficient sta-
tistic distribution must be modified to consider what happens when the representation has error, a 
condition referred to as signal mismatch.

  It is convenient to modify the signal representation (6) to incorporate a mismatch term :

with , and .  The signal is acknowledged to have a component in a second sub-

space orthogonal to the detectors representation subspace.  The presence of the mismatch term 
modifies the distribution of (14) under  to be doubly non-central F (Mudholkar, Chaubey and 

Lin, 1976) with non-centrality parameters  in the numerator and  in the denomi-

nator.  The total signal energy is .  The first non-centrality parameter corresponds 
to the signal energy “captured” by the detector representation and the second to the portion of 
energy missed by the representation.  The fraction of energy captured
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 is a critical design parameter used when optimizing the dimension  of a subspace detector.  The 

dimensions of the representation space ( ) and the error space ( ) are considered to trade off 
against each other in discussions of design of the representation later in this report.

Estimate of the Effective Embedding Space Dimension

  To this point, the discussion has assumed that the noise in the detection windows is statistically 
uncorrelated.  If the detection window is  samples long, then the dimension of the signal space 

in which the detection subspace is embedded is also .  As Wiechecki-Vergara et al. (2001) point 
out, the effective number of degrees of freedom can be significantly fewer if the data are filtered 
prior to detection.  Even without filtering, background seismic noise typically is typically is corre-
lated since seismic spectra are not flat (far from it) and data from three-component and array sen-
sors are spatially correlated.  Wiechecki-Vergara et al. provide a means to estimate the effective 
dimension of the data using the distribution of the sample correlation coefficient  computed 
from a large number of independent, length-N samples of background noise.  The samples may be 
obtained by dividing a very long, continuous noise record chosen to be free of transient signals 
into many hundreds or thousands of length-N data windows.

 The Wiechecki-Vergara et al. estimator for the effective dimension of the embedding space in a 
fixed window is related to the variance of the sample correlation coefficient

by:

This value is a conveniently calculated estimate for embedding space dimension for correlated 
multichannel data such as polarized three-component noise or noise correlated across the spatial 
aperture of an array.  Data samples of the form of equation (4) may be used with many realizations 
of the sample statistic

Setting Probabilities of False Alarm and Detection Thresholds

  The distribution of the sufficient statistic permits calculations of the probability of detection and 
probability of false alarm once a detection threshold is chosen.  Several philosophies for setting 
the threshold exist;  the one employed here is the Neyman-Pearson criterion (Van Trees, 1968).  
Under this criterion, the probability of false alarm is fixed at an acceptable value and the probabil-
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ity of detection is maximized by adjusting the remaining free parameter:  the subspace dimension.  
The probability of false alarm  is determined by the probability that the sufficient statistic 

exceeds the specified threshold under the null hypothesis.  This probability is evaluated from the 
cumulative central F distribution  by:

Note the use of the effective embedding space dimension  instead of the data window dimen-

sion .  The expression of equation (20) must be inverted for the threshold  for each value of 

the subspace dimension .  The corresponding probability of detection can be expressed in terms 
of the cumulative doubly non-central F distribution (Mudholkar, Chaubey and Lin, 1976):

where  is the non-centrality parameter for the numerator and  is the 

non-centrality parameter for the denominator term.
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Empirical Subspace Design and Optimizing Detector Performance

  The discussion to this point has presented subspace detectors in abstract terms, describing their 
form and statistics, but not explaining how a subspace representation can be obtained and opti-
mized.  This section presents an empirical approach to subspace design and the use of the statisti-
cal model (20 and 21) to optimize performance.  This discussion is carried out in the context of an 
example:  detecting events in the 2002 San Ramon, California swarm.  The seismological objec-
tive of this example is to demonstrate how to obtain a catalog for an earthquake sequence more 
complete to lower magnitudes starting with relatively few larger-magnitude events.  

The 2002 San Ramon Swarm

  The 2002 San Ramon swarm occurred in a geographically compact source region (Figure 5), and 
produced repetitive signals that nonetheless exhibited diversity.  Good ground truth information is 
available for the swarm.  The Berkeley Seismological Laboratory (CISN, 2002) analyzed the 
swarm with the dense Northern California Seismic Network, identifying and locating 179 events 
in a six day period (Julian days 328-333) and estimating magnitudes.  Reported event magnitudes 
spanned 3 magnitude units (Md 0.71 to ML 3.9), permitting an estimate of detection threshold at 
certain distance ranges.  The largest event was an ML 3.9 strike-slip earthquake that occurred on 
November 24, 2002 at 14:54:23 GMT.

  An excellent selection of high-quality broadband data covering this swarm is available from the 
Berkeley Digital Seismic Network (BDSN).  Two stations were chosen for this study:  Kaiser 
Creek, California (KCC) and Briones, California (BRIB).  The two stations are located 238 and 
25 kilometers from the swarm, respectively (Figure 5).  Three-component data from KCC were 
used to design, test and run several detectors;  data from BRIB were used, along with the Berkeley 
catalog, to corroborate detections at KCC.

