
UCRL-PROC-222446

A multiphase model for heterogeneous
explosives in both the dense and dilute
limits

D. E. Stevens, M. J. Murphy, T. A. Dunn

June 27, 2006

International Detonation Symposium
Norfolk, VA, United States
July 23, 2006 through July 28, 2006



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



A MULTIPHASE MODEL FOR HETEROGENOUS EXPLOSIVES 
IN BOTH THE DENSE AND DILUTE LIMITS

David E. Stevens∗, Michael J. Murphy∗, Timothy A. Dunn∗

*Lawrence Livermore National Laboratory
8000 East Avenue, L-98

Livermore, California, 94551

Abstract. Multiphase flow phenomena are important in the characterization of many 
particle-loaded explosives.    A numerical model of these flows must often be capable of 
accurately simulating both dense and dilute particle loadings and often the transition 
between the two limits.   This presents severe numerical difficulties in that numerical 
approaches for packed particle beds often behave poorly for the dilute regime and the 
reverse is often true for methods developed for the dilute regime.  This abstract compares 
two established numerical methods and presents improvements to them.  The improved 
methods have enabled the development of a general purpose model that has been 
successfully applied to a wide range of problems including the energetic dispersal of solid 
particles.   

INTRODUCTION

The knowledge of multiphase flow phenomena 
is crucial to the understanding of many non-ideal 
explosives.  These explosives are characterized by 
large reaction zones and non-adiabatic processes 
that invalidate many of the assumptions that go into 
most current computational tools.  The complex 
behavior of these heterogeneous materials has 
severely limited the ability to understand their 
behavior via simulation.   Recent advances in 
Riemann solvers and other methods are now 
enabling their study without analytic reduction to 
simpler models that may involve dubious 
assumptions.

This paper presents two fundamental types of 
Riemann solvers that are integrated into a single 
multiphase framework.   First we describe the 
Eulerian-Eulerian particle fluid model for 

multiphase flow.  The numerical method is 
presented next followed by results and conclusions.  

MULTIPHASE FLOW

 The Eulerian-Eulerian multiphase formulation 
is presented in Chinnayya et. al (2004). This model 
is composed of coupled Euler equations for each 
phase combined with a volume fraction equation.  
A typical flow consists of both gaseous and solid 
particle phases.  The conservation equations for the 
gaseous phase (subscript g) follow for volume 
fraction α or phase indicator function X, density ρ, 
velocity u and total Energy E:
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Similar equations exist for the particle (or 
liquid) phase (subscript p or l).  These equations
have terms that depend on a mean or phase 
interface velocity intu and Pressure intp multiplied 
by the volume fraction gradient.  These terms are 
called the non-conservative or nozzling terms.  
Here we define the mean velocity and pressure via
the following summations 
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where iy is the mass fraction of a given phase.  
These mean velocities and pressures are used 
whenever an explicit model is needed for these 
quantities.   The model presented above is that of 
Saurel and Abgrall (1999) and is not unique.  This 
differs from the interface model presented by Baer 
and Nunziato (1986).  The second of the two types 
of models presented here avoids much of the need 
to explicitly utilize these interface models.

 The multiphase relaxation terms S, correspond 
to the interactions between the phases, such as drag 
and conduction.  The source terms that have been 
implemented follow:
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where m& is the chemical production of gas, vτ and 

cτ are drag and conduction time constants, and µ
is an inverse compaction stress.   The complexities 
of drag coefficients and Nusselt numbers for 
conduction have been algebraically folded into the 
two time constants.  

The phase conservation equations have been 
divided into hydrodynamic and multiphase 

relaxation terms. The methods presented here treat 
these equations in an operator split manner between 
these two types of terms.  This yields a two step 
process where typically the multiphase relaxation 
terms are evaluated via backward Euler time 
integration.  It is a simple modification to weave a 
Runge-Kutta time stepping scheme into this system, 
but this is often at the expense of a final solution 
that violates a desired mechanical and 
thermodynamic state. This two-step process has 
the added attractiveness in that if the hydrodynamic 
terms are stable and not stiff in the absence of any 
relaxation terms, then the backward Euler treatment 
of the relaxation terms will be stable for most 
combinations of relaxation terms. 

