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ABSTRACT 

Penetration deformation of columnar prismatic enamel was investigated using 

instrumented nanoindentation testing, carried out at three constant strain rates (0.05 s-1, 0.005 s-1, 

and 0.0005 s-1). Enamel demonstrated better resistance to penetration deformation and greater 

elastic modulus values were measured at higher strain rates. The origin of the rate-dependent 

deformation was rationalized to be the shear deformation of nanoscale protein matrix 

surrounding each hydroxyapatite crystal rods. And the shear modulus of protein matrix was 

shown to depend on strain rate in a format: ε&ln021.0213.0 +=pG . 

 

Most biological composites compromise reinforcement mineral components and an 

organic matrix. They are generally partitioned into multi-level to form hierarchical structures that 

have supreme resistance to crack growth [1]. The molecular mechanistic origin of toughness is 

associated with the “sacrificial chains” between the individual sub-domains in a protein molecule 

[2]. As the protein molecule is stretched, these “sacrificial chains” break to protect its backbone 

and dissipate energy [3]. Such fresh insights are providing new momentum toward updating our 

understanding of biological materials [4]. Prismatic enamel in teeth is one such material. 

Prismatic microstructure is frequently observed in the surface layers of many biological 

materials, as exemplified in mollusk shells [5] and teeth [6]. It is a naturally optimized 
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microstructure to bear impact loading and penetration deformation. In teeth, the columnar 

prismatic enamel provides mechanical and chemical protection for the relatively soft dentin layer. 

Its mechanical behavior and reliability are extremely important to ensure normal tooth function 

and human health. Since enamel generally contains up to 95% hydroxyapatite (HAP) crystals 

and less than 5% protein matrix, it is commonly believed to be a weak and brittle material with 

little resistance to fracture [7].  

This study is aimed at exploring the effect of the weak amelogenin-rich protein matrix on 

the overall mechanical behavior of prismatic enamel. The experimental work involves applying 

contact loads at various strain rates to carefully prepared enamel specimens using an 

instrumented nanoindentater. The enamel material and specimen preparation procedure were 

described in a previous study [8]. Briefly, the enamel was dissected into small blocks about 2 

mm wide and 1 mm thick. These small blocks had relatively flat surfaces, under which the 

prisms were uniformly perpendicular to the top surfaces for nanoindentation testing [9.10]. The 

small blocks were then embedded, ground, and finishing polished with 0.03 µm diamond 

suspension. Nanoindentation testing was carried out in a MTS XP® nanoindenter (MTS nano 

instrument, Oak Ridge, TN). Each test consisted of three segments, including a loading process, 

a holding period at the maximum load for a certain time, and a final unloading process. The 

loading process was carried out under constant strain rate [11] to reach a defined penetration 

depth, corresponding to which the maximum load was reached.  

Three constant strain rates (0.05 s-1, 0.005 s-1, and 0.0005 s-1) were used in this study. 

Corresponding to these were three sets of testing, each consisting of multiple tests with the same 

constant strain rate during loading process. Representative load-depth curves are shown in Figure 

1. Corresponding to the same defined penetration depth of 400 nm, as indicated by the vertical 
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dash line, the maximum load levels strongly depended on the strain rates. At the lowest strain 

rate 0.0005 s-1, a maximum load of 11 mN was required to make this penetration depth (400 nm). 

The load increased to 15 mN at strain rate 0.005 s-1, and 17 mN at the highest strain rate 0.05 s-1. 

The rising maximum load level with increasing strain rate indicates that enamel has better 

resistance to penetration deformation under a faster loading process.  

 

 

 

 

 

 

 

 

Figure 1: Representative load-depth curves corresponding to the three constant strain rates. 