Outline of Procedure

  A procedure for constructing and applying an empirical subspace representation, shown in Fig-
ure 6, consists of 5 steps.  

1. Construct a pool events to use for source characterization.  This may be done one of two ways:  
by extracting events from a catalog, or by processing an interval of continuous data containing 
the event sequence of interest with an energy (STA/LTA) detector to obtain a pool of larger 
events for cluster analysis.  Typically an STA/LTA algorithm will produce a large number of 
noise triggers as well as detections of events from the target source and from other sources.

2. Calculate waveform correlations pairwise for all events in the pool, then cluster the events 
based on the correlation measurements with any suitable clustering algorithm.  The waveform 
correlations for multichannel data can be calculated over all channels of data by forming the 
required inner products with channel-sequential multiplexed data as in equation (4).  The sin-
gle-link algorithm (e.g. Israelsson, 1990), one of several hierarchical agglomerative clustering 
techniques, is particularly suitable for the subspace design problem, as will be explained later.  



Figure 5  The 2002 San Ramon, California swarm provides a convenient test of subspace detector
design and performance.  Data from two BDSN broadband stations (KCC, BRIB) are used in the
test example, to implement the detector and help assess its performance.
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Figure 6  A procedure for empirical design of subspace detectors and for applying them to reduce
the detection threshold for a specific source has  five steps.  See the text for details.
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3. Select a (ideally the) cluster associated with the source of interest.  The events of this cluster 
are refered to as the design set.  Align the waveforms from the events constituting the cluster 
and extract the temporal window that will be used to define the subspace template.  Proper 
alignment is crucial;  poor alignment will result in a subspace operator with a larger than nec-
essary number of dimensions.  If multiple channels of data are available, organize the chan-
nels of data for each event as a single vector in channel-multiplexed form (equation 4).  
Construct a data matrix from the individual event channel-multiplexed data vectors;  the event 
data vectors form the columns of the matrix.

4. Calculate an orthonormal basis for the column space of the data matrix using the singular 
value decomposition (SVD) algorithm (Golub and Van Loan, 1996).  Select the desired false 
alarm probability  and choose the dimension d of the subspace detector to maximize the 

probability of detection over a suitable range of signal-to-noise ratios.  The threshold of the 
detector will be determined by the detector dimension and .  As will be described shortly, 

the singular values hold the key to defining the probability of detection.  The subspace repre-
sentation matrix  is formed from the left singular vectors corresponding to the largest d sin-

gular values.
5. Reprocess the data stream with the subspace detector defined by  to detect events consis-

tent with the design cluster.

Several of these steps require elaboration.  The procedure outlined above was applied to three-
component data from station KCC spanning the six-day period of the San Ramon swarm.  An 
STA/LTA detector was applied to acquire a pool of 289 events in step 1.  A number of issues that 
arise in executing the remaining steps are illustrated below using the KCC observations.

Choice of Clustering Algorithm
 
  The choice of algorithm for clustering seismic events in step 2 depends on objectives and expec-
tations in characterizing a source.  In this report, the assumption is that the source region to be 
characterized through representative waveforms has some geographic extent, significant variation 
in source mechanisms, significant variation in source time histories or some combination of all 
three attributes.  An aggressive algorithm for linking events into large chains spanning the space 
of waveform variations is desirable in this view.  The single-link algorithm (see Appendix B) is an 
appropriate clustering method for this objective.  The single-link algorithm aggregates event clus-
ters based only on single pairs of events (one event in each of two clusters under consideration for 
merging) with a significant waveform correlation.  By contrast, a much more conservative alter-
native, the complete-link algorithm (see e.g. Riviere-Barbier and Grant, 1993), requires all event 
pairs between two clusters to have significant correlations before the clusters can be merged.

  In the case of the San Ramon sequence observed from KCC, a single-link algorithm applied to 
the 289 three-component waveforms of the event pool produced numerous clusters including one 
19-event cluster comprising most of the larger events of the San Ramon sequence.  Vertical chan-
nel observations for these events are shown in Figure 7.
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Figure 7  The data window for subspace detector design is chosen to encompass the majority of 
signal energy.  Longer windows only increase processing time with no increase in processing 
gain.  The vertical channel seismograms of the 19 San Ramon events selected for subspace oper-
ator design are depicted here.  The data window is 60 seconds long and encompasses both P and 
S phases of the seismograms.  Note that, although the signals are broadly similar, they also 
exhibit significant variation.  While only the vertical channel data are displayed here, three-com-
ponent data were used to form the data matrix in channel-sequential multiplexed form.