The multiphase relaxation processes considered by 
this model are standard particle conduction and 
drag formulations that have been averaged to the 
phase level.   Chemistry has also been included.  
Perhaps the most interesting of these multiphase 
relaxation processes are the treatments of 
compaction and pressure relaxation. For cases 
where the compaction viscosity is unknown, the 
pressure relaxation model defaults to an infinite 
relaxation rate or pressure equilibration.   Note that 
pressure equilibration formally makes the 
multiphase equations ill-posed.  However, the fact
that the hydrodynamic terms are operator split from 
the pressure relaxation or compaction terms appears 
to preserve the well-posedness of the numerical 
solution.

The hydrodynamic terms have a simplified 
vector form

 0=+⋅∇+ HFU t    (4)

Where ( )EU αραραρα ,,,= is the state vector, 

( )puEupuuuF i ααρααραρ ++= ,,,1 is the conservative 
flux and ( )ααα ∇•∇∇•= intintintint ,,0, uPPuH is the 
vector of nozzling terms.  The nozzling terms are
associated with the accelerations produced by a 
phase being squeezed by the presence of other 
phases.  The numerical methods described below
combine Riemann solvers for a rigorous treatment 
of the flux vector coupled with compatible 
treatments of the non-conservative terms.  All of 
the numerical methods described in this abstract 
exhibit the free-stream preservation property that a 
multiphase mixture at constant velocity will remain 



in mechanical equilibrium.   This property is 
equivalent to the property that a solution with 
constant u and P will remain constant in u and P
even in the presence of volume fraction and density 
gradients.

Associated with this quasi-conservative 
formulation (the sum of the phase equations is
conservative), is an equivalent set of ``non-
conservative'' primitive variable equations:

0=+++ zzyyxxt WAWAWAW (5)                           

Where ( )puW i ,,,ρα= is the vector of primitive 
variables and 

ixA is the primitive variable 
coefficient matrix for the ith direction:
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The primitive equations are used in this model as 
part of a MUSCL-Hancock predictor-corrector to 
interpolate the conserved state from zone centers to 
zone faces and extrapolate this state in time to the 
middle of the timestep. This extends the time-space 
accuracy of the methods to second order.

NUMERICAL METHOD

Approximate Riemann Solvers

Although the underlying equations are non-
conservative, an approximate Riemann solver 
formalism is used to formulate the equations.  
Approximate Riemann solvers have the advantage 
that only simple estimates of wave speeds are 
required for the formulation of a stable algorithm. 
This removes the need to explicit consider the form 
of the equation of state in the construction of the 
method.   The approximate Riemann solvers in this 
paper are of two fundamental types:  1) minimum 
and maximum wave speeds of the entire system of 
phases are used to construct the fluxes of each 
individual phase and 2) individual phase speeds are 

used for the phase fluxes, and the fluxes are 
appropriately combined to form a method stable 
from the entire system.   The first approach is 
guaranteed to be stable and monotone.   The second 
approach has the potential to be much more 
accurate as it requires less diffusion to track each 
individual phase.  However, it is computationally 
more demanding as it requires multiple 
combinations of flux evaluations for each phase 
flux. The Riemann solvers used in this framework 
are all variants of three fundamental types of 
single-phase approximate Riemann solvers, 
Rusanov, HLL, and HLLC.   These Riemann 
solvers are differentiated by the number of 
characteristics used in the computation of the 
diffusion needed to upwind the characteristic waves 
associated with rarefactions, phase contact surfaces, 
and shocks. Rusanov uses the maximum wave 
speed, maxS to insure that all waves are adequately 
upwinded.   HLL uses the fastest positive, +S and 
negative, −S wavespeeds to span the fan of all 
waves for a lower overall amount of diffusion.  
HLLC is the most accurate for single phase flow, 
but the special logic for contact surfaces can be 
confused by the multiple waves present in
multiphase flow.

For simplicity of discussion, all of the methods 
will be presented in one dimension:

( ) ( )n
ii

n
ii

n
i

n
i

n
i

n
i HH

x
tFF

x
tUU 2/1,2/1,2/12/1

1
−+−+

+ −
∆
∆

+−
∆
∆

−=  (7)                           

This formula is easily extended to multiple 
dimensions by applying the appropriate divergence 
and gradient operators. The dual position subscript 
for the nozzling term H reflects its non-
conservative nature.  The first subscript denotes the 
zone it belongs to.  The second subscript denotes 
the face of that zone to which it is attached.  Unlike 
the flux terms, a sum over zones will not cause the 
nozzling terms to telescopically collapse the sum to 
a sum of boundary values. Each of the following 
methods is specified by its own unique numerical 
flux-nozzling pair.