 

In the loading process, the elastic moduli were continuously measured using a continuous 

stiffness measurement (CSM) technique.  This technique involves applying a very small force 

oscillation signal to the loading force at a high frequency, measuring the resulting displacement, 

and calculating the contact stiffness. CSM method enables us to continuously measure elastic 

and plastic parameters over a defined penetration depth. In the current study, the average value 

and standard deviation of the elastic modulus corresponding to each depth were calculated from 

the results of multiple indentation tests. The statistic values are plotted against indent depth in 

Figures 2. This figure contains several important points worth noting. First of all, elastic modulus 
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decreases with increasing depth. This is consistent with a previous study [8], and may be 

attributed to the rotation of the HAP rods as penetration advances. It indicates that a meaningful 

elastic modulus value should be specified to the corresponding penetration depth. This is 

extremely important when we compare the mechanical properties obtained from different tests. 

Secondly, elastic modulus values measured at the lowest strain rate (0.0005 s-1) are significantly 

lower than those measured at higher strain rates. This phenomenon is yet to be understood. The 

final and most important point is that greater elastic modulus was measured at higher strain rate. 

This is true for each depth in the overall defined penetration depth (50 nm - 400 nm). 

 

 

 

 

 

 

 

 

Figure 2: Elastic modulus of enamel measured under different strain rates. 

 

Like other biological composites, enamel has microscale-to-nanocale hierarchical 

architecture. At a microsopic level, it consists of aligned prisms surrounded by an organic sheath. 

At the nanoscale level, each prism contains numerous HAP crystal rods that are separated by a 

nanometer-thin organic layer. The rod-like HAP crystals are about 50 nm in diameter, and 

oriented along the prism axis [9,10]. Such a structure is frequently treated as a unidirectional 
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reinforced biocomposite, in which the HAP crystals are reinforcement fibers and the organic 

phase is the matrix [13]. From a mechanical point of view, its elastic modulus is a range with 

upper and lower bounds. The upper bound, up
eE , is given by the Voigt model, i.e. 

pphh
up
e EVEVE += , in which E is elastic modulus, V is volume fraction, and subscripts e, h, and 

p stand for enamel, hydroxyapatite, and protein, respectively. The lower bound is given by the 

Reuss model, i.e. 
phhp

hplow
e VEVE

EE
E

+
= . Cuy et al. [10] suggested that enamel close to the occlusal 

surface has about 95% HAP crystal.  The elastic modulus of HAP crystals in c-axis is ~ 144 GPa 

[14]. The elastic modulus of the protein matrix is yet to be determined. But its effect may be 

evaluated by plotting modulus of enamel versus the shear modulus of protein matrix, pE (Figure 

3). According to the Voigt model, the weak protein matrix carries negligible load, leading to 

nearly constant elastic moduli. The Reuss model gives almost zero estimates. The wide range 

between the upper and lower bounds provides no useful information to explain the rate-

dependent elastic modulus obtained in our experiment. The problem with these two models is 

that the protein matrix is treated merely as a load-bearing component. 

Recent studies have suggested that the mechanical role of the protein matrix in biological 

composites goes beyond carrying load [1,15]. In response to applied loading, the protein matrix 

shears to transfer load between adjacent mineral components, and to accommodate deformation. 

This is incorporated into a tension-shear-chain (TSC) model to quantify the role of the aspect 

ratio of mineral tablets in determining the elastic modulus of a nacre [1]. We employ the TSC 

model to analyze the effect of protein matrix on the modulus of prismatic enamel. A necessary 

modification to the original model is to change the shape of the mineral component from 

polygon to cylinder. Following the same analysis [1], one obtains: 
2

22

)1(4 ρ
ρ

hphh

phh
e VGEV

GEV
E

+−
= , 
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in which ρ is the aspect ratio of HAP crystal rods (length to radius ratio), and Gp is the shear 

modulus of protein matrix. All other parameters keep their usual definitions. The diameter of 

HAP crystal rod is about 50 nm, the length is about 500 – 1000 nm. This gives aspect ratios in a 

range of 20 – 40. Taking a middle value, 30=ρ , the elastic moduli of enamel versus shear 

modulus of protein matrix is plotted in Figure 3 as a symbol-line curve. The model estimates 

match very well with the experimental data in a range from 120 GPa to 80 GPa. Corresponding 

to this range, the shear modulus of protein matrix is between ~ 0.05 GPa and ~ 0.23 GPa.  