60 seconds



Waveform Alignment

  Good waveform alignment among the design events in step 3 is critical to obtaining a low-order 
empirical representation for the signals to be detected.  This fact is simple to comprehend by con-
sidering the limiting case where all design waveforms are identical.  In this case, the dimension of 
the subspace should be one.  However, if waveforms are misaligned, the dimension of the result-
ing subspace can be as large as the number of unique delays among the collection of signals.  

  In practice, design events often exhibit substantial variations (Figure 7), which may complicate 
automatic alignment methods.  Typically, these use waveform correlation calculations to establish 
the optimum alignment delays among the signals [e.g. Rowe et al., 2002].  Waveform variations 
often result in waveform correlation functions without clear maxima among some event pairs.  A 
solution to the problem of automatic event alignment may be found by using the correlation mea-
surements that do have well-defined maxima.  Typically these are the measurements with large 
correlation values that contribute to link formation in the single-link algorithm used to develop 
the dendrogram.  Consequently, one approach is to align the waveforms through the linkage struc-
ture defined by the dendrogram, as described in Appendix B.  The waveforms of Figure 7 were 
aligned using that approach.

Empirical Design of a Subspace Representation

  The objective in designing a subspace representation for a subspace detector is to obtain an opti-
mal orthogonal basis for the signals characteristic of events in the target source region.  A higher 
order representation offers the possibility of increasing the probability of detecting a weak event 
by capturing more of the energy of an incompletely known signal in a correlation operation.  
However, a representation with larger dimension also will increase the false alarm rate by allow-
ing the detector to match noise with greater probability.  Consequently, there is a tradeoff between 
capturing signal energy and noise energy that must be managed by selecting a suitable subspace 
dimension.  A parsimonious representation consistent with adequate signal energy capture is the 
objective.

  The mechanics of constructing a representation are straightforward.  A data matrix 

is assembled with D multiplexed data vectors (equation 4), one for each event of the design set, 
constituting the columns of the matrix.  In the example followed here, .  In order to pre-
vent large events in the design set from dominating the representation, it is convenient to normal-

ize each of the data vectors  to have unit energy, i.e. .  The signals are assumed to 

(22)X x1 x2 … xD=

D 19=

xi xi
T
xi 1=



have been suitably aligned, perhaps by the algorithm of appendix B.  The singular value decom-
position [Golub and Van Loan, 1996] of the data matrix

provides an orthonormal basis for the signals of the design set in the form of the matrix  of left 

singular vectors.  A smaller basis of any dimension  between 1 and  can be constructed by 

partitioning the columns of   into the group corresponding to the  larger singular values  

(diagonal elements of ) and a second group containing the remainder of the columns: 

To the extent that the set of design signals captures the full range of variation in the waveforms 
from a target region, the signal subspace and the signal mismatch subspace of equation (15) can 
be identified with the subspace spanned by  and its orthogonal complement, i.e.

By neglecting the  smaller singular values, the collection of design signals is approximated, 
in a least-squares sense, as .  

The matrix of coefficients

can be used to evaluate the energy capture of equation (16), which provides an expression of the 
fidelity of the d-dimensional representation for the events of the design set.  Taking in particular 
event :

where  is the ith column of .  The fractional energy capture (equation 16) for this event is:

the sum of squares of the coefficients.  This relation is so simple because the data vectors have 
been normalized to have unit energy.  Another simple relation is the average energy capture for all 
D of the design events, which can be shown to be:
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  Figure 8 displays the individual curves (black lines) of fractional energy capture (29) for each of 
the 19 design events of figure 7 as a function of the dimension  of the representation obtained 
from the singular value decomposition of the data matrix constructed from these events.  The 
energy capture curves all begin at 0 and end at 1, the latter result a consequence of perfect repre-
sentation when the dimension of the subspace equals the number of design events.  The average 
energy capture is show as the bold red line in the figure.

  Figure 8 is intended as an aid to setting the threshold  for the detection statistic of equation 
(13).  The detection statistic is itself a measure of energy capture exactly as described in equation 
(16) when signal only is present in the detection window.  Consequently, for the detector to trigger 
on the design events (a reasonable expectation), the theshold must be set somewhere below the 
envelope of energy capture curves displayed in the figure.  As shown in the figure, a threshold of 
0.141 is well below the envelope for a detector with 9 dimensions.  In fact, at 9 dimensions, the 
threshold could be raised to 0.5 without loss of a design event.

Optimizing the probability of detection

  A more rigorous approach to estimating detector performance and setting the detection threshold 
uses equations (20) and (21) with the definition of fractional energy capture established in equa-
tion (29).  Following the Neyman-Pearson philosophy, the false alarm probability is the starting 
point, and is set at a value that produces a tolerable rate of false alarms.  Once the false alarm 

probability  is set and the number of effective degrees of freedom  of the noise in the 

detection window is estimated, equation (19) can be inverted for a threshold  for each of the pos-

sible number of dimensions  in the detector subspace representation.  With the fraction energy 

capture (29) then known as a function of  and the threshold  available, the probability of detec-

tion  for any particular event in the design set can be evaluated as a function of the signal-to-

noise ratio parameter .  If it is assumed that (1) the signals in the design set span the range 
of signals produced by the source of interest, and (2) the design events are all equally likely, then 
a reasonable approach is to calculate the probability of detection for the source as the average of 
the individual probabilities of detection for the  design events.