Multiphase Method of Saurell and Abgrall

The methods presented by Saurell and Abgrall 
(1999) are the most efficient of the two types of 
solvers in that each phase is treated independently 
of the others.   The Saurell and Abgrall methods are 



based solely on the u-P free-stream preservation 
property.  The following flux-nozzling pairs in one 
dimension are derived by applying a system 
maximum wavespeed to all phases.  The Rusanov
pair is given by: 
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and the HLL pair by

 ( )









−
−

=

−
−

−
−
−

=

−+

−+

+

−+

−+

−+

−+

+

SS
SS

FH

UU
SS

SS
SS

FSFSF

RLlag
jij

lR
RL

i

αα
2/1,

2/1 (9)                           

where the “Lagrangian” flux is defined by

 ( )jjjj
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It was found that these flux-nozzling pairs 

require very small initial timesteps in the presence 
of very strong pressure gradients coupled with 
strong volume fraction gradients. The initial 
timestep can be greatly increased once the volume 
fraction gradient has been sufficiently diffused.  A 
new modification of the nozzling terms eliminates 
this timestep restriction.  The corrected nozzling 
term for Rusanov is:
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and for HLL is:
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This reinterpretation of the nozzling terms uses 
integration by parts to avoid overly driving a phase 
with little mass by a flux from a nearby zone with 
much more mass.   This new nozzling term is 
appropriately normalized to insure that the sum 
over all phases is zero.

One of the defects of this model is that it 
requires an explicit usage of the interface velocities 
and pressures.

Multiphase Method of Chinnayya

 This method is fundamentally paired with the 
HLLC Riemann solver as it requires an estimate of 
the various material contact-surface velocities at 
zone faces. This method uses the volume fraction as 
an indicator function, X, to apportion the contacts 
between phases.  Each contact in this collection of 
contact surfaces is processed by a single phase 
HLLC Riemann solver to determine its evolution 
and hence the flux and nozzling needed by each 
phase.   Further information on this Riemann solver 
is found in the excellent articles by Abgrall and 
Saurell (2003) and Chinnayya et Al. (2004).  The 
flux-nozzling pair for this method follows:
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Where ( )lkFi ,*
2/1+

is the flux computed from the 
single phase HLLC solver with pure phase k on the 
left and phase l on the right.  The quantities *

klu and 
*
klp are the contact velocities and pressures derived 

from the HLLC solver.  The indicator function klS is 
unity in the presence of a k-l contact and zero 
elsewhere.  [ ]*

2/1, +ijX is the jump in X associated with 
a contact.  While this method is potentially much
more accurate, it is computationally more 
demanding.    The method requires that the flux for 
each phase is the sum of combinations from all 
possible contacts between this phase and all the 
others.   The processing of each contact requires up 
to 4 HLLC evaluations, each of which has an HLL 
evaluation embedded inside it for processing the 
contact phase speed.  

 The cost of this algorithm is greatly offset by its 
ability to avoid two fundamental problems of the 
Saurell and Abgrall (1999) methods: the 
elimination of the need for system maximum wave 
speeds and the ability to avoid specifying interface 
velocities and pressures.   The Chinnayya model 
implicitly calculates mean interface velocities and 



pressures via the HLLC flux evaluations.  Another 
attraction of this algorithm is that it is a logical 
endpoint in the evolution of the Saurell and Abgrall 
fluxes.   The correction that removed the initial 
timestep restriction is very analogous to replacing 
the average volume fraction in the nozzling terms 
by a more appropriate jump condition in volume 
fraction.

MUSCL-Hancock predictor-corrector

 This multiphase framework uses the same 
predictor for both types of Riemann solvers as part 
of a predictor-corrector method to achieve formal 
second-order accuracy,  In isolation, each Riemann 
solver is inherently first-order, as they at most first-
order upwind a desired collection of characteristics.  
The sole reason for comparing different Riemann 
solvers is to determine the effect of accurately 
incorporating more waves into the solution and 
hence minimize the amount of diffusion required to 
stably integrate the multiphase equations.  The 
predictor used here for all three methods is the 
standard MUSCL-Hancock approach by which the 
primitive equations are used to predict left and right 
states ( )RL WW , about each computational face.  The 
conservation properties for each phase are then 
enforced by converting the primitive vector of edge 
states ( )RL WW , to the conserved edge vectors

( )RL UU , and evaluating the Riemann solver with 
these conserved quantities. Explicit details of the 
MUSCL-Hancock approach are described in Toro 
(1999).  

 The chief drawback of using a common predictor 
for all three approximate Riemann solvers is the 
reintroduction of the interface velocity and pressure 
model for the HLLC method.   