 

 

 

 

 

 

 

 

Figure 3: Comparison of experimental data and predictions made by the Viogt, Reuss, and TSC 

models; and the effects of the aspect ratio. 

  

The HAP crystals may have various aspect ratios. Possible geometrical effects on the 

above relationship are evaluated by plotting elastic modulus of the biocomposite versus the shear 

modulus of the protein matrix using various values of aspect ratio (Figure 3). The plots show that 

the above relationship is valid over the possible range of aspect ratio in prismatic enamel (10-50). 

Moreover, the elastic modulus of the biocomposite is more sensitive when protein becomes weak, 
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and sensitivity increases with increasing aspect ratio. These suggest that the mechanical 

properties of a biocomposite can be simply controlled by varying the aspect ratio. This provides 

important guidelines for making new biomaterials using a biomimetic approach [5,16].  

To quantitatively evaluate the shear modulus of the protein matrix from the 

experimentally measured elastic modulus values, we rewrite the latest equation in the following 

format:
2)(

)1(4
ρhehh

ehh
p VEEV

EEV
G

−
−

= . In the following estimation, we take 30=ρ , 95.0=hV , and 

144=hE GPa. Applying this equation, we calculate the shear moduli corresponding to the three 

strain rates over a penetration depth between 100 nm and 400 nm, and plot them in Figure 4.   

 

 

 

 

 

 

 

 

Figure 4: Dependence of the shear modulus of protein matrix on constant strain rate. 

 

Protein matrix between HAP crystal rods is nanometer thin, and thus can be considered a 

single layer protein membrane. The stretching behavior of biological molecules has been 

intensively studied following the pioneering work by Rief et al. [17]. For molecules with two-

stage transition, the average unfolding force, f, required to break the sacrificial chains increases 

with stretching speed, v, following a simple relationship: νlnbaf +=  [17], in which a and b 
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are fitting constants. The shear deformation of the single layer of biomolecule is similar to the 

process of stretching individual biomolecules, and the force necessary to deform the layer is a 

summary of the forces required to stretch all the individuals [18]. The shear modulus of protein 

matrix, the summary of the forces required to stretch all biomolcules in a unit area by a unit 

length, should have a similar relationship with strain rate. This is attested to by a regression 

analysis of our experimental data. We obtain ε&ln021.0213.0 +=pG  (in GPa), in which ε&  is the 

strain rate. Unfortunately, there is no reported data in literature for comparison. In the above 

analysis, we did not consider the depth effect resulting from the microstructure evolution due to 

the interactions between nanoindenter tip and the prismatic microstructure. The data in Figure 4 

indicates that they do not have significant effect on our analysis.  

In summary, as the most mineralized and hardest tissue in the human body, prismatic 

enamel is commonly considered a brittle material. However, this study has shown 

unprecedentedly (to the authors’ knowledge) that its deformation is dependent upon strain rate. 

Such rate dependence originates from the rate-dependent unfolding behavior of macromolecules 

in protein matrix. The rising elastic modulus and enhanced resistance to penetration deformation 

with increasing strain rate manifests the cleverness of nature in designing prismatic 

microstructure to bear impact loading at both fast and moderate loading speeds.  
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Figures: 

 

Figure 1: Representative load-depth curves corresponding to the three constant strain rates. 

 

Figure 2: Elastic modulus of enamel measured under different strain rates. 

 

Figure 3: Comparison of experimental data and predictions made by Viogt, Reuss, and TSC 

models, and the effects of aspect ratio. 

 

Figure 4: Dependence of the shear modulus of protein matrix on constrain strain rate.  

 

 