  This approach was followed with the San Ramon sequence example with the result shown in 

Figure 9.  In this calculation, the false alarm probability was set conservatively at .  Nineteen 

individual  curves appear in the figure, one for each possible subspace dimension .  The 

energy capture curves in Figure 8 were used to generate the curves of Figure 9.   is plotted as a 

function of the post-integration SNR (actually , where  is the number of data samples 
in the window).  The post-integration SNR as defined here corresponds most intuitively to the 
“eyeball” SNR since it represents the total energy delivered by the signal in the window to the 
total energy delivered by the noise, and also is equivalent to the ratio of average signal power in 
the window to average noise power.  An SNR of 1 (0 dB) would correspond to rough parity in the 
average powers of signal and noise.
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Figure 8  The fractional signal energy capture as a function of representation dimension is an 
important design parameter driving the calculations of probabilities of detection and false alarm.  
Each black curve represents the fraction of energy captured in the three-component signal of one 
of the nineteen design events as a function of subspace dimension.  The lower envelope of the 
curves determines the values of the detection threshold (as a function of subspace dimension) 
that will result in detection of the design events.  The bold red curve is the average energy cap-
ture for all 19 events as a function of subspace dimension.
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Figure 9  The probability of detection as a function of signal to noise ratio and at a fixed false 
alarm probability is the most valuable theoretical tool for selecting the dimension of the sub-

space.  In this case, the false alarm probability has been set at , and the probability of detec-
tion calculated as a function of post-integration SNR for subspace representations with 
dimensions ranging from 1 to 19.  In calculating the probabilities of detection, the design events 
were assumed completely to represent the new events to be detected in the source region (an ide-
alization) and to be equally likely.
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  Figure 9 shows a pattern common for an event design set with significant waveform diversity.  
The  curve for  does not reach 1 even at SNRs greater than 1 (high SNR).  This feature 

occurs because of the low energy capture that occurs for most events when the representation con-
sists of a single vector (see Figure 8).  The energy capture improves quickly and the probability of 
detection curves climb rapidly as dimensions 2 and 3 are added, but waveforms from two events 
continue to be poorly represented.  The probability of detection curves actually decline somewhat 
at higher SNRs as 4th and 5th dimensions are added.  This feature occurs because energy capture 
does not improve substantially for the two events, while the ability to match noise increases.  
Since the false alarm probability is held fixed,  must decline when additional dimensions do 

not improve improve signal energy capture.

  By the time the representation grows to 9 dimensions, energy capture is above 0.5 for all events 
and good detector performance ( ) finally is achieved below an SNR of 0 dB.  Performance 

continues to improve, but marginally until 12 dimensions, beyond which the probability of detec-
tion curves change little or actually begin to decline.  They decline again because the marginal 
increase in signal energy capture afforded by additional increments to the representation does not 
offset the increase in noise energy capture.  This analysis suggests that a dimension of 9 would be 
a good choice for detecting the San Ramon sequence events from station KCC.

PD d 1=

PD

PD 1∼



Observed Performance of Correlation and Subspace Detectors

  Figure 10 illustrates the detection statistics obtained by processing the six days of continuous 
data recorded by station KCC with three different detectors:  a correlator constructed from the 
waveform of the largest (ML 3.9) event in the sequence and two subspace detectors, one with 9 
dimensions and one with 12 dimensions.  The detectors were designed with template waveforms 
filtered into the 2-4.5 Hertz band and used all three channels of KCC data (Z, N, E).  These detec-
tion sequences (  of equation 11) were computed by applying equation 11 repeatedly to data 
in a window (as in Figure 2) sliding continuously along the data stream shown at the top in Figure 

10.  The theoretical thresholds computed for a false alarm probability of 10-6 are indicated in Fig-
ure 10 with the horizontal dashed red lines.  The correlation detector has the lowest threshold 
(0.077) since it has a single dimension and, thus, should match background noise less well than 
the subspace detectors.  It is clear from the figure that the background level of this statistic is sub-
stantially lower than the background levels of the other two statistics (which increase with 
increasing dimension) commensurate with the predicted threshold.  It is also clear that the sub-
space detector have increase processing gain (larger statistics when signals are present) when 
compared to the correlator.