 This drawback is offset by a couple of mitigating 
factors.   The only ghost zone evaluation and hence 
parallel communication is that required by the 
MUSCL predictor for computing left and right 
states at the faces of computational zones. Another 
offset is the single phase nature of the monotonic 
slopes used by the predictor.   The original 
Chinnayya algorithm uses the Riemann solver as a 
predictor followed by monotonic interpolation to 
faces for left and right states.   This Riemann solver 
is then reused using these new left and right states.  

Unfortunately, the quantity independent slope 
limiting used by the interpolation eliminates the 
state interdependencies that the HLLC based 
Riemann solver seeks to preserve.

It should be noted that for stability the Chinnayya 
model requires additional nozzling terms in the 
corrector associated with an internally present 
contact.

RESULTS

Water-Air Shock Tube

A useful test problem for method comparison 
is the following water-air shock tube.  This test 
problem is present in both Chinnayya (2004) and 
Saurell and Abgrall (1999) and is more fully 
described in these two papers.  This problem is a 
stiff test of multiphase numerical methods 
consisting of a 1 Gpa water region expanding into a 
5 Mpa air region.    While lower than typical 
detonation pressures, this test problem presents a 
canonical single phase shock tube of interest with 
relevant density and pressure gradients. This is an 
example of a densely loaded multiphase flow 
problem.   This simulation was done with a very 
small drag relaxation time scale ( )20.1 −= evτ and 
solutions were compared after an integration period 
of 229 microseconds.

All of the flux-nozzling pairs are viable 
methods for this problem.  Below is a comparison 
of the mean barycentric density for four predictor-
corrector combinations.  It was found that the 
largest effect on solution accuracy for this problem 
was the presence of a predictor.  This is probably 
due to the fact that the characteristic represented by 
the water shock is by far the largest in magnitude 
and obviates the need for a sophisticated evaluation 
of the other waves involved.   The predictor is able 
to minimize overall dissipation by limiting the 
diffusion from the Riemann solver to only a small 
region around the water shock.



FIGURE1: Density Comparison.

Particle Dispersion

 Zhang and Frost’s particle dispersion 
experiments are a very useful dataset for validating 
multiphase flow models.  This is an example of a 
multiphase flow that transitions from a densely
loaded detonation problem to the dilute flow limit 
within less than five charge radii. 

 Their experiments consisted of spherical charges 
of nitromethane with 0.6 by volume fraction 
loading of steel spherical particles of various sizes.   
A unique feature of their observations is that steel 
particles with sufficient mass can easily penetrate 
the explosively driven shock front into the 
quiescent air.

 Below are graphed the simulated and 
experimentally derived particle and shock fronts for 
their 11.8 cm diameter charge with 473 micron 
steel particles.  Again all of the methods are 
producing credible simulations. The different 
methods do exhibit different behaviors which are 
magnified in the particle phase.   This test problem,
more than the water-air shock tube, effectively 
shows off the additional physics that have been 
incorporated into the HLLC based Riemann solver.   
The wavespeed associated with the shock front is 
an inappropriate wavespeed for the bulk of the 
problem. The particle front is really a contact 
surface.   The Rusanov and HLL approaches, which 
use system maximum wave speeds, appear to have 
particle fronts that are excessively slowed as 
compared to the HLLC particle fronts.  

 A further drawback of the system based 
approaches is their inflexibility in incorporating the 
effects of changing volume fraction in controlling 
their dissipation.   As the particle transitions from 
the charge to the surrounding air, the particle phase 
volume fraction falls off very sharply as a function 
of distance.   Hence, a system maximum wavespeed 
approach, which takes into account the steel shock 
Hugoniot, is dramatically over damping the air 
shock behavior even though the steel volume 
fraction may only be a small fraction of a percent.

FIGURE 2: Comparison of Particle and shock 
fronts.

CONCLUSIONS

We have presented a predictor-corrector model 
that combines modifications to the original Saurell
Abgrall and Chinnayya algorithms that increases 
their efficiency and stability.  These modifications 
are used to simulate two energetic test problems.  
The first is a single-phase, but multi-material 
analog of an exploding medium.   The second 
problem transitions from a 20 Gpa detonation to a 
0.4 Mpa air shock within the space of 2 meters.  
The particle loading transitions from 60 percent by 
volume to small fractions of a percent in less than 
five charge radii.

 
These results have encouraged the application 

of this model to additional non-ideal behavior such 
as DDT (Deflagration to Detonation Transition) 
and other non-ideal explosives.
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