  The thresholds have been set conservatively in this example, resulting in few presumed false 
alarms, but a number of missed events. The presumed false alarms were those triggers that could 
not be reconciled against the NCSN catalog events supplemented with detections made by a sub-
space detector at much closer station BRIB with a conservative threshold.  Figure 11 shows the 
spatial distributions of legitimate San Ramon sequence detections made by the correlator and the 
9-dimension subspace detector.  At left in the figure are maps (longitude-latitude on top, longi-
tude-depth on the bottom) that show the positions of the events used to design the detectors.  The 
locations plotted in the maps were obtained from the Northern California Seismic Network 
(NCSN) catalog covering the region and were derived from a dense set of stations operated jointly 
by the Berkeley Seismological Laboratory and the USGS.  The magnitude 3.9 event, used to 
develop the correlator, is shown as a black star.  The other 18 events (black crosses) constitute the 
remainder of the design set used to construct the subspace detectors.  Note that the design events 
are concentrated in the lower half of the sequence, this being a consequence of the facts that they 
were obtained by use of an energy detector and the larger events of the sequence are concentrated 
there.

  The events detected by the correlator are shown in the middle of Figure 11.  Not surprisingly 
they are located in the bottom half of the sequence and close to the magnitude 3.9 design event.  
The events detected by the subspace detector are shown at the right in the figure.  They are more 
numerous and widely distributed as might be anticipated from the more diverse set of design 
events.  Most of the missed events occur in the shallower half of the sequence where the events 
are smaller and more distant from the design set.  In previous studies [e.g. Thorbjarnardottir and 
Pechman, 1987;  Harris, 1991], waveform correlations have been shown to decline substantially 
with increasing source separation, consistent with the observation of Figure 11.

  Figure 12 illustrates the distribution of detected events by magnitude.  Three histograms are 
superimposed in the figure:  a histogram (grey) of event numbers by magnitude as reported in the 

c n[ ]



Figure 10  Detection statistics computed for the correlation detector (second trace), 9-dimension 
subspace detector (third trace) and 12-dimension subspace detector (bottom trace) demonstrate 
the increased processing gain afforded by subspace detectors.  The detection thresholds are 
shown as red dashed lines and were set in each case to achieve a theoretical false alarm probabil-

ity of 10-6.
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Figure 11  Maps of the locations of events in the San Ramon 2002 sequence as a function of lat-
itude and longitude (top) and longitude and depth (bottom) detected or not detected by the corre-
lation and 9-dimension subspace detector show the greater geographic coverage and sensitivity 
of the subspace detector.  The event locations were obtained from the Northern California Seis-
mic Network (NCSN) catalog and were derived from the dense network of stations operated in 
the region by the Berkeley Seismological Laboratory and the USGS.  The event symbols are 
scaled to the estimated magnitudes of the events.  The main ML 3.9 shock is shown as a star in 
the maps at left.  The crosses in the maps at left are the locations of the design events used to 
construct subspace detectors.  In the center, the maps show the distribution of events detected 
(black crosses) and not detected (red circles) by the correlation detector using the main shock 
waveform as a template.  At right are the events detected (black crosses) and undetected (red cir-
cles) by the 9-dimension subspace detector.  The subspace detector detected approximately twice 
as many events as the correlator using a threshold set to achieve the same theoretical false alarm 
rate.
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Figure 12  Histograms of the number of events detected by the correlator (red) and the 9-dimen-
sion subspace detector are superimposed here on a histogram of the NCSN catalog events by 
magnitude (grey).  The subspace detector captures roughly twice the number of events as the 
correlator and achieves a detection threshold of about magnitude 1.5 at 240 kilometers range.
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NCSN catalog, the histogram for the 9-dimension subspace detector (black) in front of that, and 
the histogram for the correlator (red) in front of both the other two.  The catalog appears to be 
complete down to about magnitude 1.5, which also is about the threshold of detection for the sub-
space detector.  The correlation detector detects roughly half the number of events as the subspace 
detector, missing even some of the larger-magnitude events.  In this sequence, there apparently is 
enough signal diversity that the main shock waveform does not provide an adequate representa-
tion for all of the larger events.
 
  Subspace detectors also are substantiallly more sensitive for signals from their particular target 
source than are energy detectors.  This point is made clear in Figures 13 and 14.  Figure 13 com-
pares the detection statistics for an STA/LTA detector and the 9-dimension subspace detector, 
both operating in the same frequency band 2-4.5 Hertz.  The STA/LTA detector computes the ratio 
of energies in a 4-second detection window and a preceding 32-second noise window.  The log 
STA/LTA ratio is displayed in Figure 13 and shows a large number of excursions above the 
threshold (3.0).  This threshold was chosen assuming white Gaussian background noise, a central 

F distribution for the resulting (null hypothesis) statistic and a false alarm probability of 10-6.  In 
fact, there are 735 triggers on the 6 days of data from KCC with 93 being reconciled with the 
NCSN catalog.  

  Since the STA/LTA algorithm is a general detector for all types of signals, many of these triggers 
are legitimate detections of signals from other sources.  However, an analysis of the number of 
triggers and San Ramon sequence detections as a function of threshold suggests that there are a 
substantial number of noise triggers as well.  This analysis is summarized in Figure 14 which 
shows histograms by magnitude of the San Ramon sequence detections parameterized by detec-
tion threshold (values:  3.0, 3.25, 3.5).  The total number of triggers are shown in parentheses for 
each threshold value.  The figure shows a rapid increase in the overall number of triggers and in 
the number of San Ramon sequence detections with only small decreases in the threshold.  This 
behavior is evidence for operation at the threshold of detection, which suggests that large numbers 
of noise triggers are beginning to occur.  The fact that large numbers of triggers are occurring at 
the threshold predicted for low false alarm probability, is evidence that the assumptions about 
white Gaussian background noise have been violated.



Figure 13  The detection statistic for an STA/LTA detector and the 9-dimension subspace detec-
tor demonstrate that the STA/LTA algorithm is not selective for a particular source, as is the sub-
space detector.  
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Figure 14  Significant numbers of San Ramon detections with an STA/LTA detector come at the 
expense of very large numbers of triggers.  The figure shows three histograms of the number of 
San Ramon sequence detections by magnitude as a function of the detection threshold (3 black, 
3.25 green, 3.5 red).  The number of San Ramon sequence detections and the total number of 
triggers are shown in parentheses.  A detection threshold of 3 is right where the detector exhibits 
threshold behavior with a rapidly increasing number of triggers (735).
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Conclusions

  Correlation and subspace detectors operate as sensitive detectors of events in specific source 
regions because they match the fine temporal and spatial structure of the signals generated by 
those events, rejecting other waveforms.  While the examples shown in this report used multi-
channel data from three-component stations, the principle is general and can (and has) been 
extended to arrays and even to networks of three-component stations.  In all these situations, the 
waveform matching that occurs when a target signal is present and the cross-channel stacking  
provide processing gain.  For a three-component station processing gain occurs from matching the 
time-history of the signals and their polarization structure.

  In an array, this processing gain is similar to beamforming, but with a crucial difference.  The fact
that the waveforms are matched means that the array sum of single-channel cross-correlations suf-
fers no coherence loss as is the case with a conventional beam of array waveforms dependent on a
plane-wave model.  The time delays occasioned by wavefield propagation across the array are re-
moved by the channel-wise cross-correlation between identical template and target waveforms,
even for arbitrary time delays that do not conform to a plane-wave spatial structure.  The fine tem-
poral structure of the signals caused by scattering and refraction similarly is matched.  For identical
multichannel signals arising from events with the same time history, mechanism and source loca-
tion, multichannel correlation offers a solution, long sought, to the problem of signal decorrelation
across an array aperture [e.g. Mykkeltveit et al., 1983], and leads to highly sensitive detectors [Gib-
bons and Ringdal, 2006].

  However, this attractive solution is degraded if the master event supplying the waveform tem-
plates and any event to be detected do not have the same source time history, mechanism or loca-
tion.  The array cross-correlation between otherwise identical events spatially separated declines
with increasing distance of their separation [Thorbjarnardottir and Pechman, 1987;  Harris, 1991].
This loss of coherence occurs in roughly the same manner, and for the same reason, that the signals
observed from a single event decorrelate across an array aperture (in the reciprocal problem).
Thus, correlation detectors trade waveform decorrelation problems at the receiver aperture for
decorrelation problems at the source end of the path.

  Subspace detectors offer one approach to improve, or at least manage, the trade-off.  Subspace
detectors operate by projecting the data (construed as a vector) from a window sliding over the con-
tinuous (multichannel) data stream into the intended signal (vector) subspace.  For the detection of
seismic events that may be distributed over some source region with a range of source time histo-
ries and mechanisms, the subspace can be designed to represent the observed range of waveform
variation that reduces correlation detector performance.  Thus, subspace detectors provide a mech-
anism for recapturing some of the performance lost by correlation detectors operating to detect sig-
nals exhibiting some variation.

  Theoretical estimates of detection and false alarm probabilities can be used to contrast the per-
formance of different processors (single-channel, array, incoherent, and coherent).  The suite of 
probability of detection curves shown in Figure 15 were developed for this purpose [Harris, 2004] 
from relations similar to equations (20) and (21) for the case where the detection window is sup-
plemented with a pre-event noise window.  The figure contrasts curves mapping the probability of 



Figure 15  Predicted probabilities of detection for an STA/LTA detector (black), an STA/LTA 
detector operating on an array beam (red) and four different subspace detectors (gold) suggest 
that correlation/subspace detectors offer the potential of as much processing gain as the introduc-
tion of arrays.
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detection PD for a number of detectors as a function of signal-to-noise ratio (SNR), all for a fixed 

false alarm probability of 10-6 and an assumed processing bandwidth of 2 Hz.  One of the detec-
tors is an STA/LTA detector with a short-term detection window of 4 seconds duration and a long-
term pre-event noise window of 40 seconds duration.  The probability of detection curve for this 
processor is shown at far right in the figure, predicting a detection threshold in the neighborhood 
of 5 dB SNR.  For reference, a curve portraying the probability of detection for an STA/LTA 
detector applied to the beam for a 9-element array is shown.  It is the next curve to the left and has 
an apparent detection threshold 9 or 10 dB lower than the STA/LTA detector operating on a single 
channel of data.  The assumptions in making this estimate of PD are that the noise is incoherent 
across array elements, white, Gaussian and of the same power on all elements, and the signal is 
perfectly coherent.  From the foregoing discussion, it is apparent that particularly the assumption 
of signal coherence is flawed.  The noise assumptions are highly idealized as well.

  To the left of these two STA/LTA curves are four curves for correlation and subspace detectors 
that also use all 9 channels of array data.  The correlation detector PD curve at far left has a detec-
tion threshold that is as much as 17 dB lower than the STA/LTA detector with beamforming.  This 
remarkable increase in performance (decrease in threshold) is partly a function of the increase in 
the detection window length, and partly due to the coherent integration of energy in a known sig-
nal.  In correlation or subspace detection, the detection window can be expanded to encompass 
the entire waveform (all phases) rather than being restricted to a single phase as is common prac-
tice in STA/LTA detection on a beam (the restriction is due to beam loss on the secondary phases 
not the object of beamforming).

  A significant assumption in making this estimate of PD for the array correlation detector is that 
the signal to be detected is perfectly matched (across all channels) by the template waveform 
acquired from a previously-observed design event.  The noise assumptions are the same as for 
beamforming.  As remarked earlier, the assumption of a perfect match to a prior signal is unrealis-
tic in many cases;  the analysis therefore is a best case assessment.

  The three remaining curves intermediate between the correlation detector and the STA/LTA 
detector on a beam are estimates of PD for three subspace detectors.  They are labeled 20 dof, 50 
dof and 100 dof for the number of degrees of freedom (dimensions) in their respective subspace 
representations.  The remarkable result of this analysis is that only 5-6 dB of threshold sensitivity 
is lost with these generalizations on the correlation detector (which is a subspace detector with 1 
degree of freedom).  The assumptions made in these calculations are that the signal to be detected 
lies wholly within the subspaces and the noise is uncorrelated et cetera as above.  The assumption 
that the signal lies within the subspace is more likely, of course, than the corresponding assump-
tion for a correlation detector that the correlation template is a perfect match for the signal to be 
detected.

  The theoretical total number of degrees of freedom available in the signal space defined by a 
detection window of 100 seconds with 2 Hz of bandwidth and 9 channels of data is 

.  When contrasted with this figure, even of subspace of 100 dimensions is 
a small portion of the overall signal space.  This fact accounts for the small predicted loss of per-
formance of even the 100-dimension subspace detector.  In general, correlation and subspace 

2 100 2 9⋅ ⋅ ⋅ 3600=



detectors perform well because the perform coherent detection of small subspaces of larger sig-
nals spaces having  degrees of freedom.  This fact motivates the use of large detec-

tion windows, as much bandwidth as is observable and as many data channels as are available.  
Set against this motivation to increase the time-bandwidth-channel product is the fact that signals 
from events that are separated in the source region decorrelate rapidly with increasing frequency 
[Thorbjarnardottir and Pechman, 1987;  Harris, 1991].  There is thus an incentive to restrict pro-
cessing to lower frequency bands.

2 T B Nc⋅ ⋅ ⋅
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Appendix A  Derivation of the Generalized Likelihood Ratio

  Evaluation of the log Generalized Likelihood Ratio

is relatively straightforward.  The logarithm and maximization operations commute in the above 
expression because the natural logarithm is monotonic.  First consider maximization of the 
numerator term using equation (9):

Setting the partial derivatives of this expression with respect to the unknown parameters ( i.e. the 
partial derivative with respect to  and the gradient with respect to ) to zero, we obtain:

The solution to these equations is:

Substituting these values into the expression for the numerator:
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  In a similar manner, the denominator term (from equation(8))

 is maximized by:

resulting in:

  Assembling the complete result:

Simplifying:

which is equation (11).
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Appendix B  Waveform alignment through the dendrogram

  The master event waveforms used to define a subspace detector template should be aligned to 
minimize the dimension of the basis waveforms constructed to represent them.  Often this is a dif-
ficult task due to the fact that not all pairs of events may have correlation functions with well-
defined peaks suitable for estimating offsets between event waveform pairs.  This situation is 
likely to be encountered, if, as advocated in this report, event clusters are constructed with a sin-
gle-link clustering algorithm aggressively to form large chains of related events.  Waveforms from 
opposite ends of the chain may not correlate well, posing difficulties for alignment algorithms that 
impose closure constraints on estimated alignment offsets (e.g. the sum of alignment offsets 
between events A and B, B and C, and C and A should be zero).

  An alternative is not to attempt closure, but rather to rely upon alignments made with the best 
correlation measurements only (i.e. those with highest correlation values defining offsets).  In a 
single-link algorithm events and clusters of events are aggregated hierarchically using a sorted list 
of correlation measurements progressing from largest to smallest correlation values.  Conse-
quently, this algorithm aggregates events sequentially based upon the largest available correlation 
measurement at any given point in the execution of the algorithm.  The alignment approach used 
in the examples of this report aligns the waveforms as the dendrogram is constructed using the 
offsets estimated from the correlation measurements that are themselves used to aggregate events 
or event clusters.  This approach is referred to as alignment through the dendrogram, since the 
alignments are carried along as the dendrogram is constructed.

  A simple algorithm for carrying alignments through the dendrogram is illustrated in Figure C.1.  
In this example there are six hypothetical seismic events labeled A-F, with correlation measure-
ments in the matrix (upper triangular part) shown at upper left in the figure.  In each cell of the 
matrix the maximum correlation value between the waveforms is indicated along with the delay 
(in parentheses) between the signals.  This delay is the point in the cross-correlation function at 
which the correlation is maximized.  For example, the correlation measurement between events A 
and B is shown to be 0.9 and this value is measured at an offset between B and A of -50 samples 
(i.e. the common waveform appears 50 samples earlier in the recording of B than in the recording 
of A).  The event listed along the row of the matrix (A in this case) is considered to be the refer-
ence event in the correlation measurement for purposes of establishing time delay.

  The single-link hierarchical agglomerative algorithm begins by treating all events as individual 
clusters contain one event each.  In each step of the algorithm, the largest correlation measure-
ment is selected and the two clusters (events) to which it corresponds are merged.  As two clusters 
are combined, the correlation measurements between the two clusters and any third remaining 
cluster are combined by selecting the larger of the correlation measurements to represent the cor-
rrelation of the new cluster with the third cluster.  This process of aggregation continues until a 
single cluster remains.

  The process is illustrated in Figure C.1.  At the outset, in the event correlation matrix at upper 
left, the largest correlation value is 0.9, between A and B.  A and B are merged to form a cluster 
labeled AB.  The correlation between AB and C is the larger of the two values 0.8 (between A and 
C) and 0.6 (between B and C).  The correlations between AB and D, E and F are similarly 



Figure C.1  Waveform alignment through the dendrogram using the single-link algorithm.  See 
the text for a description.
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defined.  The resulting reduced matrix of event/cluster correlations is shown in the upper middle 
part of the figure.  In the second step, the largest correlation value is 0.85 between events C and D.  
These are aggregated into a new cluster labeled CD.

  At lower right in the figure is the dendrogram representation of the linkage among events and 
clusters.  Events are listed from top to bottom at the right side of the diagram and the links are 
added backwards from right to left.  Events A and B are linked at the 0.9 level.  Since B is delayed 
with respect to A by -50 samples, the branch of the tree leading to B from the node joining A and 
B is labeled with -50.  This value represents the offset required to align A and B.  For purposes of 
timing and alignment each cluster has a baseline event (A in this case) which initially has an off-
set of 0.

  There are several details regarding how offsets are combined as clusters are aggregated.  As two 
clusters are combined, a new baseline event has to be chosen, which is arbitrarily picked as the 
baseline event of the reference cluster.  Subsequently, all measurements with the cluster as refer-
ence must have their offsets adjusted to refer to the new baseline event.  For example, in the sec-
ond stage of the example, C and D are aggregated.  When C and D are combined, C becomes the 
baseline event and D has an offset of 50 samples with respect to it.  The branch of the dendrogram 
corresponding to D is labeled with a 50 to indicate the offset with respect to C.  Event E has its 
larger correlation with Event D and an offset of -200 with respect to D.  To adjust to the new base-
line of cluster CD, E has an offset of   with respect to C, which appears in 
stage 3.  Event F has its higher correlation with Event C and an offset of 100 with respect to C, 
which remains unchanged.

  The process continues until the last correlation measurement is used to combine the last two 
clusters.  At this point all events are referenced to a single baseline event through the linkage 
structure of the dendrogram.  The links are formed sequentially and the accumulating offsets 
appear in the dendrogram as labels on the branches.  To find the aggregate offset representing the 
delay between a particular event and the baseline event, the offsets are summed down the 
branches of the dendrogram (starting at the root at left) to the leaf node of the dendrogram corre-
sponding to the particular event in question.  In the example, event A ended up being the final 
baseline event, so that the offsets in the dendrogram (lower right, figure C.1) reproduce the delays 
of the first row in the initial correlation measurement matrix (upper left).

  Figure C.2 shows the dendrogram and the offsets developed to align the 19 master event wave-
forms recorded at KCC for the San Ramon sequence.  Applying the offsets shown in figure C.2 
results in the waveform alignments displayed in Figure 7.

200– 50+ 150–=



Figure C.2  Alignment through the dendrogram for the 19 master event waveforms recorded at 
KCC used to build a subspace detector for the San Ramon sequence.


